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pKID Binds to KIX via an Unstructured Transition
State with Nonnative Interactions
Liza Dahal,1 Tristan O. C. Kwan,1 Sarah L. Shammas,1,* and Jane Clarke1,*
1Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
ABSTRACT Understanding the detailed mechanism of interaction of intrinsically disordered proteins with their partners is
crucial to comprehend their functions in signaling and transcription. Through its interaction with KIX, the disordered pKID region
of CREB protein is central in the transcription of cAMP responsive genes, including those involved in long-term memory.
Numerous simulation studies have investigated these interactions. Combined with experimental results, these can provide valu-
able and comprehensive understanding of the mechanisms involved. Here, we probe the transition state of this interaction
experimentally through analyzing the kinetic effect of mutating both interface and solvent exposed residues in pKID. We
show that very few specific interactions between pKID and KIX are required in the initial binding process. Only a small number
of weak interactions are formed at the transition state, including nonnative interactions, and most of the folding occurs after the
initial binding event. These properties are consistent with computational results and also the majority of experimental studies of
intrinsically disordered protein coupled folding and binding in other protein systems, suggesting that these may be common
features.
INTRODUCTION
Intrinsically disordered proteins (IDPs) are central to pro-
tein interaction networks (1–3). Many of these IDPs un-
dergo coupled folding and binding reactions, i.e., they fold
to well-defined structures upon interaction with a partner
protein (4–6). It has been argued that their disordered nature
confers certain advantages over already folded proteins
during protein-protein interactions (7–10). For example,
enabling rapid binding and conformational changes when
interacting with their partners (11–13), facilitating easy ac-
cess to posttranslational modification (14,15), permitting
alternative splicing and domain shuffles without perturbing
structure of folded proteins (16,17), increasing plasticity,
and allowing interaction with several binding partners
(18,19). Many of these IDPs function at the hub of signaling
and regulatory processes and are therefore abundant in
eukaryotes (6,20–22). To date, most IDP studies involve
computational or structural analysis and prediction of IDP
ensembles, abundance or binding affinity with their partner
(20,21,23–25). Fewer focus on understanding the mecha-
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nistic details of these interactions, which may be important
in the search for ‘‘druggable’’ IDP targets (26).

Kinetic experiments, along with site-directed mutagen-
esis, have been used to perform F-value analysis to study
transition states in protein-folding pathways (27–29). This
method has been extended to studying the interaction be-
tween an IDP and its partner at residue level in a few studies
(30–35). Comparable to protein-folding studies, association
and dissociation kinetic rate constants and equilibrium con-
stants can be used to calculate F-values. Traditionally,
buried residues are shortened (e.g., to Ala) to probe the for-
mation of the interface, and noninterface (solvent exposed)
residues are mutated to Ala and then Gly to probe secondary
structure (helix) formation. This allows us to probe the
structure of the transition state of these IDP-partner interac-
tions to understand the critical contacts formed during the
coupled folding and binding pathway.

The Kinase Inducible Domain (KID) is an intrinsically
disordered domain of CREB, which plays an important
role in transcription regulation (36–39). On phosphorylation
by Protein Kinase A (PKA), pKID binds to the KIX domain
of CBP and folds into a kinked helical structure (40,41)
(Fig.1). Phosphorylation increases the affinity of KID to
KIX by increasing the lifetime of the complex (see the
accompanying article by Dahal et al. in this issue of Bio-
physical Journal) (42). This lifetime is important because
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FIGURE 1 Structure of pKID (cartoon) and KIX (gray spheres on top

and gray cartoon on bottom) showing interface and solvent-exposed resi-

dues of pKID that were mutated in the study. The phosphorylated serine

of pKID is shown as sticks (magenta). The residues of pKID that contact

the KIX interface are shown as spheres (top) and sticks (bottom); S121

(pale pink), R124 (olive), R125 (green), L128 (purple), R131 (orange),

Y134 (brown), I137 (cyan), L138 (yellow), D140 (red), and S142 (dark

blue). The mutated solvent-exposed residues of pKID are shown in white.

