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Physical Mechanisms Driving Cell Sorting in Hydra
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ABSTRACT Cell sorting, whereby a heterogeneous cell mixture organizes into distinct tissues, is a fundamental patterning
process in development. Hydra is a powerful model system for carrying out studies of cell sorting in three dimensions, because
of its unique ability to regenerate after complete dissociation into individual cells. The physicists Alfred Gierer and Hans
Meinhardt recognized Hydra’s self-organizing properties more than 40 years ago. However, what drives cell sorting during
regeneration of Hydra from cell aggregates is still debated. Differential motility and differential adhesion have been proposed
as driving mechanisms, but the available experimental data are insufficient to distinguish between these two. Here, we answer
this longstanding question by using transgenic Hydra expressing fluorescent proteins and a multiscale experimental and
numerical approach. By quantifying the kinematics of single cell and whole aggregate behaviors, we show that no differences
in cell motility exist among cell types and that sorting dynamics follow a power law with an exponent of �0.5. Additionally, we
measure the physical properties of separated tissues and quantify their viscosities and surface tensions. Based on our exper-
imental results and numerical simulations, we conclude that tissue interfacial tensions are sufficient to explain cell sorting in
aggregates of Hydra cells. Furthermore, we demonstrate that the aggregate’s geometry during sorting is key to understanding
the sorting dynamics and explains the exponent of the power law behavior. Our results answer the long standing question of the
physical mechanisms driving cell sorting in Hydra cell aggregates. In addition, they demonstrate how powerful this organism is
for biophysical studies of self-organization and pattern formation.
INTRODUCTION
How a pattern emerges from an initially near-uniform cell
population is a question that has long fascinated biologists
and physicists alike, in particular D’Arcy Thompson. In his
influential 1917 book On Growth and Form (1), Thompson
emphasized the fact that, when one is faced with such a
complex phenomenon as the form of a living organism, there
can be more than one explanation, depending on the level of
understanding one aims to achieve (molecular, cellular, or
organismal). Although cellular and molecular processes
play key roles in morphogenesis, Thompson insisted on the
importance of studying this question from a purely physical
perspective.

One of the simplest and best studied examples of pattern
formation in which this approach has been fruitful is the
spontaneous separation of two randomly mixed cell popula-
tions, in a process called cell sorting. Because the dynamics
of cell sorting resemble the breaking up of an emulsion of
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different liquids, physically based mechanisms have long
been suggested to explain this process (reviewed in (2)).
From a physics perspective, cell populations (tissues) are
active, complex fluids. They are active because cell motility
is driven by ATP consumption and not by thermal energy.
They are complex because they exhibit elastic solid-like
behavior on short timescales and viscous liquid-like
behavior on long timescales (3). Examples of viscous
liquid-type behaviors are rounding of tissue pieces and
fusion of tissues upon contact (4). In liquids, both of these
processes are driven by surface tension. Accordingly, the
Differential Adhesion Hypothesis (DAH) proposed that
cell sorting is a direct consequence of differences in tissue
surface and interfacial tensions, similar to the breaking up
of an emulsion (5). When cells from two tissue types are
mixed and able to interact via cell adhesion, they will sort
according to their respective tissue surface tensions,
whereby the tissue with lower surface tension engulfs the
tissue with the higher surface tension (6). Molecularly, tis-
sue surface tensions were originally attributed to differences
in adhesion alone (7,8), but have since been shown to arise
from an interplay between cell adhesion and cortical tension
(9). Therefore, when we use DAH in this article, we use it to
mean this encompassing model, which is basically a fusion
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of the original DAH and the Differential Interfacial Tension
model or any tension-based models of tissue surface tension.

