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ABSTRACT We present, to our knowledge, the first direct numerical simulation of 3D cellular-scale blood flow in physiologically
realisticmicrovascular networks. The vascular networks are designed following in vivo images and data, and are comprised of bifur-
cating,merging, andwinding vessels.Ourmodel resolves the large deformation and dynamics of each individual red blood cell flow-
ing through the networks with high fidelity, while simultaneously retaining the highly complex geometric details of the vascular
architecture. To our knowledge, our simulations predict several novel and unexpected phenomena. We show that heterogeneity
in hemodynamic quantities, which is a hallmark of microvascular blood flow, appears both in space and time, and that the temporal
heterogeneity ismoresevere than its spatial counterpart.Thecells areobserved to frequently jamatvascularbifurcations resulting in
reductions in hematocrit and flow rate in the daughter and mother vessels. We find that red blood cell jamming at vascular bifurca-
tions results in several orders-of-magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of
increased in vivo blood viscosity as compared to that determined in vitro. A striking result from our simulations is negative pres-
sure-flow correlations observed in several vessels, implying a significant deviation fromPoiseuille’s law. Furthermore, negative cor-
relations between vascular resistance and hematocrit are observed in various vessels, also defying a major principle of particulate
suspension flow. To our knowledge, these novel findings are absent in blood flow in straight tubes, and they underscore the impor-
tance of considering realistic physiological geometry and resolved cellular interactions in modeling microvascular hemodynamics.
INTRODUCTION
Microvascular networks in the human body are made of the
smallest blood vessels, namely, the capillaries, arterioles,
and venules. They are responsible for gas and nutrient trans-
port to tissues, regulation of blood flow in individual organs,
and nearly 80% of the work done by the heart. When normal
physiological functions of the microcirculation are hin-
dered, major pathological conditions may ensue. For
more than a century, beginning with the celebrated work
of Jean L. M. Poiseuille, quantitative studies on blood
flow in capillary vessels have provided invaluable insights
into microvascular hemodynamics (1). Recent advances in
experimental techniques, such as intravital microscopy,
have made significant progress in this field. In parallel, prog-
ress has been made in the theoretical understanding of
microvascular blood flow based on mathematical principles
of fluid and particulate transport (2).

High-fidelity in silico modeling of blood flow in micro-
vascular networks, however, remains a major challenge.
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Blood in small vessels behaves as a concentrated suspension
primarily composed of red blood cells (RBCs), which are
extremely deformable. Analytical solutions are often
limited, and computational modeling is needed that can
resolve the dynamics and deformation of individual cells
while simultaneously extending to a dense suspension (3,4).

Most cellular-scale modeling studies to date have consid-
ered blood flow in simple geometries, such as long, straight
tubes of uniform circular cross section, representing an
in vitro-like setup. In contrast, the architecture of vascular
networks is very complex, and is characterized by bifur-
cating, merging, and winding vessels (5). Furthermore, the
network topology varies from organ to organ: vessels in
muscles form arcade-type planar networks, whereas those
in the retina and kidney have a treelike topology (6). In a tu-
mor, blood vessels can have trifurcations and short-length
shunts, adding further complexity to the geometry (7). In
many organs, such as the brain, the average length of a
vessel segment between two consecutive bifurcations is as
small as a few vessel diameters (8,9). Such geometrical dif-
ferences result in significant deviations in hemodynamics
between that achieved in a long straight tube versus a
vascular network. For example, the hematocrit and velocity
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profiles over the cross section of a straight tube is naturally
symmetric, but most likely asymmetric in vivo (10).
Another prominent example is the difference in blood vis-
cosity as determined in vitro and in vivo. In vitro viscosity,
which is based on measurements in straight tubes, is found
to be less than in vivo viscosity by several factors (11). An
additional example is the self-sustained spontaneous oscilla-
tions in network flows that are absent in straight, un-
branched tubes (12–16). Evidently, our understanding of
blood flow in simple geometry is often inadequate to address
the hemodynamics associated with the complex architecture
of microvascular networks.

Direct simulation of cellular-scale blood flow in micro-
vascular networks is, however, a daunting task. As such,
alternative lower-dimensional approaches exist as a remedy.
They generally involve treating each vessel as a 1D straight
conduit, and using Poiseuille’s law to specify the pressure-
flow relationship (8,15–18). Instead of modeling individual
cells, the rheological effects of blood are added using empir-
ical correlations for its viscosity, and measures are taken to
account for hematocrit partitioning at vascular bifurcations.
Although such approaches are able to consider a large num-
ber of vessels and have provided insights into the macro-
scale hemodynamics of vascular networks, they lack the
ability to resolve the cellular-scale details that are important
in many pathophysiological events, such as sequestration
and localized adhesion of platelets, leukocytes, and drug
particulates. Furthermore, many geometrical features of
the networks that are of physiological importance, such as
winding and noncircular vessels, are not considered in the
lower-dimensional models. Evidently, the next generation
of microvascular blood flow modeling must combine the
cellular-scale details along with a realistic representation
of in vivo network geometry.

Toward that end, in this article we present a modeling and
analysis of blood flow in microvascular networks that re-
solves with high fidelity both the large deformation and dy-
namics of each individual blood cell and the highly complex
architecture of the vasculature. To our knowledge, several
novel and unusual phenomena with potentially significant
physiological consequences are predicted. These anomalies
are absent in blood flow in simple geometries, and are the
direct result of the interaction between the discrete cells
and the complex network architecture. This underscores
the importance of utilizing realistic physiological geome-
tries in conjunction with cellular-scale microphysics to bet-
ter understand microvascular hemodynamics.
FIGURE 1 Snapshots from our direct simulations of blood flow through

microvascular networks. Two of the three networks considered are shown.

Additional images, animations, and the third network are given in the Sup-

porting Material. Domain sizes are 283 � 222 � 25 mm in (A), and 386 �
165 � 23 mm in (B). Arrows indicate inlets and outlets. To see this figure in

color, go online.
MATERIALS AND METHODS

The numerical approach has been described in detail in our recent work

(19), and is based on the immersed boundary method (IBM), which pro-

vides an accurate and efficient means of modeling the wide variety of com-

plex interfaces present in microvascular network blood flow. The complex

vascular walls are modeled using a sharp-interface ghost node IBM,
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whereas the deformable interfaces of the RBCs are modeled using a contin-

uous forcing IBM. Each of these components is seamlessly integrated into

the framework of a coupled finite-volume/spectral flow solver. This

approach permits the simulation of actual physiological geometry, without

requiring any simplifications or assumptions, while simultaneously

resolving the cellular-scale details.

Microvascular networks have been constructed in silico following pub-

lished in vivo images and data (5,20–23). Three different networks are

considered, two of which are shown in Fig. 1, and the third in Fig. S3.

All of our networks include bifurcating, merging, and winding vessels as

observed in vivo. Each network has one main inlet and outlet, and is

composed of arterioles, capillaries, and venules. Considering all three net-

works, there are in total 138 vessels and 45 bifurcations. The vessel diam-

eters range from 6 to 24 mm, and the lengths range from 25 to 165 mm. The

average overall path length from inlet to outlet ranges from 500 to 620 mm,

and the overall volumes of the regions simulated are �1.6 � 106 mm3. The

average diameter and length of the capillary vessels are 6 and 68 mm, and

the average diameter and length of all vessels are 9 and 65 mm, in agreement

with in vivo data (5,8,20). In general, the network design utilizes the in vivo

data in conjunction with Horton’s law, which describes the relationships be-

tween vessel diameters at bifurcations and mergers, capturing the fractal na-

ture of the topology ((20); for details, see the Supporting Material). In each

network the hierarchical structure is such that three orders of the Strahler

ordering scheme are spanned on both the arterial and venous sides with

the smallest capillaries being order zero. At the capillary level, across

each of these topologies, the number of upstream bifurcations ranges any-

where from 2 to 12. The vessels are nondeformable with circular areas, but

they generally have variable cross sections along their length.