Dahal et al.
it will set a timescale for recruitment of transcription factors
to initiate transcription. The crucial interaction between
pKID and KIX is therefore of interest, and it is important
to understand the mechanistic details of this interaction.
The pKID-KIX system has previously been studied using
NMR and computational studies (43–50). These studies
suggest that pKID binds to KIX via an induced fit mecha-
nism. A partly structured intermediate is detected in equilib-
rium NMR studies (43). Here, we use F�value analysis to
provide an insight into the early rate-limiting transition state
for the pKID-KIX interaction. We find that the transition
state for assembly/disassembly is mostly unstructured,
as suggested by previous studies (45–47). Interestingly, we
2714 Biophysical Journal 113, 2713–2722, December 19, 2017
find that the extreme N- and C-terminal regions of KID
are partly structured and packed at the transition state,
but that in the interhelical kinked region, which includes
the phosphorylation site, there is no evidence for native
structure formation; rather, the data suggest that this region
may form nonnative contacts at the transition state.
MATERIALS AND METHODS

Expression and purification of KIX was carried out as described previously

(51). N-terminal labeled wild-type and mutants of FITC-pKID peptides

(UniProt P15337, residues 116–146) were purchased from Biomatik

(Ontario, Canada). Dilutions using biophysical buffer and concentration de-

terminations, and all biophysical experiments were carried out as described

in the accompanying article (42).
F-value calculations

F-values were calculated using both equilibrium and kinetic data using the

following equations:
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�
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The association (kass,fast) and dissociation (kdiss) rate constants were used to

calculate the kinetic Kd:

Kd Kin ¼ kdiss
kass;fast

; (3)

where kass,fast represents the fast association rate constant, obtained from the

gradient of the straight line used to fit the observed fast association rate at

different KIX concentrations. kdiss represents the dissociation rate constant,

obtained from the asymptote of the plot used to fit the observed apparent

dissociation rate constants of wild-type and mutant pKID from KIX at

different, unlabeled competitor concentrations.

Errors of the fit in equilibrium constant and association and dissociation

rate constants were used for the error calculations. Errors in F-values were

calculated using SE propagation methods.
RESULTS

Selection of pKID mutants

N-terminal, FITC-labeled pKID peptides are used for all the
experiments reported here.

To perform the F-value analysis, we introduced muta-
tions to probe inter- and intramolecular contacts in the
pKID-KIX system. Interface mutants, residues in pKID
that come in contact with KIX (E. Eyal et al., 2009, Weiz-
mann. Inst. Sci., conference), were mutated to Ala to inter-
rogate the contacts made at the peptide-protein interface
(Fig. 1). Ala-Gly scanning is an established method used
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to probe formation of helical secondary structure (52–54).
Exposed (i.e., noncontacting) side chains were first mutated
to Ala and then to Gly. Substitution of the Cb, which only
makes intrahelical contacts by Gly (known to disfavor helix
formation), provides a specific probe of secondary (helical)
structure formation in the transition state. Ala-Gly scanning
mutations (six solvent exposed residues of pKID, three in
each helix) were introduced to probe helix formation (sec-
ondary structure formation) (Fig. 1).
Effect of pKID mutations on residual helicity

All biophysical data are included in the supplementary in-
formation. In Fig. 2, we show biophysical data for three
representative variants: one from N-terminal helix-A (aA),
one from the interhelical kinked region, and one from
C-terminal helix-B (aB). We use circular dichroism mea-
surements to estimate how the mutations of pKID affect
its residual helicity (Fig. S1). As reported in the accompa-
nying article, the residual helicity of pKID in absence of
KIX is around 17% (42). Overall, the effect of mutation
on the residual helicity was small (Fig. S2). In comparison
to the wild-type, Ala mutations at the protein-protein inter-
face of pKID-KIX either decrease or have no effect on resid-
ual helicity. Mutation of solvent exposed residues to Ala had
little to no effect on the residual helicity. As expected,
Gly mutations slightly reduce helicity of the pKID peptides
(except for peptide S143G where the helicity is similar to
wild-type).
Effect of pKID mutations on the stability of the
complex

Equilibrium binding constants were determined using fluo-
rescence anisotropy (Fig. S3). The more destabilizing muta-
tions are near the interhelical kinked region and toward the
C-terminus of pKID (Tables S1 and S2). Y134A increases
Kd by three orders of magnitude, I137A by two orders of
magnitude, and L138A and L128A over 10-fold (Tables
S1 and S2). Of these Y134, I137, and L138 have previously
been described as forming the hydrophobic motif FXXFF
(where F is a bulky hydrophobic residue) for KIX binding.
Of the solvent-exposed mutants, the Gly mutants in aB,
closest to the interhelical kinked region of pKID (A132G
A135G, A136G), are more destabilized than others. Ala mu-
tants in this case have either a similar or lower Kd than wild-
type. DDG values reported in Table S2 (surface mutations)
are for the composite Ala-Gly mutations and are generally
lower than DDG for interface mutations.
Effect on association and dissociation rates

