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METHODS 
 
Gene expression data processing and quality control 
All statistical analyses were conducted in the statistical package R.  Data from each 
study were processed, normalized and quality treated independently. All microarray 
data were quantile-normalized and log2 transformed. Affymetrix arrays underwent 
robust multi-array average normalization (Carvalho et al, 2006) with additional GC-
correction when possible (Gautier et al, 2004; Carvalho et al, 2010; Wu and Gentry, 
2016) and Illumina and CodeLink arrays were treated as described previously 
(Neylan et al, 2011). When multiple microarray probes mapped to the same HGNC 
symbol, the expression of the probe with the highest average value across all 
samples was used for subsequent analysis. RNA-sequencing count data were 
treated as described previously (Breen et al, 2015) using the VOOM normalization 
(Ritchie et al, 2015), a variance-stabilization transformation method resulting in a 
normally distributed data matrix. Normalized data were inspected for outlying 
samples using unsupervised hierarchical clustering of samples (based on Pearson’s 
coefficient and average distance metric) and principal component analysis to identify 
potential outliers outside two standard deviations from these grand averages. 
Combat batch correction (Leek et al, 2015) was applied to remove systematic 
sources of variability other than case/control status, such as technical, clinical, or 
demographic factors both within each study (as necessary), and then across all 
studies using common gene symbols, forming the bases for subsequent mega-
analytic case-control groups. 
 

Peripheral blood cell type estimates 
The frequencies of circulating immune cells were estimated for each individual in 
each study using Cibersort cell type de-convolution (https://cibersort.stanford.edu/) 
(Newman et al, 2015). Cibersort relies on known cell subset specific marker genes 
and applies linear support vector regression, a machine learning approach highly 
robust compared to other methods with respect to noise, unknown mixture content 
and closely related cell types. As input, we used the LM22 signature matrix to 
distinguish seven main leukocytes subtypes: B cells, cytotoxic T cells (CD8+), helper- 
and regulatory T cells (CD4+), natural killer (NK) cells (CD56+), monocytes (CD14+), 
eosinophils and neutrophils. The LM22 matrix can be further divided into 14 less 
frequent immune cell subsets, which we pooled and defined as ‘other’. The resulting 
estimates were tested for normality using Kolmogorov-Smirnov test and a two group 
Wilcoxon Signed Rank tests with post hoc Tukey correction was used compare 
means between PTSD cases and controls for each study.  
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Functional annotation and protein interaction networks 

All significant DGE signatures and gene modules were subjected to functional 
annotation. First, the ToppFunn module of ToppGene Suite software (Chen et al, 
2015) was used to assess enrichment of Gene Ontology (GO) terms specific to 
biological processes and molecular factors using a one-tailed hyper geometric 
distribution with family-wise false discovery rate (FDR) at 5%. GO semantic similarity 
analysis was used to assess shared/unique gene content amongst GO terms using 
the GoSemSim semantic similarity R package (Yu et al, 2015), and default semantic 
contribution factors (‘is_a’ relationship: 0.8 and ‘part_of’ relationship: 0.5). This 
analysis results in a symmetric matrix in which each value represents a score for 
similarity between GO term pairs. Then, we undertook hierarchical clustering based 
on semantic similarity matrix to group together all GO terms with common GO 
‘parent’. Second, gene modules were tested for over-representation of PTSD 
genome-wide association study (GWAS) signatures obtained from the DisGenNet 
database (Pinero et al, 2015), retrieved using the disease-term query ‘PTSD’. Third, 
DGE signatures were used to build direct protein-protein interaction (PPI) networks, 
which can reveal key genes/transcription factors mediating the regulation of multiple 
target genes. PPIs were obtained from the STRING database (Franceschini et al, 
2012) with a signature query of DGE lists from the mega-analytic case-control 
comparisons. STRING implements a scoring scheme to report the confidence level 
for each direct PPI (low confidence: <0.4; medium: 0.4–0.7; high: >0.7). We used a 
combined STRING score of >0.4. We further used STRING to test whether the 
number of observed PPIs were significantly more than expected by chance using a 
nontrivial random background model (that is, null model). For visualization, the 
STRING network was imported into CytoScape (Shannon et al, 2003).  