In the theoretical work of Glazier and Graner (10), a
Cellular Potts Model (CPM) was created to simulate the
behavior of single cells during cell sorting. They demon-
strated that differences in interfacial energies were sufficient
to drive the spontaneous sorting of two cell populations
(11,12). Since then, this and other models have been refined
to include other mechanisms such as coherent motion (13),
biochemical dynamics of adhesion molecules (14), or
chemotaxis (15). In all cases, differences in tissue surface
tensions drive sorting, but the resulting dynamics are
modified by these additional mechanisms. However, others
have shown that sorting can occur in the absence of differ-
ences in tissue surface tension. Such models mostly rely
on asymmetries of cell motility to explain sorting, either
from intrinsic differences between cell types (16) or from
differences in a cell’s immediate surroundings (17). How-
ever, there is disagreement on the rules regulating engulf-
ment for a mixture of two cell types with different
locomotion properties. Jones et al. (18) found that chick tis-
sues sorted so that the fastest moving tissue ended up on the
inside of a mixed cellular aggregate. In contrast, theoretical
work showed that when full sorting occurred, faster cells sur-
rounded slower ones and formed streams around them (16).

The freshwater cnidarian Hydra has frequently been used
for studies of cell sorting.Hydra is anatomically simple with
radial symmetry and two epithelial tissue layers, the
ectoderm and the endoderm. Hydra can be dissociated into
individual cells that, when reaggregated, can autonomously
regenerate whole animals (19). Cell sorting into a sphere-
within-a-sphere configuration, with an inner endoderm
and outer ectoderm, is the first step in this regeneration
process and a necessity for subsequent developmental
milestones—the formation of a hollow bilayered sphere,
symmetry breaking, and axis formation (19).

Differential surface tension was hypothesized to be key to
Hydra cell sorting. Support for this view came from centri-
fugation experiments, which showed that under similar cen-
tripetal forces, endodermal epithelial cells formed larger
aggregates than ectodermal epithelial cells, indicating that
endoderm has a higher tissue surface tension than ectoderm,
in agreement with the DAH (20). How these epithelial cells
adhere to each other is currently unknown. One cadherin-
like molecule has been reported in dissociated Hydra cells
(21), but no functional studies of specific adhesion mole-
cules exist.

Still, direct measurement of adhesion strength of epithe-
lial cell pairs using optical traps (22) found that adhesion be-
tween endodermal epithelial cells is stronger than adhesion
between ectodermal epithelial cells, in agreement with a
DAH-driven sorting process. However, the authors found
that heterotypic cell-cell interactions were the weakest of
all, in disagreement with the DAH framework, which re-
quires that the heterotypic interaction strength be intermedi-
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ate between the strongest (endoderm/endoderm) and
weakest (ectoderm/ectoderm) interactions. One possible
explanation for this discrepancy is time-dependent changes
in cell-cell interaction strengths. This idea was confirmed by
more recent work which found that cell sorting in Hydra ag-
gregates may have two phases: a short initial phase in which
homotypic cell interactions dominate and ectodermal-endo-
dermal interaction does not occur (23), and a second, longer
phase, in which ectodermal epithelial cells display a higher
affinity for endodermal epithelial cells than for themselves.
Because the aggregates investigated in this study were small
and nonviable, whether the existence of a short initial phase
is relevant for the sorting of large aggregates capable of
regenerating into polyps (103–104 cells) is unknown.

To test whether tissue surface tensions and adhesion dif-
ferences between ectoderm and endoderm were sufficient
to explain sorting or whether other parameters had to be
considered, other studies investigated single cell behaviors.
For example, Takaku et al. (24), studied the behavior of iso-
lated ectodermal or endodermal epithelial cells when put in
contact with a tissue sphere. They found that a single
ectodermal epithelial cell in contact with an endodermal
aggregate does not migrate into the aggregate, whereas a sin-
gle endodermal epithelial cell in contact with an ectodermal
aggregate does migrate to the interior. They interpreted these
findings as indicative of differences in cell motility, although
this behavior is also expected from the DAH. Additional
experiments were performed that seemed to reveal such dif-
ferences in motility. For example, they showed that epiboly,
the process by which an ectoderm aggregate spontaneously
engulfs an endoderm aggregate upon contact, depends on
the motility of endodermal but not ectodermal cells (24).
Furthermore, they found that in clusters of four cells (two
endodermal and two ectodermal), ectodermal homotypic
adhesion was more stable than endodermal homotypic adhe-
sion, seemingly in contradiction to the DAH (24). However,
as the stability of adhesion depends not only on its strength
but also on the activity of the adhering cells, and endodermal
cells were observed to be more actively motile, it is possible
that endoderm-endoderm adhesions only appeared weaker.
Finally, comparisons of experiments and CPM simulations
revealed discrepancies in the sorting dynamics: experimental
aggregates sorted much faster (19) than the simulated ones
(25). This posed questions as to how the observed fast sort-
ing dynamics could be achieved from differences in tissue
surface tensions alone without an additional driving force.