Association kinetics experiments for all mutants show two
phases. With the pseudo-first-order conditions and concen-
tration range we have investigated, we observe a fast rate
(kass,fast), which appears to be linearly dependent on concen-
tration, and a slow rate (kass,slow) that appears to show little
or no concentration dependence. We discuss these fast and
slow rates for wild-type FITC-labeled pKID in the accom-
panying article (42). Neither rate varied significantly upon
mutation (Fig. S4), with the most notable change of
the fast association rate constant (kass,fast) being only
�1.5-fold. It was not possible to obtain a signal change
for Y134A (a highly destabilizing mutation), most likely
because the Kd was too high to significantly populate the
bound complex and thus allow an observable change in
fluorescence in the stopped-flow experiments. In marked
contrast, we observe significant changes in the observed
dissociation rate constant (kdiss) upon mutation (Fig. S5).
Thus, the change in stability for both the interface and
solvent-exposed mutants is due almost entirely to changes
in kdiss (Fig. 3; Fig. S6).
Using F-value analysis to probe the structure of
the transition state

F-values for both interface and solvent-exposed mutants
were calculated using dissociation constants determined us-
ing both the equilibrium and kinetic data (KdEqub, obtained
from equilibrium binding experiments and KdKin ¼ kdiss/
kass,fast). We see the same pattern of F-values using both
methods of calculation (Fig. S7). Previous examples in the
literature have only used mutants with sufficiently large
DDGD-N to reliably calculate F-values (31,34,35). Thus,
we only report F-values where both equilibrium and kinetic
DDGD-N R 0.34 kcal mol�1 (Tables S1 and S2). Note that
the surface Ala-Gly mutations were generally not suffi-
ciently destabilizing to allow F-values to be determined.
In total, 11 F-values could be calculated. Overall, the
F-values for both secondary structure probing Ala-to-Gly
mutations and for interface mutations are low, with the
highest F-values around 0.3–0.4, suggesting that at the
transition state, no region of pKID is either fully structured
or fully bound.
DISCUSSION

Most residues in aA are either charged or polar, and as has
been shown in the previous NMR structural studies, make
minimal contact with KIX. Thus, as has been observed pre-
viously (47,55), the DDG values for interface mutations in
this helix are generally low compared with similar muta-
tions in aB. Previous structural studies show that side chains
of Tyr134, Ile137, Leu138, and Leu141 in pKID interact
with a shallow hydrophobic groove of KIX (helices A and
B), which forms one of the two main binding sites in KIX
(40; E. Eyal et al., 2009, Weizmann. Inst. Sci., conference).
The most destabilizing mutations are those that delete most
contacts between the peptide and KIX in this groove (48).
R131A also causes significant complex destabilization,
Biophysical Journal 113, 2713–2722, December 19, 2017 2715
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FIGURE 2 Sample biophysical data. (A) Circular dichroism (CD), (B) equilibrium anisotropy, and (C) association and (D) dissociation kinetic plots for mu-

tants of three different residues along the length of pKID. Wild-type data are shown in black/gray for comparison. The left panels show data for R125A (green)

in aA of pKID. The middle panels show data for R131A (orange) in the interhelical kink region. The right panels show data for I137A (cyan) in aB of pKID.

Dahal et al.
probably because its interaction with the phosphate group is
important for KIX-pKID interaction (56). Moreover, NMR
and simulations agree that aA is largely helical in the un-
bound state (43,47). Thus, Ala-to-Gly mutations destabilize
both the unbound pKID and the bound state, so none of the
2716 Biophysical Journal 113, 2713–2722, December 19, 2017
surface mutations were sufficiently destabilizing to allow
F-values to be determined for surface residues in aA. In
contrast, in aB, which is largely unstructured in the un-
bound form, Ala-to-Gly mutations were found to be far
more destabilizing.



FIGURE 3 Linear free-energy plot. kass,fast (C) and kdiss (1) plotted

against Kd for all mutants of pKID binding to KIX. Changes in Kd are

mostly due to changes in kdiss.
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pKID: KIX F-Value Analysis
Observation of a slow rate in the association
kinetic experiments

For all mutants investigated we observed biphasic associa-
tion kinetics, as previously reported for FITC-labeled
wild-type KID and pKID (42,44). Under our conditions,
the fast phase (kass,fast) is linearly dependent upon protein
concentration; however, the second, slower phase (kass,slow)
has lower amplitude and appears concentration independent.
Although we cannot assign the origin of the second rate (see
accompanying article for discussion), we have determined
that it represents a unimolecular transition that takes place
after the initial association reaction (42). The slow rate ap-
pears to be relatively insensitive to mutation, differing only
for a few mutants by a maximum of �1.5-fold (Fig S4).
Furthermore, there is no systematic pattern for the few
residues that do apparently have a different kass,slow (e.g.,
T119G, but not T119A, shows increased kass,slow, as does
K136, but not adjacent I137). The presence of this extra
phase does not prevent us using F-value analysis to investi-
gate the first rate-determining transition state for the associ-
ation reaction, as we discuss next.
-1
-1 0 1 2 3 4

GEqub   (kcal mol-1)

FIGURE 4 Comparison between kinetic and equilibrium Kd and DDG.