 

Cross-disorder overlap analyses 

To compliment our study, we gathered gene-level statistics from other recent blood 
transcriptome mega-analyses of schizophrenia (Hess et al., 2016) and autism 
spectrum disorder (Tylee et al., 2016), as well as emerging, unpublished data on 
bipolar disorder (Hess et al., in prep.) We also gathered dysregulated genes from a 
recent large-scale blood transcriptome investigation of major depressive disorder 
(Jansen et al., 2016). For each disorder, disease-related genes with a P-value <0.05 
were used to yield a sufficient number of genes to perform a gene ontology over-
representation analysis (as above). Subsequently, to determine specificity to PTSD, 
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we performed a series of cross-disorder overlaps at both the individual gene and 
gene-ontology level using a two-tailed Fisher’s exact test.  

 

Construction of PTSD blood-based diagnostic classifiers 

BRB-Array Tools supervised classification methods (Simon et al, 2007) were used to 
construct gene expression classifiers. Three models were specified to distinguish 
PTSD cases from controls relative to: (1) men exposed to combat trauma (2) men 
exposed to IP traumas, and (3) women exposed to IP traumas. Each model 
consisted of three steps. First, to ensure a fair comparison, all genes in the training 
data with P <0.05 were subjected to classifier construction, respective for each 
mega-analytic case-control group. This heuristic rule of thumb approach was used to 
cast a wide net to catch all potentially informative genes, while false-positives would 
be pared off by subsequent optimization and cross-validation steps. Second, 
classifiers composed of different numbers of genes were constructed by recursive 
feature elimination (RFE). RFE provided feature selection, model fitting and 
performance evaluation via identifying the optimal number of features with maximum 
predictive accuracy. RFE selected the top 100 differentially expressed genes and 
evaluated classification accuracies within the training data (70% of data) using a 
two-layer leave one-tenth out cross-validation approach, prior-to predicting class 
labels on completely withheld test data (30% of data). This process iteratively tested 
classification accuracies by removing the five least predictive genes. Third, the ability 
for RFE to predict group outcome was assessed by support vector machines (SVM) 
and compared to four different multivariate classification methods (i.e. diagonal 
linear discriminant analysis (DLDA), nearest centroid (NC), first-nearest neighbors 
(1NN), three-nearest neighbors (3NN)). For each of the three models, classification 
accuracies are reported for both the training data and the completely withheld test 
data as area under the receiver operating curve (AUC).      

 

RESULTS 

Stratified gene co-expression module preservation analyses 

Between trauma-type comparisons: Initially, weighted gene co-expression network 
analysis (Langfelder and Horvath, 2008) (WGCNA) was used to assess whether 
exposure to different traumatic events may influence gene co-regulatory patterns as 
being disrupted or created when exposed to combat traumas relative to IP traumas, 
and vice versa. These between trauma-type comparisons were first assessed within 
trauma-exposed control individuals and then separately within PTSD cases using a 
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permutation-based preservation statistic (Zsummary). In trauma-exposed control 
individuals, low preservation statistics (Zsummary <2) were observed for one module 
when comparing those with a history of combat traumas relative to those with a 
history of IP traumas, while five modules with low preservation statistics were 
observed when we tested the reverse relationship (Supplementary Figure 4A). In 
contrast, moderate-to-high preservation statistics were observed when comparing 
PTSD individuals with a history of combat traumas relative to those with a history IP 
traumas, and vice versa (Supplementary Figure 4B), suggesting that the molecular 
response to different traumatic events are possibly more homogenous in trauma 
survivors with PTSD compared to non-PTSD controls (P=0.01) (Supplementary 
Figure 4C).  
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