In summary, both theoretically and experimentally, the
existing data on Hydra cell sorting are insufficient to delin-
eate whether sorting is driven by one of the two proposed
classes of models or a combination of both. To definitely
determine the driving mechanism, single cell dynamics in
physiologically relevant, three-dimensional aggregates, as
well as measurements of tissue surface tensions, are needed.

Here, we perform these experiments and resolve this prob-
lem by using newly introduced transgenic Hydra (26) and a
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multiscale approach. We first focus on three-dimensional
mixed aggregates, large enough to regenerate into polyps,
and present quantitative data on the dynamics of sorting.
To determine whether differential surface tensions can drive
sorting, we performed rheological measurements of both
tissues’ mechanical properties, in particular of their surface
tensions. Next, we mapped single cell trajectories within
mixed aggregates to address whether the two cell types
possess intrinsically different motile properties. Finally, we
developed numerical simulations using the three-dimensional
CPM based on our experimental conditions, and compared
the in silico results to our experimental data. We find that
differences in tissue surface tensions are indeed sufficient
to reproduce all of our experimental data without any need
for differential motility. Moreover, we can explain the
observed fast sorting dynamics from the geometry of the
aggregate during the process.

Our work answers the long standing question of the
physical mechanism by which Hydra cell aggregates sort
into tissues. It also demonstrates the unique experimental
opportunities this organism provides. It is a system of choice
for deepening our understanding of the physical basis of
pattern formation and regeneration. In addition, a quantita-
tive comparison of experiments and simulations revealed
that the starting geometry of the mixed cell aggregate is a
key determinant of the sorting dynamics. To understand
cell sorting in other organisms and contexts, it is crucial
to revisit existing theoretical works and study, in a system-
atic way, the role of geometry on cell sorting, especially by
trying to mimic real experimental conditions.
MATERIALS AND METHODS

Hydra care

Mass cultures of the ‘‘watermelon’’ transgenic Hydra vulgaris line

(ectoderm GFP/endoderm DsRed2), the inverse watermelon line (ectoderm

DsRed2/endoderm GFP), Wnt-GFP (ectoderm DsRed2 expression and GFP

under the control of the Wnt3 promoter (27)), and AEP lines were used for

experiments. AEP is the strain fromwhich embryos are obtained for making

transgenic animals. Animals were kept in Hydra Medium (HM) composed

of 1 mMCaCl2 (Spectrum Chemical, Gardena, CA), 0.1 mMMgCl2 (Fisher

Scientific, Waltham, MA), 0.03 mM KNO3 (Fisher Scientific), 0.5 mM

NaHCO3 (Fisher Scientific), and 0.08 mM MgSO4 (Fisher Bioreagents,

Pittsburgh, PA), at a pH between 7 and 7.3, at 18�C in a Panasonic incu-

bator. Animals were cleaned daily using standard cleaning procedures

from (28). The Hydra were fed two to three times per week with newly

hatched Artemia (Brine Shrimp Direct, Ogden, UT). Animals used for

experiments were starved for at least 48 h.
Tissue separation

The protocol for separating the ectodermal layer from the endodermal

layer is based on (29), with some modifications. Animals were starved for

5–7 days before an experiment. About 10 Hydra were placed in 35 mm petri

dishes (CellTreat, Pepperell, MA) and cut, using a sterile scalpel (Surgical

Design, Lorton, VA), below the tentacles to remove the head and above

the budding zone to remove the peduncle and foot. The resulting body
columns were placed for �2.5 min in ice-cold HM solution, with the pH