(Top plot) KdKin plotted against KdEqub for all pKID mutants. (Bottom

plot) DDGKin plotted against DDGEqub calculated for all pKID mutants.
The straight line of y ¼ x shown in black is presented to guide the eye

for comparison between kinetic and equilibrium measurements. Wild-

type parameters are shown in black and all other mutants are shown in

red. Where affinities are lower this results in more uncertainty in the Kd

measurements, and thus larger differences between kinetic and equilibrium

data.
Comparing Kd and DDG obtained from
equilibrium and kinetic experiments

The equilibrium binding constant Kd, is related to the free
energy difference between initial and final states of a reac-
tion, and rate constants are related to the free energy differ-
ence between the initial/final state and the transition states.
For a two-state reaction, Kd can be determined from the ratio
koff/kon, and this will match the value determined from equi-
librium experiments. For three-state reactions with two
populated bound states, as appears to be the case here, the
equilibrium and kinetic Kd values do not necessarily match
each other, although they can be almost identical depending
upon the relative values of the various rates. In the accom-
panying article we showed that the estimates of Kd

from kinetic experiments (using KdKin ¼ kdiss/kass,fast) and
equilibrium experiments are the same within error for the
wild-type FITC-pKID-KIX association reaction (42).
When we compare the KdEqub with those obtained from ki-
netics for all the pKID mutants investigated in our study, we
also see a generally good agreement. Consequently, the
changes in free energy of binding upon association (DDG)
are also in agreement (Fig. 4). Thus it appears that for
FITC-pKID, two of the observed rates, kdiss and kass,fast,
are sufficient to reflect the free energy change between un-
bound pKID and KIX bound forms.

KdEqub reflects the difference in free energy between
the unbound and bound ensembles. The bound ensemble
Biophysical Journal 113, 2713–2722, December 19, 2017 2717



A helix B helix

-0.1

0

0.1

0.2

0.3

0.4

*

*

*

Dahal et al.
includes both ‘‘intermediate’’ and ‘‘final’’ forms, and it is
well defined because at equilibrium, the bound species are
always present in a constant ratio to each other. We are
therefore able to perform F-value analysis by comparing
the changes in kass,fast and KdEqub upon mutation, to probe
structure formation in the first transition state (compared
with that in the bound ensemble). Here we used both the ki-
netic and equilibrium DDG values to calculate the F-value.
Similar analysis has been used previously for F-value anal-
ysis of ACTR-NCBD, where a second phase was observed
in association kinetics in the presence of TMAO (34).
Importantly, our F-value analysis reports on the transition
state of the initial binding interaction of pKID with KIX.
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FIGURE 5 F-values for interface and solvent-exposed mutants. Top:

FAverage, average of F-values calculated using both kinetic and equilibrium

methods are plotted for mutants withDDG> 0.34 kcal mol�1. The residues

that were investigated but where F-values could not be calculated are

underlined. Solvent-exposed (Ala-Gly) mutants are highlighted by an

asterisk. Bottom: the pattern of F-values is mapped on the structure of

pKID/KIX (1KDX). F-values are generally low, so negative F-values are

shown in pale pink and positive F-values are shown in red.
F-value analysis indicates very little structure
formation at the transition state

Wewere able to determine only 11F-values: three in aA (all
interface), five in aB (three interface, two surface), and three
in the interhelical kinked region. We note that we have no
F-values in the first half of aA or toward the end of aB.
Because the errors in F are relatively high (Tables S1 and
S2), we cannot make any statement about specific individual
interactions that are crucial in early structure formation.
However, the pattern of F-values is consistent so here we
interpret only this pattern of F-values, which is described
in Fig. 5. The most important observation is that all
F-values are low, suggesting that the rate-limiting transition
state for formation of the initial complex is largely
unstructured.