Blood Flow in Microvascular Networks
The network geometry is first constructed using a standard CAD soft-

ware, and a triangulated mesh is then generated on the vessel surfaces using

GMSH (24). This mesh defines in discrete space the vascular boundaries

(see Fig. S4) through which the deformable erythrocytes flow. The total

number of RBCs in the three networks considered is�1550. The hematocrit

is initially maintained in the main feeding artery at �30%, and the subse-

quent cell distribution throughout the networks naturally develops and

evolves. Simulations are performed in which flow is driven through the net-

works with either fixed pressure-boundary conditions or fixed flow-rate

conditions. For pressure-boundary conditions, the overall pressure differ-

ence between the inlet and outlet is specified in accordance with published

in vivo data as (0.3–1.0) Pa/mm ((3–10) � 10�3 cm H2O/mm) (5,23). For

flow-rate boundary conditions, the mean flow rate in the main feeding artery

is specified as (2–4.6) � 10�13 m3/s, also in agreement with in vivo data

(5,23). In total, 12 simulations are performed resulting in �550 time-aver-

aged vessel measurements. Considering the number of RBCs passing

through each of the networks over the course of the simulations, there are

�20,000 data points utilized for studying RBC behavior at vascular

bifurcations.

Table 1 shows the observed range of average flow rates at the simu-

lation boundaries when the pressure drop is specified, and conversely,

the observed range of pressure drops between the simulation boundaries

when the flow rate is specified. As seen here, the flow rate specified in

the second set of simulations is identical to the average flow rate that is

observed in the first set of simulations for the midrange-specified pres-

sure drop. Also, the resulting pressure drop in the second set is similar

to those specified in the first set of simulations. Thus, there is no signif-

icant difference in terms of average pressure drop or flow rate in the two

sets of simulations. Furthermore, any observed trends, phenomena, or

conclusions drawn, were the same regardless of the type of boundary

conditions specified. The exact time-dependent quantities, however,

are different in each case because of the stochastic nature of particulate

flow.

The resting shape of the RBCs is taken as the experimentally

observed biconcave discocyte with an end-to-end distance of 7.8 mm,

surface area 134.1 mm2, and volume 94.1 mm3 (5). A continuum

description of the cell is used by representing it as a viscous drop

made of hemoglobin surrounded by a zero-thickness (i.e., 2D) hypere-

lastic membrane. The membrane is assumed to possess resistance

against shearing, area dilation, and bending. The shearing deformation

and area dilation are described following the strain energy function of

Skalak et al. (25):
TABLE 1 Two Different Boundary Condition Types Used in

the Simulations

Specified DP’ Resulting Q

Pa/mm (m3/s) � 1013

Network A 0.340 3.426

0.450 4.627

0.663 7.278

Network B 0.528 2.073

0.696 2.839

1.018 4.131

Network C 0.525 1.469

0.698 2.055

1.018 3.344

Specified Q(m>3/s) � 1013 Resulting DP’Pa/mm

Network A 4.627 0.429

Network B 2.839 0.712

Network C 2.055 0.777

Specified pressure drop and resulting average flow rate, and specified flow

rate and resulting average pressure drop between the simulation boundaries.
WE ¼ GS

4

��
I21 þ 2I1 � 2I2

�þ CI22
�
; (1)

where GS is the membrane shear elastic modulus, CGS is the area dilation

modulus, I1 ¼ ε1
2 þ ε2

2 – 2 and I2 ¼ ε1
2 þ ε2

2 – 1 are the strain invariants

of the Green strain tensor, and ε1 and ε2 are the principal stretch ratios. The

bending resistance is modeled following Helfrich’s formulation for bending

energy,

WB ¼ EB

2

Z
S

ð2k� c0Þ2dS; (2)

where EB is the bending modulus, k is the mean curvature, c0 is the spon-

taneous curvature, and S is the surface area (26). The viscosity of the plasma

and hemoglobin is taken to be 0.001 and 0.005 Pa-s, respectively. Because

inertia is negligible, the fluid motion is governed by the unsteady Stokes

equations and the incompressibility condition

r
vu

vt
¼ �Vpþ V ,m

�
Vuþ VuT

�
(3)

V , u ¼ 0: (4)
The computational domain resembles a box, and is discretized using a rect-

angular, fixed (Eulerian) mesh of �8 � 107 points. The entire network

along with the RBCs is immersed in this domain. The no-slip condition

is satisfied on the vascular walls using the ghost-node IBM, which enforces

a constraint on the Eulerian points immediately exterior to the vascular

walls (see Supporting Material for additional details). The details of the

method and rigorous validations are provided in our prior work (19). The

surface of each cell is discretized using 5120 Delaunay triangles. A

finite-element method is used to compute the elastic tension fE at each ver-

tex of the surface triangles. An expression of bending force density fB
derived from (2) is used. The membrane forces are coupled to the bulk fluid

by introducing a source term in the Stokes equation utilizing the 3D Dirac

delta function. Details of the computation of fE and fB are given in our pre-

vious works along with validations for deformable cells (19,27–29). Further

validations and additional salient details of the methodology are provided in

the Supporting Material.
RESULTS

Snapshots of our simulations for two of the networks are
shown in Fig. 1. Animations and additional images are given
in Figs. S1, S2, and S3, and Movies S1 and S2. As seen here,
our virtual microvascular networks are highly complex in
geometry and representative of realistic in vivo situations.
Cell distributions naturally develop in the networks based
on the architecture. Some vessels are observed to be filled
with RBCs, whereas others have a reduced number of cells,
as is the case in vivo. Extreme deformation and a wide range
of RBC shapes are observed as they flow through the net-
works. In the smallest capillary vessels, cells are observed
to assume elongated bullet/parachute and slipper shapes,
and flow in a tight-filled, single-file manner. The shapes
are never axisymmetric, due to the geometric effects.
Two- and multifile motions are observed in larger vessels.
In the main feeding and collecting vessels, discoid shapes
Biophysical Journal 113, 2815–2826, December 19, 2017 2817
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are often observed. Formation of cell-free regions near
vascular walls, and plasma skimming at arterial bifurca-
tions, are observed here. The predicted shapes of individual
cells in capillary vessels agree well with experimentally
observed shapes, and are compared in Fig. S5.
Comparison with in vivo data

Fig. 2 A provides a quantitative comparison of vascular flow
resistance determined from our simulations against in vivo
data (23) obtained in the mesentery of a cat. The simulation
data reported is from all three networks with each of the
considered boundary conditions. Data is time-averaged
over �0.7 s, during which time the transient patterns in
flow properties in each of the network vessels are in a
quasi-steady (cyclic) state. Each simulation data point in
the figure is the time-averaged data from one vessel, with
the corresponding vessel diameter on the abscissa. The
time-averaged flow resistance per unit length of a vessel is
defined as R ¼ DP0/Q, where DP0 and Q are the time-aver-
aged pressure drop per unit length and flow rate, respec-
tively, in each vessel. A good agreement between the
simulations and the in vivo data is noted. The resistance is
maximum at the capillaries and decreases on both the arte-
rial and venous sides with a fourth-order dependence on
vessel diameter, as in a Poiseuille’s law relationship. Com-
parisons of predicted time-averaged pressure drop, wall
shear stress, and blood viscosity also agree well with in vivo
data, and are shown in Fig. S6.

Comparisons are made with in vivo data to generally show
that predictions from the in silico networks are quantitatively
very similar towhat has been observed in vivo. It is noted that
in physiology the architecture of a network is organ-specific,
and thus the simulated networks for this work are more of an
average representation of a network structure or hierarchy.
As such, the simulation results presented in the subsequent
sections are not intended to be representative of what would
be found only in the network of a particular organ. Rather,
our conclusions and observations represent commonalities
associated with general microvascular network topology.
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A hallmark of microvascular blood flow is heterogeneity.
Prior in vivo studies have reported wide variations of hemo-
dynamic quantities across different vessels within a network
(5,23). Our simulation data reveal a similar heterogeneity.
Fig. 2 A shows that the flow resistance can vary by a factor
of 4 in vessels of the same diameter within a network. Time-
averaged pressure drop per vessel length is presented in
Fig. 2 B, which shows nearly an order-of-magnitude varia-
tion across capillaries of similar diameters, implying a
high-degree of heterogeneity. Fig. 2 C presents the distribu-
tion of time-averaged hematocrit. A high degree of hetero-
geneity is also observed here, where Ht is seen to range
from �0.04 to 0.35 in the capillaries. This observation
also qualitatively agrees with in vivo studies reporting that
whereas some capillary vessels are filled with cells, some
are almost devoid of cells. Interestingly, we note that the de-
gree of heterogeneity decreases with increasing vessel
diameter. This is expected, as it is shown later that the un-
derlying mechanism of heterogeneity is the particulate na-
ture of blood, which has a diminishing effect with
increasing vessel diameter. A similar high degree of hetero-
geneity is also observed in the time-averaged flow rate, wall
shear stress, and blood viscosity as predicted by our simula-
tions, and is shown in Figs. S6 and S7.
Temporal heterogeneity

