Expanded View Figures

Figure EV1. Controls for Htt fibrilization and the kinetics, point mutations in HSP-1 and HSP-110, and analysis of ATPase rates of HSP-70s and HSP-110.

- A TEM image of untagged HttExon1Q48 24 h post-PreSP treatment. Scale bar: 200 nm.
- B Sedimentation analysis of the kinetics of HttExon1Q₄₈-CyPet fibrilization. Depicted are the ratios of the supernatant (soluble HttExon1Q₄₈-CyPet) and the pellet (insoluble, aggregated HttExon1Q₄₈-CyPet) at the indicated time points. The graph shows the average of two independent analyses.
- C Analysis of the GST-cleavage reaction of GST-HttExon1Q₄₈ via SDS–PAGE in the presence (bottom) and absence (top) of HSP-1, DNJ-13, and HSP-110. The time points are indicated on top, and the migration of the full-length and cleaved GST-HttExon1Q₄₈ protein is indicated on the right.
- D SDS-PAGE and Coomassie staining of all purified proteins used in this study.
- E CD analysis of HSP-1 (red) and the point mutants HSP-1_D10S (blue) and HSP-1_K71E (green) and the blank control (black).
- F CD analysis of HSP-110 (red) and the point mutants HSP-110_D7S (blue) and HSP-110_N578Y/E581A (green) and the blank control (black).
- G Basal ATPase rates of HSP-1 and HSP-110 and its point mutants. The ATPase rate is indicated on the y-axis in pmol ATP/µM Hsp/min (N = 2).
- H ATPase rates of the Hsp70s: HSP-1 (white), F44E5.4 (light gray), C12C8.1 (dark gray), and F11F1.1 (black) alone and in the presence of the DNJ proteins, DNJ-12, DNJ-13, DNJ-19, and DNJ-24 (N = 2).
- Sedimentation analysis of disaggregation of HttExon1Q₄₈ fibrils by HSP-1, HSP-110, and DNJ-13 in the presence or absence of ATP after 12 h. Depicted are the ratios of the supernatant (soluble HttExon1Q₄₈) and the pellet (insoluble, aggregated HttExon1Q₄₈). The error bars represent the standard deviation of three independent experiments (N = 3).

D		Htt513 Q15	Htt513 Q128	_		young adult (4 days old
	HSP-1	231 +/- 85	249 +/- 98	. <mark></mark>	HSP-1	525 +/- 136
	C12C8.1	6 +/- 4	4 +/- 4	prote	C12C8.1	69 +/- 17
	F44E5.4	2 +/- 2	3 +/- 3	otal	F44E5.4	1 +/- 1
	HSP-110	651 +/- 157	740 +/- 338	/gt	HSP-110	566 +/- 72
	DNJ-12	27 +/- 6	27 +/- 4		DNJ-12	45 +/- 13
	DNJ-13	47 +/- 16	51 +/- 11	L	DNJ-13	64 +/- 7
	DNJ-19	22 +/- 8	33 +/- 19	a	DNJ-19	54 +/- 35

Figure EV2.

Е

Figure EV2. Controls for in vitro and in vivo immunostaining Caenorhabditis elegans models of Htt513Q15/Q128-YFP and quantification of chaperones.

- A On the left: TEM analysis of a control of HttExon1Q₄₈ fibrils incubated with HSP-1 and only the primary antibody against HSP-1. On the right: TEM analysis of only the chaperones HSP-1, DNJ-13, and HSP-110. Scale bars: 200 nm.
- B Immunostaining of chaperones with HttExon1Q₄₈ fibrils for DNJ-12, DNJ-19, DNJ-24, C12C8.1, F44E5.4, and F11F1.1. Scale bars: 50 nm. The red arrows mark the positive immunogold labeling.
- C Fluorescence images of nematode lines that were used in this study for the analysis of chaperone expression (Fig 5B and C): Htt513Q₁₅-YFP (HttQ₁₅) and Htt513Q₁₂₈-YFP (HttQ₁₂₈). Scale bars: 200 µm.
- D Tables depict the quantification of the chaperone concentrations in Htt513Q₁₅-YFP vs. Htt513Q₁₂₈-YFP (top) and wild-type nematodes of 4-day-old (young adults) vs. 10-day-old animals (bottom). Protein levels are depicted as nmol/g total protein. Data show an average of three independent analyses. Error ranges represent the standard deviation.
- E Filter retardation analysis of the disaggregation analysis of HttExon1Q₇₅ aggregates by HSP-1, DNJ-13, and HSP-110 using an Htt antibody. The time course of the experiment is depicted on the left. No difference in the aggregated state of HttExon1Q₇₅ can be observed in the chaperone-containing sample (right lane vs. left lane).
- F Western blot analysis of the soluble and insoluble moiety of HttExon1Q₉₇ of HEK293T cells upon siRNA-mediated depletion of DNAJB1, Apg2, and Hsc70. The migration of the insoluble and soluble HttExon1Q₉₇ protein is indicated on the right. An asterisk indicates a non-specific signal that also appears in the non-transfected HEK393T cells (left lane).
- G Quantification of the overall HttExon1Q₉₇ levels (soluble + insoluble) of (F). The intensities were normalized to tubulin and represent an average of 3 independent experiments. Error bars represent the standard deviation.