We see evidence for weak, but early contact formation in
the central part of aA, although we have only two F-values
here, residues R124 and R125, both of which form direct
contacts with KIX in the complex. Because both are posi-
tively charged, it is unlikely that the observed slowing of
association comes from global electrostatic effects; pKID
becomes more negatively charged on mutation of R124 or
R125 to Ala, which would be predicted to speed association.
Note that we do not report F-values for E126A in Fig. 5
because the DDG values from equilibrium and kinetic
data do not agree, although the F-values calculated are
positive (Table S2). We have no information about the
N-terminal region of this helix, nor can we say that contact
formation is concomitant with helical structure formation.
The C-terminal residue of this helix, L128, which is buried
in the KIX interface, has a F-value close to zero. Thus our
data simply suggest that some contacts between residues in
this central region of the aA of pKID and KIX are formed
early.

Interestingly, we see more evidence for early association
of the aB helix, particularly in its central region. Residues in
aB form more native contacts with KIX (Fig. 5; Tables S1
and S2), particularly residues I137 and L138 that are among
the most destabilizing mutations. Y134, I137, L138, and
L141 are all known to interact with the primary docking
2718 Biophysical Journal 113, 2713–2722, December 19, 2017
groove of KIX (40), but we were only able to determine
F-values for two of these residues. Wewere unable to obtain
kinetic data for Y134A, and the company that provided us
with the peptides was unable to synthesize L141A. The
two remaining interface residues, L138 and D140, have
the highest F-values in our studies. Although we could
not probe the C-terminal part of aB, both surface and buried
residues at the N-terminal part of this helix have positive
F-values. Thus we have evidence for extensive, albeit
only weak, structure and contact formation between aB
and KIX at the transition state.

Perhaps the most striking result, however, is the pattern of
negativeF-values shown by residues in the interhelical kink
region (Fig. 5): this includes three interface residues that
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make contact with KIX (L128, R131, pSer133) and one sur-
face residue (P132). We note that the interface residues are
very different in character: L128A deletes hydrophobic in-
teractions, R131A deletes both hydrophobic packing and a
positive charge, and pSer to Ser removes negative charges.
A negative F-value indicates that removal of these interac-
tions stabilizes the transition state: in all these cases the
mutation actually enhances the rate of formation of the
transition state, albeit marginally. This result suggests that
residues in the interhelical region may be forming nonnative
interactions in the transition state. Such nonnative interac-
tions have been inferred from simulation experiments
(45,50). Contrary to previous proposals (56,57) the low or
negative F-values in this region suggest that phosphoryla-
tion does not play a role in initiating the binding of pKID
to KIX (42).
Comparison with previous studies

The pKID-KIX interaction is a paradigm in folding upon
binding and thus has been the focus of a number of simula-
tion and experimental studies (40,43,45,47–50,55,58). Here
we compare our results with these studies. Sugase et al. (43)
investigated pKID-KIX assembly using a variety of NMR
techniques. They observed formation of transient interac-
tions between pKID and KIX and suggest that pKID can
bind nonspecifically to a number of sites on KIX. They
ascribe these observations to formation of an ensemble of
structures that comprise the early encounter complex and
suggest that this is dominated by formation of hydrophobic
interactions, in particular between a partly formed aB pKID
and KIX. They propose that this complex then evolves (i.e.,
via an induced fit mechanism), by a diffusive process and
without dissociation, to form the bound state.

There are also three detailed simulation studies of the
mechanism of pKID folding upon binding to KIX; these
are in remarkable agreement with each other, although
they use different methodologies (47,49,50). In all cases
the unbound KID structure reflects that seen in NMR studies
(58), that is, aA has significant residual helical structure,
whereas aB is essentially unfolded. The initial encounter
complex which leads to productive folding is always
observed to be almost as unfolded as pKID alone, and in
all cases this is dominated by interactions between aB (in
particular between the C-terminal region of aB) and KIX
(47,49). Furthermore, nonnative interactions between other
regions of pKID and KIX are also detected in all the simu-
lations. In general, these nonnative interactions are neither
specific, nor long-lived, although Umezawa et al. (59) detect
binding to a specific, alternative (MLL) binding site in KIX.

Our data are consistent with all these studies. All F-
values are low, indicating that pKID is not significantly
more structured than in the unbound state. We observe pos-
itive F-values for two surface Ala-to-Gly mutations in the
start of aB, but the interface F-values are generally higher,
suggesting that aB is indeed packing onto KIX before
folding into a helix. The C-terminal region of this helix
has higher F-values than the N-terminal end (with residues
L138 and D140 having the highest overallF-values), as sug-
gested by the simulations (47). Huang and Liu (45) investi-
gated the role of nonnative interactions of pKID-KIX
binding in detail in their simulation studies. They point
out that nonnative interactions can both speed and slow as-
sociation; the patch of negativeF-values we detect in the in-
terhelical loop would indicate that the nonnative binding of
this region mainly speeds association (45).