adjusted to 2.5 using 2 M HCl, then transferred to Dissociation Medium

(DM) composed of 3.6 mMKCl (Research Products International, Mt. Pros-

pect, IL), 6 mM CaCl2 (Spectrum), 1.2 mM MgSO4 (Fisher Bioreagents),

6 mM sodium citrate (LabChem, Inc., Zelienople, PA), 6 mM sodium pyru-

vate (Alfa Aesar, Ward Hill, MA), 6 mM glucose (Sigma, St. Louis, MO),

12.5 mM TES (Sigma), 50 mg/mL rifampicin (Calbiochem, San Diego,

CA), at pH 6.9 at room temperature (RT), following (30). The dishes

containing the body columns in DM were sealed with tape and swirled to

promote separation of tissues. The success rate for separation of the tissue

layers was low, with only around 10% of body columns fully separating

and around 20% showing partial separation. In this latter case, ectoderm

and endoderm pieces would be manually cut free. After separation, samples

were further cut with a scalpel to yield pure pieces of either tissue type.
Cell aggregates

Aggregates were prepared essentially according to (19), with some

modifications. About 100 Hydra body columns from various lines

were prepared by cutting off the head and peduncle/foot and washed

three times with DM before a 1 h incubation in DM on ice. The body

columns were mechanically dissociated into a single cell suspension

with vigorous trituration using a P1000 pipette (Gilson, Middleton,

WI). The cells were centrifuged in an Allegra X-15R Centrifuge (Beck-

man Coulter, Brea, CA) at 4�C, 200 � g, for 5 min and washed twice

with ice cold DM. About 1 mL of cell suspension was made from 100

body columns by washing the pellet of single cells through an alcon

nylon 40 mm nylon mesh filter (Corning Incorporated, Corning, NY).

One hundred microliter aliquots of this cell suspension were placed in

separate wells of a 96-well V-shaped plate (Nunc, Roskilde, Denmark)

and the plate was centrifuged at 1000 � g for 5 min. Aggregates were

cultured in 100% DM for the first 4 h, after which 100 mL of HM

was added to each well leading to a 50:50 mix of HM and DM. At

24 h, the aggregates were transferred using Pasteur pipets to a solution

of 70:30 DM/HM. Finally, at 48 h, they were transferred to 100% HM

for the rest of regeneration. Throughout, aggregates were kept at

18�C. Imaging started 1 h after the aggregates were made by carefully

transferring them to 96-well flat-bottom plates (Nunc). The aggregates

were imaged every 2 to 5 min using GFP and RFP channels and

three-plane z-stack on an Olympus IX81 inverted microscope (Olympus

Corporation, Tokyo, Japan), using an ORCA-ER camera (Hamamatsu

Photonics, Hamamatsu, Japan) and Slidebook software version 5 (Intel-

ligent Imaging Innovations, Denver, CO).

By visually controlling cell density in the cell mix before centrifuga-

tion, we prepared aggregates of different initial sizes, ranging from 102

to 104 cells. Of note, only the largest of these (roughly over 103 cells)

fully regenerate, and we thus focused on these in our experimental

analysis.
Analysis of sorting dynamics

Two-channel z-stack images of aggregates were used for analysis to

measure boundary ratio and blob size. The z-stacks were first converted

to maximum intensity projection RGB image sequences in ImageJ (http://

imagej.nih.gov/ij/; National Institutes of Health, Bethesda, MD). Using a

semiautonomous MATLAB (The MathWorks, Natick, MA) script, the red

and green channels were normalized to each other based on each channel’s

average intensity. The normalized image was then segmented into three

regions (background, ectoderm, and endoderm) using the function k-means

(Fig. 1 B). We measured the ‘‘length’’ of the boundary between the

endoderm and the ectoderm by taking the sum of all the points between

the ectoderm and endoderm segments (length of the line separating gray

and white clusters in Fig. 1 B). This length is high at initial time points

as the frontier between the two domains is rugged and small at longer
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FIGURE 1 Dynamics of cell sorting. (A) Repre-

sentative still images of sorting of Hydra

watermelon aggregates capable of regeneration.

The reduction in radius is a signature of the

aggregate rounding up in three dimensions.

(B) Automated image analysis of the images in (A)

determining the positions of both tissues. The scale

bar represents 200mm. (C) Log-log plot of boundary

ratio as a function of normalized time for six repre-

sentative experiments. The dashed black line shows

the behavior of a power law with exponent �0.74.