The heterogeneity discussed in prior in vivo studies and
shown in Fig. 2 from our simulations represents spatial het-
erogeneity, i.e., the data for each vessel is averaged over
time. In addition to this spatial heterogeneity, our simulations
reveal a temporal heterogeneity. That is, hemodynamic quan-
tities show a high degree of variation over time even within
one vessel in a network. Variations of flow resistance and he-
matocrit over time are shown in Fig. 3, A and B, for a specific
vessel. As seen here, over time Ht varies from�0.13 to 0.41,
and R varies from �650 to 3200 Pa/(m3/s)/mm � 10�11

(500–2400 mm Hg/(mm3/s)/mm) in the specific vessel
considered. Similar temporal fluctuations in pressure drop
and flow rate are also observed (data given in Fig. S8).
FIGURE 2 (A) Given here is a comparison of

predicted time-averaged vascular resistance R per

unit length (red symbols (in Pa/(m3/s)/mm �
10�11) against in vivo data (black circles) and

fourth-order power law (line) fit of in vivo data

(23). (B and C) Given here is a time-averaged pres-

sure drop per unit length DP0 (in Pa/mm) and he-

matocrit in different vessels across the networks.

To see this figure in color, go online.



FIGURE 3 Temporal heterogeneity. (A and B) Given here is the time history of resistance R(t) (in Pa/(m3/s)/mm� 10�11) and hematocritHt(t) in one vessel

in the network shown in Fig. 1 A. (C and D) Shown here are the amplitudes of temporal variations in hematocrit (DHt) and resistance (DR) in each vessel.

Blood Flow in Microvascular Networks
To quantify the degree of temporal heterogeneity, we mea-
sure the amplitude of fluctuation, defined as the difference
between the maximum and minimum of flow quantities
over the entire simulation time. We then plot the amplitudes
scaled by the mean quantities for each vessel in the networks.
Fig. 3, C and D, shows distributions of the hematocrit ampli-
tudeDHt, and resistance amplitudeDR. As seen here, the am-
plitudes exhibit large variations within individual vessels of
similar size. DHt varies from �0.35 to 5, implying that Ht

in a specific vessel at some instances is five times higher
than the average value. Distribution of DR is even more
dispersed as it varies from �0.35 to >100, implying that in
a specific vessel, flow resistance at certain time instances
can be 100-times the average value. Temporal heterogeneity
is also observed in pressure drop and flow rate, and is given in
Fig. S8. Flow-rate and pressure-drop amplitudes are
observed to be as high as 180 and 600%, respectively, of
the average values. The magnitude of the time-dependent
variable amplitudes is, therefore, significant. Such temporal
heterogeneity could be more severe than the spatial heteroge-
neity when Figs. 2 and 3 are compared. Similar to the spatial
heterogeneity, the temporal heterogeneity is maximum in the
capillary vessels, and decreases with increasing vessel diam-
eter. The temporal heterogeneity is entirely due to the partic-
ulate nature of the blood, which becomes more pronounced
in smaller vessels. It would not occur in absence of the cells,
and the flow would remain steady.
FIGURE 4 (A) RBCs are observed to linger (or, jam) at capillary bifurcation

quency of lingering nr at bifurcations. To see this figure in color, go online.
Note that temporal fluctuations in flow quantities are also
present in long, straight vessels, but with significantly
smaller amplitudes, often in the range of a few percentage
of the mean. In contrast, temporal fluctuations observed in
our network simulations exhibit amplitudes that are several
factors, and often orders, higher than the mean. As shown
later, such temporal fluctuations have severe consequences
in pressure-flow and hematocrit-resistance correlations.
RBC jamming at vascular bifurcations

We find that the origin of this significant temporal heteroge-
neity in the networks is the dynamics of the cell suspension
near vascular bifurcations. At all of the vascular bifurcations
in the three networks considered, RBCs tend to linger for a
while before eventually flowing into the daughter vessels
(Fig. 4 A; see Figs. S9 and S10 for additional images; Movies
S3 and S4).Although lingering is observed at all bifurcations,
it is most pronounced at the capillary bifurcations. During
such events, cells near the bifurcations significantly stretch
and straddle around both daughter vessels, causing incoming
cells to pile up and partly block the entrance to the daughter
vessels. Consequently, the flow rates in the daughter vessels
are reduced. Lingering is a dominant event observed in our
simulations. It can be easily noticed in all of the animations
provided in the Supporting Material. Under extreme cases,
the lingering is observed to be so severe that it can jam a
s. (B and C) Given here is RBC residence time tr (dimensionless) and fre-
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bifurcation and nearly stop the flow in the affected branches
(see Fig. S11; Movies S3 and S4).

To quantify the lingering phenomenon, we compute the
dimensionless residence time tr ¼ tr/t0 of each cell, where
tr is the time spent by an RBC lingering at a bifurcation
and t0 is the time taken by an RBC to pass through the bifur-
cation without lingering. We also compute the frequency nr
of lingering as the ratio of the number of cells lingering for
an extended time to the total number of cells passing through
a bifurcation over the entire simulation time. Both quantities
are plotted in Fig. 4,B andC, as functions of arterial diameter.
As seen here, on average the maximum tr varies between 4
and 6 over the entire range of diameters considered. This
means that at all vascular bifurcations cells can linger 4–6
times longer than the time it would take without lingering.
Therefore, the lingering time is significant, and it occurs in
all arterial bifurcations. Further, the frequency of lingering
is the highest in the capillary vessels and decreases with
increasing vessel diameter. Thus, the lingering events are
more frequent at the capillary bifurcations.

We find that during a lingering event, the cells at the bifur-
cation can straddle the daughter vessels either symmetrically
or asymmetrically (Fig. 5, A–C; Figs. S9 and S10; Movies S3
and S4). In many bifurcations, we find that the cell lingering
occurs in a periodic manner in which the cells straddle more
near one daughter vessel at one time, but near the other
daughter vessel at other times (Fig. 5,B andC). This is because
when cells linger asymmetrically, hematocrit is reduced in the
branch that is partially blocked, but is increased in the other
2820 Biophysical Journal 113, 2815–2826, December 19, 2017
branch. As hematocrit builds up, cells start to straddle the sec-
ond branch, freeing up the first branch which was blocked
before. This periodic change in asymmetric lingering favoring
one branch or the other requires a continuous influx of cells in
the mother vessel. If for any reason hematocrit in the mother
vessel is significantly reduced, an asymmetric lingering
favoring one daughter vessel can last much longer. Often
times we find that as an asymmetric lingering switches from
one side to the other, a symmetric lingering can occur in be-
tween (Fig. 5).We further find that a symmetric blockage lasts
for a longer time, whereas an asymmetric lingering occurs
more frequently.
Cell lingering results in hematocrit reduction
upstream and downstream

An immediate consequence of the cell lingering is a reduc-
tion of hematocrit in daughter vessels. The hematocrit
reduction is manifested by formation of voids in the RBC
train, i.e., vessel segments that are devoid of cells (Fig. 5,
A–C). For a symmetric lingering, voids are formed in both
daughter vessels, whereas for an asymmetric lingering
void, formation switches between one branch and the other
depending upon which daughter vessel is temporarily
blocked. During the periods of time when asymmetric
lingering events are predominantly occurring, the flow rates
between the two daughter branches tend to be imbalanced.
Conversely, when symmetric lingering events are occurring,
the flow rates tend to be balanced. Such cycling can be
FIGURE 5 (A) Shown here is symmetric

lingering. (B and C) Shown here is asymmetric

lingering in which daughter vessels are blocked

periodically. Arrows indicate formation of voids

in RBC trains. (D) Shown here is periodic oscilla-

tion in flow rates in daughter vessels in (B) and (C)

due to switching from symmetric to asymmetric

lingering. The flow rates in two daughter vessels

are scaled by that in the mother vessel. (E) Given

here is void formation (shown by an arrow) in

the mother vessel due to cell lingering at a down-

stream bifurcation. (F) Given here is pressure dis-

tribution in arbitrary units showing increased

pressure (arrow) at the bifurcation due to cell

lingering. (G) Given here is void formation in

capillary vessels that emerge from the same side

of an arteriole. The arrow indicates flow direction.