There is an alternative explanation for our observation of
the interactions of aA. One major difference between the
NMR and simulation studies is how folding upon binding
proceeds from the encounter complex (43,47,49). In all
cases an intermediate (or intermediates) is detected, but in
all simulations studies one sees consolidation of binding
and folding of the aB before aA binds. Indeed, this is what
our data lead us to infer as being the likeliest scenario. We
detect apparently significant interactions between aB and
KIX at the transition state and, because interactions between
aB and KIX provide most of the interaction energy
(40,41,48), it seems unlikely that aB would unbind after
the rate-limiting transition state, with consolidation appear-
ing more likely.

In the NMR studies an intermediate with aA folded
and aB largely unfolded and detached was inferred.
Interestingly, in one of the simulations (47) a low occupancy
alternative folding pathway is detected, whereby aA folds
and binds before aB. Ganguly and Chen (49) also observed
a similar, low frequency, early formation of an aA-folded in-
termediate, but in their simulations, this is off-pathway and
does not lead to productive folding. We cannot rule out the
possibility that the two positive F-values we observe in aA
reflect this alternative route. However, it is important to note
that both these simulations studies (47,49) can reconcile
their observation of the dominant, aB-first pathway with
the interpretation of the NMR kinetic data from Sugase
et al. (43). Unfortunately, as we are unable to probe folding
of the intermediate in our kinetic studies, we are unable to
shed further light on this controversy.
CONCLUSIONS

NMR and simulation techniques have been used to study the
pKID-KIX interaction extensively (40,43,47–50). Our re-
sults add experimental evidence using kinetic and thermo-
dynamic techniques to probe the mechanism of assembly
in more detail. In the accompanying article (42) we demon-
strated that the kinetic signature of this reaction is predom-
inantly that of an induced fit mechanism, consistent with
previous studies (43,47,60,61); that is, that folding occurs
after binding, and therefore no particular conformation in
the disordered ensemble is required for binding to occur.
Our F-value analysis presented here is consistent with
Biophysical Journal 113, 2713–2722, December 19, 2017 2719
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this; pKID forms very little secondary structure or interface
contacts with KIX at the transition state. pKID apparently
requires only a few native interactions between aB and
KIX to commit to complex formation, whereas other regions
of the peptide appear to play a role in formation of weak,
possibly nonnative contacts. This suggests that the transition
state may resemble the so-called ‘‘fuzzy’’ complexes that
are the final bound state of some IDPs (62,63), probably
best described by Turjanski et al. (47) as ‘‘a broadly
distributed ensemble of conformations in which pKID
binds to KIX in different conformations,’’ but with
interactions made by aB being key to complex formation.
Interestingly, both the NMR and simulation studies also
suggest that the final bound complex of pKID-KIX is itself
highly mobile, with aA in particular being only loosely
bound.

When considering mechanisms of folding upon binding it
is important to bear in mind that different mechanisms may
be relevant under different conditions; parallel modes of
folding upon binding are likely to exist in all systems
(30,32–35,64). For example, high concentrations will favor
conformation selection over induced fit for kinetic reasons
(65,66). Currently, the majority of F-value analyses
(30,31,34,35,67,68) and simulation studies (69–71) also
observe a relatively unstructured transition state for the
interaction of IDPs with their partners, and most propose a
(largely) induced fit mechanism where the majority of
folding occurs after the rate-limiting binding step.

Blackledge and co-workers have proposed that folding
and binding is better described by mixed mechanisms
(72), perhaps where transient residual structure in a small
section of the IDP plays a key role in binding. Computer
simulations and equilibrium NMR studies have suggested
a conformation selection mechanism for the interaction of
intrinsically disordered C-terminal domain of the measles
virus nucleoprotein and X domain of the viral phosphopro-
tein (73,74) and c-myb-KIX (75,76). However, it is impor-
tant to recognize that mere existence of residual structure
does not of itself mean that this is the region of the protein
that binds first (26,77,78). Recent kinetic studies on some of
these systems propose that binding occurs before folding
(79,80).