(D) Log-log plot of normalized blob size as a func-

tion of normalized time for five representative exper-

iments. The dashed black line shows the behavior of

a power law with exponent 0.49. In (C) and (D), the

long-term behavior shows saturation of these mea-

surements and therefore deviation from power law

behavior. To see this figure in color, go online.
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timescales where the frontier has rounded up and smoothed to a circular

shape. The boundary ratio was defined as this length divided by the perim-

eter of the aggregate. Of note, we find this measurement to be directly pro-

portional to the sorting index used in other works. This index is calculated

as the fraction of neighboring cells which are of the opposite cell type, aver-

aged over all cells. On average, each cell will thus have a boundary length

equal to the mean sorting index times its contour length. Assuming that all

cells have similar sizes, the total boundary length will then be the average

boundary length per cell times the number of cells, which is thus also pro-

portional to the sorting index.

For blob size, we used a segmented image in which one tissue is as-

signed a value of þ1 and the other a value of �1, and the background is

set to zero. We then calculated this segmented image’s two-dimensional

Fourier transform Sð~kÞ. A typical frequency is extracted from this Four-

ier transform by calculating its weighted average. The typical blob size

is then taken to be the invert of that typical spatial frequency and is

written:

Blob size ¼
P

~k
jSð~kÞ j 2P

~k
jSð~kÞ j 2j~k j :

The blob size and boundary ratios from 17 aggregates were individually

linear fitted on a log-log plot to determine the power law exponent. The
blob size and boundary exponents were averaged over these 17 measure-

ments and their standard deviations calculated. For plotting purposes,

blob sizes and times were normalized by dividing them by their initial

values. Of note, this normalization does not alter the exponents that were

obtained.

To estimate volumes from two-dimensional imaging, the aggregates were

assumed to be ellipsoidal. We fitted an ellipse over the segmented image in

ImageJ and used its minor axis length for the width and girth and the major

axis as the length of the ellipsoid.
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The sorting time, the time it takes for the ectodermal and endodermal

cells to be completely separated (no ectodermal cells remain inside the

endoderm), was found by having two people individually watch the sorting

videos and manually record the time points when the aggregates became

sorted. We then averaged and calculated the standard deviation of the manu-

ally determined sorting times.
Micropipette aspiration

Tissue pieces were used immediately after they were cut from separated

tissue layers. Glass capillaries (model 1B100F-4; World Precision Instru-

ments, Sarasota, FL) were pulled into micro-pipettes using a horizontal

laser-based micropipette puller P-2000 (Sutter Instruments, Novato, CA).

The resulting micropipettes were manually cut to yield an opening of

�50 microns (smaller than tissue pieces but larger than a single epithelial

cell). Before the experiments, micropipettes were treated with Sigmacote

(Sigma) following the manufacturer’s protocol to make them nonadhesive.

They were then mounted on a needle holder attached to an M-152 microma-

nipulator (Narishige, Amityville, NY). The micropipette was connected by

hermetically sealed tubing to a plastic syringe used as a water reservoir, and

mounted on a stand allowing for manual variation of the syringe’s height.

Using the micromanipulator, the micropipette tip was put in contact with

the tissue piece before lowering the syringe’s level to apply negative

pressure. The aspiration of the tissue piece was imaged every 5–10 s under

a MZ16FA stereo microscope (Leica Microsystems, Wetzlar, Germany),

using a SPOT RT3 camera (Model 25.1; Diagnostics Instruments, Sterling

Heights, MI) controlled by SPOT Basic 5.1 software (Diagnostic Instru-

ments). For surface tension estimates, the radius of the tissue piece was

measured from the images in ImageJ as the square root of the projected

area divided by p. The radius of the micropipette was also measured using

ImageJ. The height difference between the water reservoir and the petri dish

containing the tissue piece was slowly manually increased until aspiration
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began. The height difference was recorded at that time and translated into a

critical pressure value according to

DPC ¼ rgDh;

where DPC is the critical pressure, r is the density of the medium, and Dh is

the height difference between the water reservoir and the petri dish.

This led to a surface tension estimate per tissue piece. The values

presented in the Results are averaged from 13 independent endoderm and

14 independent ectoderm pieces.