To see this figure in color, go online.
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observed in the time-dependent flow rate ratios during sym-
metric and asymmetric lingering events, as shown for two
daughter branches in Fig. 5 D.

Cell lingering at bifurcations not only reduces hematocrit
in the daughter vessels, it can also reduce hematocrit in the
mother vessel by forming voids. This rather unusual event is
shown in Fig. 5 E. Cell lingering at the specific bifurcation
considered here increases the local pressure, as shown in
Fig. 5 F. Consequently, the pressure difference along the
mother vessel decreases. Due to the reduced pressure
gradient, RBCs from the main feeding arteriole cannot enter
the mother vessel, which leads to the formation of a void.

RBC voids, therefore, are the footprints of cell lingering
at bifurcations. The significant temporal heterogeneity as
noted earlier is a direct consequence of cell lingering, or
alternatively, void formation. In general, voids are present
in many vessels throughout the networks (Fig. 1, A and B;
Figs. S1–S3, and S9), but are not always the result of cell
lingering at bifurcations. Another mechanism of void for-
mation is depicted in Fig. 5 G. This mechanism is observed
when two capillary vessels emanate from the same side of a
larger arteriole. If cells are drawn in to the first capillary, a
cell-free layer is formed along that side of the arteriole. If
the distance between the two side branches is not large,
the cell-free layer persists, resulting in the formation of a
void in the second capillary.

The implications of cell lingering and void formation are
significant, and are discussed next in terms of the relation-
ships between different hydrodynamic quantities.
Negative pressure-flow correlation

We first consider the relationship between flow rate (Q)and
pressure drop per unit length (DP0) in each vessel in our net-
works. For a long, straight vessel, this relationship is ex-
pressed in terms of the well-known Poiseuille’s law as

DP
0 ¼ R ,Q; (5)

Where R is the hydrodynamic resistance per unit length of
the vessel. Although valid for long, straight vessels, this
relationship is often used in analyzing in vivo data, and
also in lower-dimensional modeling of microvascular net-
works, as noted previously. Poiseuille’s law implies a posi-
tive correlation between pressure drop and flow rate, i.e., an
increase in pressure drop results in an increase in flow rate,
and vice versa.

Do our direct simulations of microvascular networks also
yield positive pressure-flow correlations? To investigate
this, we compute the pressure drop-flow rate correlation co-
efficient CDP0 �Q defined as

CDP
0 �Q ¼

��
DP

0 ðtÞ � �
DP

0��
, ½QðtÞ � hQi��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�½DP0 ðtÞ � hDP0 i�2� , �½QðtÞ � hQi�2�

q ; (6)
where DP0(t) and Q(t) are the time-series pressure-drop per
unit length and flow-rate data in each vessel, and h i repre-
sents a time-averaged quantity. This correlation coefficient
is presented in Fig. 6 A. As seen in the figure, for most ves-
sels CDP0 �Q is positive, confirming the validity of Pois-
euille’s law for capturing the general behavior of blood
flow in microvessels. However, it can also be noted that
for many vessels, the correlation coefficient is very weak.
Most strikingly, for several vessels the coefficient is nega-
tive. This implies that, for these vessels, an increase in pres-
sure drop is accompanied by a decrease in flow rate, which
is in stark contrast to the positive pressure-flow correlation
implied by Poiseuille’s law.

The origin of these negative correlations is the RBC
lingering phenomenon at vascular bifurcations. Due to cell
jamming at a bifurcation, the flow rate into the daughter ves-
sels decreases, while at the same time the pressure at the
entrance of the daughter vessel increases, resulting in an in-
crease in pressure drop. A time series of DP0(t) and Q(t) for
one such vessel is shown in Fig. 6, B and C. It is readily seen
here that large increases in DP0(t) at�0.16, 0.3, and 0.4 s are
accompanied by large drops in Q(t). As is evident from the
behavior in this vessel, the magnitudes of these temporary
increases in DP0(t) and reductions in Q(t) can be significant,
and in vessels where such events occur frequently, a nega-
tive pressure-flow correlation results. As noted in Fig. 6 A,
large negative correlations are observed in the smallest
diameter capillaries, because it is there that the jamming
events are most severe. Large negative correlations are
also observed in capillary vessels that directly discharge
into venules of much larger diameter.

Further insights into the negative DP0 � Q correlation can
be obtained by plotting DP0 versus Q and analyzing the na-
ture of the data scatter. This is shown in Fig. 6 D for a spe-
cific vessel, and data points are obtained at 0.0005 s
intervals. The magnitude and frequency of the pressure-
drop and flow-rate pulses causing the negative correlation
are evident here. The lower-right portion of the figure
showing a dense clustering of data points suggests that for
most of the simulation, a positive correlation exists. On
the other hand, the data points associated with the lingering
events causing a negative correlation appear in the middle to
upper-left of the figure. Whereas the range over which these
data points appear is much greater in magnitude, indicating
the severity of the lingering events, the reduced density of
the data cluster is indicative of the reduced frequency with
which they occur.

Additional data on DP0 � Q correlations are given in
Fig. S12.
Temporal spikes in vascular resistance

An important consequence of the negative pressure-flow
correlation is significant temporal spikes in vascular
Biophysical Journal 113, 2815–2826, December 19, 2017 2821



FIGURE 6 (A) Shown here is the pressure-drop flow-rate correlation CDP0 �Q obtained in our network simulations. Each data point represents individual

vessels. (B and C) Shown here is a time series of flow rate (in m3/s� 1013) and pressure drop per unit length (in Pa/mm) in a vessel giving a negative pressure-

flow correlation. (D) Given here is a scatter plot of DP0(t) versus Q(t) for a specific vessel. See text for an explanation.

Balogh and Bagchi
resistance. Regardless of the correlation behavior, as the
flow rate through a vessel decreases the hydrodynamic resis-
tance increases. However, as is clear from Eq. 5, an increase
in DP0 corresponding to a decrease in Q results in a much
more significant increase in resistance than in a vessel
with a positive DP0 � Q correlation. The time-dependent
resistance R(t) of one vessel is shown in Fig. 7, which shows
spikes during which the resistance increases by as much as
50 times the average value. Additional data are in Fig. S13.
The source of this significant increase in the vascular resis-
tance is the cell lingering at bifurcations. Because of the cell
lingering, the flow rate into the daughter vessel decreases
whereas the pressure near the entrance to the daughter
vessel increases. Consequently, the pressure drop in the
daughter vessel increases. This, together with the decrease
in flow rate, results in a large increase in resistance.
Negative hematocrit-resistance correlation

In microvascular blood flow, and particulate suspension
flows in general, the flow resistance increases with
FIGURE 7 Time series of vascular resistance in one vessel showing tem-

poral spikes resulting in a nearly 50-times increase in resistance compared

to the mean.
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increasing hematocrit, or particulate volume fraction.
Thus, in general, a positive correlation exists between the
vascular resistance and hematocrit. Indeed, empirical rela-
tions exist based on in vivo and in vitro data relating these
two quantities (11). To see if our simulated networks yield
a positive correlation between the time series of vascular
resistance R(t) and hematocrit Ht(t), we compute a hemato-
crit-resistance correlation coefficient CR�Ht

defined in a
similar manner to Eq. 6. This coefficient is plotted in
Fig. 8 A for all vessels in the networks. As can be seen in
this figure, on average most vessels yield a positive correla-
tion, implying the usual trend that the vascular resistance in-
creases with increasing hematocrit. However, in several
vessels the correlation coefficient is either very small or,
interestingly, is negative. This reveals a rather unusual phe-
nomenon: in these vessels, resistance increases with
decreasing hematocrit, or vice versa.

As with the DP0 � Q correlation, the origin of the nega-
tive R � Ht correlation is the cell lingering at bifurcations.
It was noted earlier that the lingering events result in hemat-
ocrit and flow-rate reductions in the daughter vessels. At the
same time, pressure increases significantly around the bifur-
cation region, resulting in an increase in the pressure drop in
the daughter vessels. Consequently, resistances in these ves-
sels go up despite reductions in hematocrit, resulting in the
negative correlation. Fig. 8, B and C, shows one such
example for a specific vessel. Here Ht(t) drops from 0.4 to
0.12 at �0.15–0.16 s, but R(t) increases by nearly 50 times,
resulting in a large negative correlation during this event. At
other times, e.g., around 0.12, 0.14, and 0.18 s, Ht(t) in-
creases to 0.4, but R(t) does not show a significant jump,
implying that at these times there is also not a strong posi-
tive correlation between the two quantities.