So far, the focus has largely been on disordered proteins
that fold into very simple topologies upon binding, which
could introduce a potential bias. Where both partners are
disordered before assembly, the reaction may be more com-
plex. A mixed conformational selection plus induced fit
mechanism has been proposed for both the assembly of
the spectrin tetramerization domain, where association is
slow and significant structure is formed at the transition
state (33) and for the interaction between ACTR and
NCBD (34,81,82). For the ACTR and NCBD system, asso-
ciation is fast and the transition state relatively disordered,
but folding to the final structure is slow. In general, so far
it appears that assembly reactions characterized by rela-
2720 Biophysical Journal 113, 2713–2722, December 19, 2017
tively unstructured transition states, such as that we observe
here between pKID and KIX, may be a general theme for
allowing fast, coupled folding and binding reactions.
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Supplementary Tables 
 
Table S1.  Kinetic and thermodynamic rate constants for the binding of wild-type and interface mutants of pKID to KIX. The errors 
for kass,fast, kdiss and Kd  represent errors from the fit. Φ-values were calculated using both kinetic and equilibrium measurements and 
the errors propagated using standard equations.  

 
*Mutants where Φ-values are unreliable and not reported in the main text as they show ∆∆GEqub and/or ∆∆GKin < 0.34 kcal mol-1. (See main paper for discussion.) 
† Kinetic measurements could not be obtained, as good signal change upon binding was not observed. 

pKID kass,fast 

(µM-1s-1) 
kdiss  
(s-1) 

KdEqub  
(µM) 

KdKin  
(µM) 

ΔΔGEqub 
(kcal.mol-1) 

ΔΔGKin 
(kcal.mol-1) 

ΦEqub ΦKin 

Interface mutants 
Wild-type 7.3±0.3 0.81±0.01 0.11±0.02 0.11±0.02 - - - - 

S121A 6.9±1.2 0.71±0.01 0.12±0.02 0.10±0.02 0.05±0.14 -0.04±0.10 0.65±2.75* -0.75±4.14* 

R124A 8.4±1.6 0.51±0.1 0.06±0.01 0.06±0.02 -0.34±0.14 -0.34±0.16 0.23±0.34 0.23±0.26 

R125A 6.3±0.5 2.17±0.04 0.22±0.02 0.34±0.03 0.39±0.11 0.64±0.05 0.21±0.14 0.13±0.07 

L128A 7.9±0.3 15.7±1.3 2.49±0.06 2.00±0.16 1.75±0.10 1.62±0.05 -0.03±0.02 -0.03±0.02 

R131A 9.5±1 7.66±1.04 1.23±0.12 0.81±0.14 1.36±0.12 1.12±0.10 -0.11±0.05 -0.13±0.07 

∆pS133 7.6±0.8 56.7±7.5 28.7±1.2 7.5±1.3 3.13±0.10 2.37±0.10 -0.01±0.02 -0.01±0.03 

Y134A † † 110.6±9.8 † 3.89±0.11 † † † 

I137A 4.5±0.5 43.9±7.2 21.6±0.50 9.73±1.92 2.97±0.10 2.52±0.11 0.09±0.02 0.11±0.02 

L138A 2.8±1.1 13.2±1.4 6.30±0.30 4.73±1.92 2.28±0.11 2.11±0.23 0.24±0.10 0.26±0.08 

D140A 5.3±0.7 2.06±0.09 0.26±0.04 0.39±0.05 0.48±0.13 0.70±0.08 0.37±0.19 0.26±0.08 

S142A 11.3±1 0.83±0.03 0.12±0.01 0.07±0.01 0.05±0.11 -0.23±0.06 -5.20±11.6* 1.06±0.10* 



Table S2.  Kinetic and thermodynamic rate constants for the binding of solvent exposed mutants of pKID to KIX. The errors for 
kass,fast, kdiss and Kd  represent errors from the fit. Φ-values were calculated using both kinetic and equilibrium measurements and the 
errors propagated using standard equations. ∆∆G values for Ala-Gly composite mutations are shown.  

 

 
*Mutants where Φ-values are unreliable and not reported in the main text as they show ∆∆GEqub and/or ∆∆GKin < 0.34 kcal mol-1. (See main paper for 
discussion.) 
 

pKID kass,fast  
(µM-1s-1) 

kdiss  

(s-1) 
KdEqub  
(µM) 

KdKin  
(µM) 

ΔΔGEqub 
(kcal.mol-1) 