Additional data on R – Ht correlation are given in
Fig. S14.

An interesting feature of the negative R – Ht correlation is
that it takes on a different meaning based on the location of
the vessel in the network hierarchy. For capillaries or other
vessels on the arterial side (i.e., daughter branches or mother
branches), the negative correlation implies an increase in



FIGURE 8 (A) Given here is the hematocrit-

resistance correlation CR�Ht
. Each data point repre-

sents an individual vessel. (B and C) Given here is

a time series of hematocrit Ht(t) and resistance R(t)

in one vessel showing a negative hematocrit-resis-

tance correlation.
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resistance accompanied by a decrease in hematocrit. That is,
it occurs as a direct result of the RBC void formation due to
lingering, as previously discussed. For vessels on the venous
side, however, a negative correlation results from an oppo-
site trend: the resistance decreases with increasing hemato-
crit. This is observed to occur as an indirect result of the
RBC void formation due to lingering. Because of this, the
behavior is not dominated by the pulses as with the other
negative correlations, but rather is observed over longer pe-
riods of time.

This latter behavior is observed in venules that are fed by
two merging vessels each with distinctly different RBC pat-
terns. For example, if one feeding vessel has a steady flow of
RBCs and the other has a very intermittent flow, then this
form of negative correlation occurs. A prominent cause of
intermittent flow is the RBC voids generated due to
lingering at the bifurcation feeding that vessel. As these
voids migrate through the capillary and enter the venule
into which it merges, this type of negative correlation re-
sults. The hydrodynamic explanation behind this is that in
the outlet venule the hematocrit increases with an increase
in Q and small change in DP0 (i.e., increase in Ht with
decrease in R). The first event in the development of this
negative correlation is the formation of a void in the vessel
feeding the venule. Following this, the void moves through
the capillary and into the venule. Thus there is a volume
flow-rate contribution to the discharge venule, without a he-
matocrit contribution. In the downstream vessel this ulti-
mately results in an increase in volume flow rate with
little change in DP0. Figures are provided in the Supporting
Material that further describe this process (Fig. S15).
DISCUSSION

We have presented, to our knowledge, the first 3D simula-
tions studying blood flow in microvascular networks that
capture both the cellular-scale microphysics and the highly
complex physiological architecture. The number of vessels
and bifurcations considered, and the network volumes simu-
lated, as well as the amount of time-averaged data obtained
are comparable to the typical volume of data utilized with
in vivo analyses. Whereas time-averaged hemodynamic
quantities agree quite well with published in vivo data, our
simulations also elucidate cellular-scale events at small
timescales that are usually not captured in experiments. To
our knowledge, several novel and unexpected phenomena
are observed from such time-resolved simulations that are
the result of the complex interactions between the RBCs
and the vascular geometry.

Prior in vivo studies have shown that the distribution of
hemodynamic quantities across a microvascular network is
heterogeneous; quantities vary across different vessels of
similar size (see, e.g., (2,15,30)). The heterogeneity referred
to in many of these studies is spatial heterogeneity, as quan-
tities are averaged in time. Similar spatial heterogeneity is
observed in our simulations. However, a more severe type
of heterogeneity is revealed in our simulations when time-
dependent data is considered. We show that within the
same vessel, hemodynamic quantities can greatly vary
over time. Amplitudes of these temporal variations could
be several factors and even orders-of-magnitude higher
than the average values. This high degree of temporal het-
erogeneity is absent in blood flow in straight tubes where
fluctuations in hemodynamic quantities occur solely due
to cell-cell interactions.

In terms of quantifying heterogeneity in microvascular
networks, various in vivo works have been performed in
which velocities in capillaries were utilized. Considering
all of the capillary vessels from each network simulation,
the average velocity was �0.7 mm/s. This is generally in
agreement with the in vivo work of Kleinfeld et al. (31),
who measured the average velocities in the neocortical cap-
illaries of a rat to be in the range of 0.5–1.6 mm/s. Similar
values have been reported in other in vivo works as well
(23,32,33). With regard to the time-dependent velocities in
all of the capillary vessels from the simulations, these
were observed to fluctuate by as much as 2 mm/s, which
is also in general agreement with the in vivo work of Tomita
et al. (34), who found velocities in capillaries to vary by as
much as 1.6 mm/s. Various other in vivo studies on capillary
blood flow have been performed (35–37) in which velocity
ranges have been reported to be on the same order as that
computed in our simulations.

We show that a major cause of the temporal heterogeneity
is the piling-up (i.e., lingering) of RBCs near vessel bifurca-
tions. RBC lingering has been observed in prior in vivo
Biophysical Journal 113, 2815–2826, December 19, 2017 2823
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works (e.g., (34,38)), as well as computational works (39).
Often, RBC lingering in our simulations occurs in a cyclical
manner resulting in a quasi-periodic variation in hemody-
namic quantities that is completely independent of the car-
diac cycle. We show that lingering can reduce the
hematocrit and flow rate not just in the daughter vessels,
but also in the mother vessels. Significant transient events
are known to occur when considering the flow of whole
blood (40,41). Periodic oscillations have been predicted in
lower-dimensional theoretical modeling of microvascular
networks (14–16), and observed both in vivo (12) and in mi-
crofluidic networks (13). Specifically, the experimental
studies in (12,13) considered whole blood, and Forouzan
et al. (13) ascribed such oscillations to capillary blockage
by leukocytes. In general, inactivated leukocytes are much
stiffer than the RBCs and have a much larger transit time
through a capillary vessel (42). Thus, oscillations resulting
from leukocyte blocking are likely to have a lower fre-
quency than those resulting from RBC lingering. Forouzan
et al. (13) also presented power spectra of time-series
data, and found different maxima depending on the presence
of RBCs only, or RBCs with leukocytes. Our data also show
the maxima to occur at the lower end of the frequency spec-
trum, with the magnitude of the total power fraction on the
same order as in (13). However, the range of frequencies in
the two studies is significantly different. Our simulations
represent 0.7 s of flow, during which �1500 samples are
taken. The range of frequencies obtained in our simulations
is on the order of hundreds of Hz. Thus the fluctuations in
flow quantities in the capillaries in our simulations, such
as flow rate, directly correspond to individual RBC behavior
as each passes through an individual bifurcation. In contrast,
in (13), measurements are made over a time interval of
5 min with a sampling frequency of 100 Hz, resulting in a
frequency range of <1 Hz. So the fluctuations are more
associated with that of either bulk RBC motion, or events
that occur over much longer times, such as capillary
blockage by white blood cells. Nonetheless, RBC lingering
serves as a major cause of microvascular heterogeneity, and
is observed throughout our simulations at all bifurcations.
Under extreme circumstances it may cause temporary flow
stoppage, as also observed in our simulations.

An interesting question concerning the nature of hetero-
geneity is whether it is a stochastic phenomenon. On the
one hand, in a more general sense, heterogeneity can be
viewed as deterministic. First, we are able to directly link
the RBC lingering events to being the cause of the promi-
nent temporal fluctuations. Second, we are able to link the
frequency of these events to vessel size. So in this sense,
the degree of heterogeneity is dictated by vessel size, and
thus it can be viewed as a deterministic phenomenon. On
the other hand, the underlying mechanisms behind each of
these time-dependent events that give rise to such heteroge-
neity, do resemble that of a stochastic phenomenon. The na-
ture of the process that led to the RBCs being in their
2824 Biophysical Journal 113, 2815–2826, December 19, 2017
particular configuration and the deformed states that caused
them to pile-up in a manner resulting in this temporary
blockage, can be viewed as stochastic in that all of the sub-
sequent RBC interactions leading up to this are too complex
to discern a pattern. Thus, heterogeneity can be considered a
stochastic phenomenon if one considers the individual
events that comprise the averages in quantities.

Vascular resistance is an important quantity that directly
controls the amount of blood flow in specific vessels. Blood
viscosity measured in vivo was shown to be higher than that
measured in vitro using long, straight tubes (11,30). Accord-
ingly, the in vitro viscosity law would underpredict the
network flow resistance. The higher in vivo resistance is
attributed in part to the presence of the glycocalyx layer
on the surface of endothelial cells lining the blood vessels
(43). Our simulations provide another mechanism for
increased flow resistance in a network. We show that the
cell lingering causes large temporal spikes in vascular resis-
tance. In some instances, magnitudes of these spikes are
observed to be orders larger than the mean. This result is
in agreement with a prior in vitro study that reported an or-
der-of-magnitude increase in pressure gradient at a bifurca-
tion while flowing deformable disk-shaped particles (44).
The lingering mechanism, therefore, can account for the
higher in vivo flow resistance.

The cell lingering as observed here may have far-reaching
consequences. We show that in several vessels, it results in
negative pressure-flow correlations, meaning that an in-
crease in pressure drop is accompanied by a decrease in
flow rate, in stark contrast to the positive pressure-flow cor-
relations implied by Poiseuille’s law. In a tube flow, the
pressure loss is synonymous with the shear stress and the
flow rate is synonymous with the rate of strain. The negative
correlation then implies that an increase in stress results in
an increase in fluid viscosity. Thus, the blood behavior in
these vessels resembles that of a shear-thickening fluid as
opposed to a shear-thinning fluid.

An important point to note, however, is that the negative
pressure-flow correlation happens only over the periods of
time when the lingering events occur. Outside of these
lingering events, conditions follow the positive pressure-
flow correlation. What this suggests is that in vessels with
negative correlation coefficients, the average behavior is
dominated by the pulses in flow properties resulting from
RBC lingering. If the magnitude of these pulses and/or the
frequency with which they occur is significant enough,
then negative correlation coefficients result. Although
events of this nature are observed in all capillary vessels,
the severity of these events varies from vessel to vessel.

The pulses in flow properties caused by the cell lingering
would also result in similar time-dependent behavior in the
wall shear stress. It is known that both the average and time-
dependent variations of the wall shear stress affect the endo-
thelial cell response triggering diverse physiological events.
Our findings suggest that in a microvascular network the
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nature of the time dependence may be dominated by the
lingering-induced pulses in the shear stress.

Negative correlations are also found between vascular
resistance and hematocrit in several vessels, implying
that the flow resistance increases in these vessels whereas
hematocrit decreases. This also defies the principle of
particulate suspension flow, and is a result of the lingering
events that are severe in nature. We observe that the
negative resistance-hematocrit correlation serves as a
feedback mechanism; cells in the feeding artery can sense
the lingering occurring in a downstream bifurcation via the
fluid pressure, and be temporarily rerouted avoiding the
mother vessel. This autoregulatory function provides a
mechanism for efficient distribution of the cells across
the network.

Cell lingering is observed to result in the formation of
RBC voids in daughter and mother vessels. In prior studies
using simple geometry, such as straight tubes, it has been
observed that RBCs naturally form clusters and voids purely
by cell-cell hydrodynamic interactions (45,46). In fact, in
our simulations voids are also observed to form as a result
of cell-cell interactions just as they would in a straight
tube. However, when this occurs, a positive resistance-he-
matocrit correlation is observed. The additional interaction
with the vascular geometry is also required for a negative
correlation to manifest.

As noted before, these anomalous results cannot occur in
flow through straight tubes, and they underscore the impor-
tance of considering realistic physiological geometry and
cellular interactions in modeling microvascular hemody-
namics. These anomalies may become even more severe
when whole blood is considered due to both RBC lingering
and leukocyte blockage (40). Additionally, diseased RBCs
are known to have widely different rheological properties,
which can also enhance such events. The magnitude and fre-
quency of such events as observed in our simulations war-
rants further study into the impact of such events on
important physiological phenomena, such as the adaptation
mechanisms in the microvasculature at the cellular scale,
oxygen and nutrient transport, and efficiency of drug
delivery.

For this work, we have utilized RBC membrane proper-
ties typical of an average, healthy cell. The effects of the
cell properties on the network hemodynamics are not
considered here. Specifically, our model does not consider
membrane viscosity, which has been a subject of interest
in some recent works (47,48). In our prior works (28,49)
we have shown that the usual value of membrane viscosity
does not change the qualitative nature of the RBC deforma-
tion; rather, it changes the timescale of transient recovery.
Thus, inclusion of membrane viscosity would not alter the
occurrence of the phenomena that are observed in our sim-
ulations, such as RBC jamming. Of course, in the extreme
case of unusually large membrane viscosity, the jamming ef-
fect could be very severe.
CONCLUSIONS

This work presents, to our knowledge, the first direct simu-
lation of 3D cellular-scale blood flow in physiologically
realistic microvascular networks. Prediction of time-aver-
aged hemodynamic quantities agree well with published
in vivo data. The RBCs are observed to linger at vascular bi-
furcations resulting in hematocrit and flow reductions in
daughter and mother vessels. The cell lingering results in or-
ders-of-magnitude increase in vascular resistance, and thus
provides an additional mechanism for increased blood vis-
cosity in vivo as opposed to in vitro. In several vessels, we
find negative pressure-flow correlations in stark contrast to
Poiseuille’s law. We also find negative resistance-hematocrit
correlations in some vessels, again defying the principle of
particulate suspension flows.
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Video files 

Movie M1: Simulation of red blood cells flowing in the microvascular network shown in fig 1A in main 

article. 

Movie M2: Simulation of red blood cells flowing in the microvascular network shown in fig. 1B in main 

article. 

Movie M3: Close-up showing cell lingering near three bifurcations. The one at the top bifurcation causes 

temporary flow stoppage in the daughter vessels. 

Movie M4: Close-up showing cell lingering near two bifurcations. The one on the right causes temporary 

flow stoppage in the daughter vessels. 

 

Additional images of microvascular networks simulated 

Additional images and an additional network simulated are presented in figs. S1-S3. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S1: Additional snapshot of microvascular network shown in fig. 1A in main article. 
 
 
 
 



 

Figure S2: Additional snapshot of microvascular network shown in fig. 1B in main article. 
 

 

Figure S3: Additional (third) network simulated. Dimensions: 535 μm x 106 μm x 24 μm. Flow is from left 
to right. 
 

 

Microvascular Network Design 

In designing each of the three microvascular networks, Horton’s Law was utilized to determine the 

relationships between vessel diameters at bifurcations and mergers. This law is defined as 

𝐷𝑛

𝐷𝑛−1
= 10𝑏           (S1) 

and a topology following this law is fractal in nature (1). The empirical constant b is taken as 0.1582, D is 

the vessel diameter, and the subscript n corresponds to the vessel order in the Strahler ordering system 

(1). For b=0.1582 the diameter ratio is approximately 1.43, however no distinction is made between the 



arterial and venous sides of the network in Ref. (1). Since vessels of order n on the venous side are 

usually larger in diameter than their counterparts on the arterial side, we take this into account by using 

   
𝐷𝑛

𝐷𝑛−1
|

𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙
≈ 1.2             

𝐷𝑛

𝐷𝑛−1
|

𝑣𝑒𝑛𝑜𝑢𝑠
≈ 1.5       (S2) 

 

Within the Strahler ordering system the numbering begins at the capillaries, which are taken to be order 

0. As the hierarchy proceeds upstream and downstream of these vessels, the order number increases to 

n+1 when two vessels of the same order connect with each other. In many instances, connecting vessels 

are of the same order but have different diameters. In such cases an averaging is used in conjunction 

with the above diameter ratios to determine the appropriate vessel size. A similar approach is taken 

when connecting vessels are of a different order. 

 

For the present work we did not investigate the effect of the ‘b’ exponent. The values of ‘b’ we used are 

average, not extreme values within the physiological range. As such, our networks are representative of 

‘average’ physiological microvascular networks. 

Our results are related in a more general way to the topology of the network, rather than being related 

to the geometry of a very specific type of network. That is, these results are not intended to be 

representative of what would be found, for example, only in a capillary network in the kidney of a rat. 

Rather, our conclusions and observations represent commonalities associated with general 

microvascular network topology, and offer insight in a more general way into the hemodynamic 

mechanisms present in cellular-scale network blood flow. 

Different values of ‘b’ would result in networks with different diameter ratios between the mother and 

daughter branches of bifurcations. However, we do not feel that any of our conclusions or general 

observations would be different, barring drastic changes to this ‘b’ exponent representative of that 

beyond the physiological range, or of geometric anomalies in microvascular architecture. In light of this, 

an investigation into the effects of ‘b’ could be of interest. However, a significant computational 

undertaking would be required to properly study this issue, which is beyond the scope of this 

manuscript. 