ΔΔGKin 

(kcal.mol-1) 
ΦEqub ΦKin 

Solvent Exposed mutants 

T119A 7.3±0.7 0.88±0.01 0.15±0.02 0.12±0.01 0.17±0.13 0.05±0.06 - - 

A119G  7.1±1.1 0.67±0.02 0.08±0.02 0.09±0.01 -0.35±0.16 -0.14±0.10 -0.04±0.29* 0.11±0.83* 

E126A 10.5±1.7 0.97±0.01 0.17±0.01 0.09±0.01 0.24±0.11 -0.10±0.09 - - 

A126G 7.6±0.9 2.09±0.02 0.25±0.02 0.28±0.03 0.22±0.06 0.61±0.11 0.84±0.56* 0.30±0.13* 

P132A 7.7±0.4 0.99±0.05 0.07±0.02 0.13±0.01 -0.25±0.19 0.08±0.05 - - 

A132G 8.3±0.2 3.22±0.03 0.44±0.03 0.39±0.01 1.03±0.17 0.62±0.04 -0.04±0.03 -0.07±0.06 

R135A 10.5±0.6 2.50±0.20 0.10±0.02 0.24±0.02 -0.05±0.15 0.43±0.06 - - 

A135G 8±0.4 10.1±0.30 1.16±0.05 1.26±0.07 1.38±0.12 0.94±0.06 0.11±0.03 0.16±0.04 

K136A 10.2±0.9 0.94±0.03 0.10±0.02 0.09±0.01 -0.05±0.15 -0.10±0.06 - - 

A136G 8.3±1.5 10.5±0.80 2.16±0.11 1.27±0.25 1.73±0.12 1.47±0.12 0.07±0.07 0.08±0.07 

  S143A 9.7±1 0.71±0.01 0.07±0.01 0.07±0.01 -0.25±0.13 -0.23±0.06 - - 

A143G 6.3±0.6 1.20±0.10 0.09±0.01 0.19±0.02 0.14±0.10 0.54±0.09 1.72±1.36* 0.45±0.09* 



Supplementary Figures 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
Figure S1A.  Circular dichorism (CD) for wild-type (black) and interface mutants pKID 
in absence of KIX.  
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Figure S1B. Circular dichorism (CD) for wild-type (black) and solvent exposed mutants 
(Ala and Gly) of pKID in absence of KIX. Ala mutations are shown in red and Gly 
mutants are shown as labeled.  
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Figure S2.  Percentage (%) residual helicity of pKID mutants. (Top left panel) % helicity 
of interface and solvent exposed pKID mutants used to calculate the Φ values are shown 
as bar charts. The * on top of the bar highlights the solvent exposed (Ala-Gly) mutants in 
the bar chart.  There is no detectable relationship between residual helicity and any 
biophysical parameters: (Top right panel) fast association kinetic rate (kass,fast) plotted 
against % helicity for all pKID mutants. (Bottom left panel) dissociation kinetic rate 
(kdiss) plotted against % helicity for all pKID mutants. (Bottom right panel) ∆∆GEqub 
plotted against % helicity for all pKID mutants. 
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Figure S3A.  Equilibrium anisotropy binding curves for the interface mutants of pKID. 
Wild-type is shown in black.  
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Figure S3B. Equilibrium anisotropy binding curves for the solvent exposed mutants of 
pKID. Wild-type is shown in black and all Ala mutants are shown in red. Gly mutants are 
as labeled.  
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Figure S4A. Observed association kinetics rate of pKID and KIX for the interface 
mutations under pseudo-first order conditions with KIX in excess. Wild-type data is 
shown in black. 
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Figure S4B.  Observed association kinetics rate of pKID and KIX for the solvent 
exposed pKID mutants obtained under pseudo-first order conditions with KIX in excess. 
Wild-type is shown in black and all Ala mutants are shown in red. Gly mutants are shown 
as labeled.  
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Figure S5A. Observed dissociation kinetics rate of wild-type (black) and interface pKID 
mutants from KIX obtained using cMybTAD as a competitor.. 
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Figure S5B.  Observed dissociation kinetics rate of wild-type (black spheres) and solvent 
exposed pKID mutants from KIX obtained using cMybTAD as a competitor. Wild-type 
is shown as black and all Ala mutants are shown in red. Gly mutants are shown as 
labeled.  
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Figure S6.  Bar chart showing equilibrium binding (Kd), fast association kinetics (kass,fast) 
and dissociation kinetics (kdiss) comparison of all mutants of pKID. Wild type is shown in 
filled black bar for all graphs. The bar charts on the left side show all interface mutants 
(hatched bar). The bar charts on the right show all Ala-Gly mutants. The Ala mutants are 
shown in red and the Gly mutants in hatched. 
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Figure S7.  The pattern of Φ-values is the same whether using equilibrium or kinetic 
∆∆G. Bar chart showing comparison between Φ-values calculated using kinetic and 
equilibrium measurements. The Φ-values calculated using kinetic for interface mutants is 
shown in pale green and for surface mutants is shown in dark green. The Φ-values 
calculated using equilibrium for interface mutants is shown in pink and for surface 
mutants is shown in red.  The * on top of the bar highlights the solvent exposed (Ala-Gly) 
mutations in the bar chart. 
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