 

Numerical Methodology 



The salient features of the numerical methodology relative to the present simulations are provided 

below. Additional details and validations can be found in (2). A schematic depicting various components 

associated with the numerical methodology is provided in Figure S4.  

 

The underlying governing equations are the unsteady Stokes equations for a variable viscosity, 

constant density fluid, along with the conservation of mass: 

𝜌
𝜕𝐮

𝜕𝑡
= −∇𝑝 + ∇ ∙ 𝜇[∇𝐮 + ∇𝐮T] + 𝑭      (S3) 

 

∇ ∙ 𝐮 = 0          (S4) 
 

All interfaces are immersed into one computational domain that is discretized using a fixed, 

uniform, Cartesian Eulerian mesh. The governing equations are solved on this mesh using a projection 

method for the time integration and a staggered arrangement of variables in space. The presence of the 

complex vascular walls is simulated directly on this mesh by enforcing specific constraints on the 

Eulerian variables. The deformable interfaces are simulated on a separate Lagrangian mesh fixed to each 

cell (fig. S4-B), with information transferred to and from the main Eulerian grid using the front-tracking 

method. 

 



 

Figure S4: Schematic depicting various simulation components 

(a.) Microvascular network simulation 

(b.) Lagrangian mesh on which finite element computations are performed for RBC deformation 

(c.) Mesh generated on surface of vascular network defining vessels walls when solving the governing fluid 

flow equations 

(d.) Eulerian mesh on which the governing equations are solved. Eulerian mesh nodes are identified as Solid 

Nodes (SN), Ghost Nodes (GN), and Fluid Nodes (GN). Additional points utilized with the ghost node 

method are identified as Boundary Intercept (BI) and Image Points (IP).  

 

 

For the deformable interfaces, the membrane of each RBC is discretized using Delaunay 

triangles (Figure S4-B), and the finite element method (FEM) is used to compute the stresses generated 

in the membrane resulting from shear deformation and area dilatation. In addition to this, the cell 

membrane also exerts a resistance against bending. Thus, the net membrane force (fm) is given by: 

 



𝐟𝑚 = 𝐟𝑒 + 𝐟𝑏         (S5) 
 

where fe is the elastic tension at each vertex computed from the FEM and fb is the bending force density. 

The means by which fe and fb are determined are now described. 

For the FEM, the elements defined by the Delaunay triangles comprise the Lagrangian mesh, 

and each vertex (or node) is shared by five or six triangles. The cell shape and location is updated by 

advecting these nodes. At each node we compute the elastic force, fe, resulting from the membrane 

resistance against shearing deformation and area dilatation using: 

 

𝐟e = ∑ ∫
𝜕𝐍

𝜕𝐗
∙ 𝐏d𝑆

𝑆𝑛
𝑛         (S6) 

 

where N is a vector of shape functions, 𝐏 = 𝜀1𝜀2𝝉 ∙ 𝐅−T is the first Piola-Kirchhoff stress tensor, X is the 

original configuration of the membrane, and Sn is the area of each of the n triangles surrounding the 

node. To determine the shape functions (Ni), the displacement field v is expressed as v = Nivi, where the 

index i = 0,1,2 denotes the vertices of each triangle. Thus a linear variation of the displacement field is 

assumed within each element, and the shape functions are determined from the vertex coordinates. 

To determine P, we need to determine the principle stretch ratios 𝜀1 and 𝜀2, the principle stresses 𝜏1  

and 𝜏2 comprising the stress tensor 𝝉 in each element, and the deformation gradient F. 𝜀1
2 and 𝜀2

2are 

the eigenvalues of 𝐅 ∙ 𝐅T, so we first determine F, defined as 𝐅 = 𝜕𝐱
𝜕𝐗⁄ , from the vertex coordinates, 

where x is the current configuration of the membrane. Once we have 𝜀1 and 𝜀2 we can determine the 

principle elastic tensions (or stresses) in the cell membrane as: 

 

𝜏1 =
1

𝜀2

𝜕𝑊𝑠

𝜕𝜀1
,          𝜏2 =

1

𝜀1

𝜕𝑊𝑠

𝜕𝜀2
      (S7) 

 

Where Ws is the strain energy function of the membrane material. In this work we use the constitutive 

relation for Ws based on the work of Skalak et. al (3) 

 

𝑊𝑠 =
𝐺𝑠

4
[(𝐼1

2 + 2𝐼1 − 2𝐼2) + 𝐶𝐼2
2]      (S8) 

 

Here SG ~ 2-5x10―6 N/m is the membrane shear elastic modulus, SCG  is the area dilation modulus, and

22

2

2

11  I and 12

2

2

12  I are the strain invariants of the Green strain tensor defined as        

𝐄 = (𝐅T ∙ 𝐅 − 𝐈). For an RBC, the shearing deformation can be significant, but the surface area dilation 



is almost negligible. The parameter C is used to control the amount of surface area dilation, and a large 

value results in a small area dilation. Using each of these relations, the elastic force fe is then computed 

at each node from Eq. S6. Additional details on the FEM are given in our prior work (4).  

For the membrane resistance against bending, this is modeled following Helfrich’s formulation 

for a bending energy, expressed as: 

 

𝑊𝑏 =
𝐸𝑏

2
∫ (2𝜅 − 𝑐0)2d𝑆

𝑆
       (S9) 

 

where Eb ~ 2-7 x 10―19 J is the bending modulus, κ is the mean curvature, c0 is the spontaneous 

curvature, and S is the entire surface area of a cell (5). To evaluate the force density from this integral 

we use the following form, which can be derived from Eq. S9: 

 

𝐟𝑏 = 𝐸𝑏[(2𝜅 + 𝑐0)(2𝜅2 − 2𝜅𝑔 − 𝑐0𝜅) + 2Δ𝐿𝐵𝜅] 𝐧   (S10) 

 

where κg is the Gaussian curvature, ΔLB is the Laplace-Beltrami operator, and n is the normal vector. To 

evaluate the mean and Gaussian curvature at each node, a quadric surface is fitted to the node and its 

nearest neighbors. ΔLBκ is then approximated on a small surface patch dS using the Gauss theorem, as 

(1
d𝑆⁄ ) ∫ ∇𝑆𝜅 ∙ 𝐧𝑙d𝑙

𝑙
 where 𝑙 denotes the patch boundary, dS the surface gradient, and 𝐧𝑙 the unit 

normal to the boundary 𝑙. The gradient dS on a surface triangle can be obtained either by a linear 

interpolation of the surface and 𝜅, or using the loop subdivision method. Further details on numerical 

computation of the bending force density are given in Ref. (6). 

The resulting membrane forces computed from Eq. S5 are then coupled to the governing 

equations using the front-tracking method via the body force term, F, in Eq. S3, defined as: 

 

𝐅 = ∫ 𝐟𝑚𝛿(𝐱 − 𝐱′)𝑑𝐱′
𝑆

        (S11) 

where δ is the three-dimension Dirac-delta function used to spread this singular force over a finite span 

of the surrounding fluid, and x and x’ are the locations in the flow domain and on the cell surface S, 

respectively. We numerically approximate the delta function with a cosine function spanning four grid 

points around the cell boundary: 

 

𝛿(𝐱 − 𝐱′) =
1

64Δ3
∏ [1 + cos

𝜋

2Δ
(𝑥𝑖 − 𝑥𝑖′)]3

𝑖=1     (S12) 



where Δ is the Eulerian grid size.  

We now describe the means by which the viscosity contrast between the hemoglobin and the 

plasma is modeled. The underlying structure of the numerical approach permits multiple fluids to be 

modeled within one computational framework. Mathematically the distinction is made between the 

separate fluids by means of an indicator function, I(x,t), which is zero outside a cell and one inside. This 

function is used to evolve the viscosity field μ(x,t) as the deformable cells change shape and acquire new 

locations. μ(x,t) written in terms of this indicator function is: 

 

𝜇(𝐱, 𝑡) = 𝜇𝑝 + (𝜇𝑐 − 𝜇𝑝)𝐼(𝐱, 𝑡)      (S13) 

where μp and μc are the viscosities of the plasma and cytoplasmic fluids, respectively. It can be shown 

that the indicator function follows a Poisson equation as: 

 

∇2𝐼 = ∇ ∙ 𝐆          (S14) 

where G(x,t) is an Eulerian variable constructed from the cell surface normal n as: 

 

𝐺(𝐱, 𝑡) = ∫ 𝛿(𝐱 − 𝐱′)𝐧 d𝑆
𝑆

       (S15) 

Equation S15 is solved to obtain I at each time step and update μ(x,t). 

For the complex vascular network walls, the network geometry is first constructed using a 

standard CAD software in conjunction with in vivo image data. A mesh is then generated on the surface 

(Figure S4-C), which is used to define the vascular boundaries in discrete space. Constraints are enforced 

at the Eulerian grid points immediately exterior to the interface defined by this mesh (i.e. points 

identified as “ghost nodes”) such that a no-slip condition is achieved at the interface. These are 

formulated as follows (see Figure S4-D). Once the boundaries of the interface have been defined, the 

Eulerian nodes inside and outside the fluid domain are identified and labeled as fluid nodes (FN) and 

solid nodes (SN), respectively. The SNs that have at least one neighboring fluid node are identified as 

ghost nodes (GN). After the GNs have been identified, the boundary-intercept (BI) point for each ghost 

node is determined by locating the nearest point on the vascular wall. Following this, the image-points 

(IP) are determined for each GN, which are defined as the mirror image of the respective GN in the fluid 

domain, across the BI.  



The constraints are enforced explicitly at each GN, and are formulated such that a known 

boundary condition uBI is achieved at the BI. The value at the BI is taken to be the average of values at 

the GN and the IP. In general, the IPs do not coincide with the Eulerian nodes. A standard trilinear 

interpolant is used to obtain the velocity at the IP from the surrounding Eulerian nodes, and thus the 

constraint enforced on the velocity becomes: 

𝐮𝐺𝑁 = 2𝐮𝐵𝐼 − ∑ 𝛽𝑚𝐮𝑚
8
𝑚=1        (S16) 

where βm are the weighting coefficients for the interpolation. This interpolation scheme results in a 

second-order accurate velocity field (2). 

 

 

ADDITIONAL DATA on RESULTS 

 

Comparison of predicted RBC shapes with experimental images 

A wide variety of RBC shapes is observed in the simulations as the cells traverse the networks and 

undergo significant deformation. A few representative examples are provided in fig. S5, along with 

images from the experimental work (7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5: Comparison of various observed RBC shapes in the simulations with the experimental images 

of (7). For each comparison, the simulation image is on the right.  

 

Additional comparisons with In Vivo data 

The figures below provide additional quantitative comparisons between results obtained from 

our simulations and the in vivo data of (8). Specifically we compare the time averaged pressure drop per 

length (∆𝑃′), wall shear stress (𝜏𝑤), and blood viscosity (𝜇) in Figure S6-A:C. The wall shear stress and 

viscosity are determined in an averaged sense, as in (8): 



𝜏𝑤 =
∆𝑃′ ∙ 𝐷

4
 

𝜇 =
∆𝑃′ ∙ 𝐷2

𝑉̅
 

where D is the vessel diameter and 𝑉̅ is the bulk fluid velocity.  

 

Figure S6 : Additional comparisons between simulation (red, filled circles) results and in vivo data (open 

black circles). (A) ∆𝑃′, Pa / μm; (B) 𝜏𝑤, Pa ; (C) 𝜇, cP 



Spatial heterogeneity in flow rate 

As a further demonstration of the spatial heterogeneity observed in our simulations, Figure S7 

depicts the time-averaged flow rates as a function of vessel diameter. 

 

 

 

 

 

 

 

 

 

Figure S7: Arterio-venous distribution of time-averaged flow rates, Q, in m3/sec x 1013 

 

Additional data on temporal heterogeneity 

Examples of fluctuations in pressure drop per length and flow rate are provided in Figure S8 for 

a representative vessel. Similar to the hematocrit and resistance in the main article, to quantify the 

degree of temporal heterogeneity in theses quantities, the amplitude of fluctuation is determined for 

each. The distributions of these amplitudes are plotted in Figure S8-C:D scaled by the mean value for 

each individual vessel.  

 

Figure S8. Temporal heterogeneity. A, B: Time history of pressure drop per length ∆𝑃′(𝑡) (in Pa/μm) and 

flow rate 𝑄(𝑡) (in m3/sec x 1013) in one vessel in the network shown in fig. 1A in the main text. C, D: 

Amplitudes of temporal oscillations in ∆𝑃′ and Q in each vessel, scaled by the mean value for the 

respective vessel.  



Additional data on RBC lingering 

As mentioned in the main article, the RBC lingering phenomena is prominent. While it can be 

observed at all vascular bifurcations, the frequency is highest at the capillaries and decreases with 

decreasing vessel diameter. Additional images depicting lingering events at capillary bifurcations are 

provided in Figure S9, while lingering events occurring at bifurcations associated with larger vessels are 

provided in Figure S10. 

 

 

 

 

 

 

 

 

 

 

 

Figure S9: Additional examples of RBC lingering occurring at capillary bifurcations. Arrows are used to 

show the lingering. 

 

 

 

 

 

 

 

 

Figure S10: Examples of lingering events occurring at bifurcations associated with larger sized vessels. 

(A) mother vessel with 14μm diameter  and daughter vessels with 11.5μm diameters; (B) mother vessel 

with 16μm diameter and daughter vessels with 12μm diameters. 

(A) 

(B) 



Severe lingering events nearly stopping the flow in affected branches 

During the most extreme events, lingering is observed to be so severe that it can nearly stop the flow in 

the affected branches. Examples of such events are provided in movies M3-M4.  

Fig. S11 shows that upon such a severe lingering event (corresponding to video M3) the flow rates in the 

daughter vessels at about 0.23 s nearly become zero. 

 

Fig. S11: Time series of flow rates in daughter branches upon a severe lingering at a bifurcation. Flow 

rates drop to nearly zero at about 0.23 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Additional examples of vessels with negative pressure-flow correlations 

 

Figure S12. A-C: Additional examples of vessels with negative ΔP’-Q correlations. For each vessel, the 

time series of Q (m3/s x 1013) and ∆𝑃′ (Pa/μm) are plotted on the left. Red arrows indicate temporal 

increases in ∆𝑃′ corresponding to decreases in Q. On the right, for each vessel, data scatter of Q vs. ∆𝑃′ 

is provided. Red circles indicate data points corresponding to negative correlations, while the green 

circles indicate data points corresponding to positive correlations. 



 

As discussed in the main text and shown in Figure 6A there, the lingering phenomena causes vessels to 

experience temporary sharp increases in ΔP’ with corresponding decreases in Q. Examples from 

additional vessels illustrating this behavior are provided in Figure S12:A-C. 

 

Additional examples of temporal “Spikes” in resistance 

To further illustrate the consequence of the negative ΔP’-Q correlations where temporal “spikes” occur 

in the hydrodynamic resistance, examples from additional vessels showing these “spikes” are provided 

in Figure S13 A-C.  

 

 

Figure S13. A-C: Additional examples of temporal spikes in hydrodynamic resistance as a consequence of 

the negative ΔP’-Q correlations. For each vessel, R (Pa/(m3/s)/µm x 10-11) is plotted vs. time. Red arrows 

draw attention to examples of “spikes” caused by lingering.  

 



 

Additional examples of weak and negative resistance-hematocrit correlations 

 Figure S14. A-C below provides additional examples illustrating the relationship between R and Ht in 

different vessels.  

 

Figure S14. A-C: Time series of resistance (Pa/(m3/s)/µm x 10-11) and hematocrit in three different 

vessels to further illustrate the relationship between the two quantities. Red arrows denote times of 

negative correlations. Black arrows indicate times of weak positive correlations. 

 

Additional information on increase in vessel hematocrit with a decrease in resistance 

Here we further describe the process by which the hematocrit in a vessel on the venular side can 

increase but the resistance can decrease. As mentioned in the main article, a void is first formed in a 

capillary as a result of lingering. It then traverses the capillary and enters the outlet venule (Figure S15 

B). In this outlet venule you thus have a volume flow rate contribution from capillary without a 

hematocrit contribution. In this downstream vessel this ultimately results in an increase in flow rate with 

little change in ΔP’. As this process repeatedly occurs, in the outlet venule there is a gradual decrease in 

resistance with a gradual increase in hematocrit (Figure S15 A).  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S15: (A) Time-dependent hematocrit and resistance in outlet venule (shown in B) as an indirect 
result of void formation in the upstream capillary bifurcation. (B) Void formed in capillary, eventually 
traverses the vessel and discharges into the outlet venule. 
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