For viscosity estimates, the retracted length as a function of time was

manually measured in ImageJ and fit in MATLAB as an exponential func-

tion of the form að1� e�t=tÞ. a and t were fit parameters with

t ¼ 3ph

E
;

where E and h are the elastic modulus and viscosities, respectively. This led

to an estimate of the viscosity for each tissue piece. The values presented in

the Results are averaged from 10 independent endoderm and 9 independent

ectoderm pieces.
Fusion

The two tissue layers obtained by tissue separation were cut into smaller

pieces. Within 5 min postcutting, the two tissue pieces of interest were either

put into contact using the hanging drop technique described in (31) or manu-

ally brought in contact using hair pins. The fusion process was imaged every

minute either on an Olympus IX81 inverted microscope or using an EVOS

FL Auto Cell Imaging System (Thermo Fisher Scientific, Waltham, MA).
Rounding up

Pieces from either tissue were manually cut with sterile razor blades into

oblong shapes in DM and imaged every minute for 2–3 h under a Leica

MZ16FA stereo microscope. Using ImageJ, each piece was fitted to an

ellipse at each time point and the aspect ratio was computed as the ratio

of the long axis to the short one as a function of time. The dynamics

were then fit in MATLAB by an exponential decay function of the form

ae
�t
t þ b:

a, b, and t were fit parameters and the characteristic time t was taken to be

t ¼ ðhR=sÞ, with h the viscosity of the tissue, s its surface tension, and R

the radius of the tissue piece of interest (32). Radii were measured as the geo-

metric mean of the axes of the fitting ellipse at the final time point. Using vis-

cosity estimates from micropipette aspiration experiments, we measured the

surface tension of each tissue piece this way and the results presented are aver-

aged over 17 independent endoderm and 15 independent ectoderm pieces.
TABLE 1 Adhesion Energy Parameters

Tissues J

Endoderm/medium 300

Ectoderm/medium 200

Endoderm/endoderm 2

Endoderm/ectoderm 75

Ectoderm/ectoderm 100
Single cell dynamics

Aggregates containing 5% of their cells from watermelon animals and 95%

from AEP animals were prepared as described above. After 1 h in DM, they

were imaged on a Scientifica multiphoton imaging setup (Scientifica,

Uckfield, UK) coupled to a MaiTai ultrafast laser (Spectra Physics, Santa

Clara, CA) set to 980 nm through a 20� water immersion XLUMP PlanFL

objective (Olympus Corporation). Optical slices in both the RFP and GFP

channels were acquired at 3 micron-slices and averaged over six acquisi-

tions. This procedure was repeated every 5–10 min over 4–6 h.

Single cells were detected separately for each tissue using the 3d object

counter plugin in ImageJ and their center of mass at each time point

recorded. These data were analyzed in MATLAB by reconstructing single
cell trajectories using open source tracking algorithms (http://www.

mathworks.com/matlabcentral/fileexchange/42573-particle-point-analysis?

focused¼3791012&tab¼function). From these tracks, we calculated mean-

square displacements, speeds, and autocorrelation functions according to

the usual definitions. Directionality was measured as the ratio of the dis-

tance traveled between the first and last time points to the total distance

traveled in the same interval. Values reported here are averaged over all

trajectories for each cell type. The data presented in the Results are from

one representative experiment out of eight.

For center of mass corrections, we used mosaic aggregates containing 5%

of cells from HyWnt3 promoter::GFP animals allowing us to track ecto-

dermal cells in the RFP channel and 95% from AEP animals. During the

1 h period in DM, aggregates were stained with a Syto12 nuclear dye

(Thermo Fisher Scientific) diluted to 1:500 in DM. Aggregates were

washed twice in DM before imaging on the two-photon microscope. The

analysis was performed as described above. Center of mass was calculated

from the mean position of all detected nuclei at each time step and the

center of mass position was subtracted from both nuclei and ectodermal

cell positions. The corrected positions were then used to calculate mean-

square displacements.
Numerical simulations

We used the CompuCell3d (33) software to perform simulations of a CPM.

Details on how these simulations are performed can be found in the soft-

ware’s manual (available at: http://www.compucell3d.org/Manuals). In

our case, we used a Hamiltonian H composed of three contributions. The

first one modeled cell-cell contacts and was written as follows:

Hadhesion ¼
X

i;jneighbors

J
�
t
�
s
�
~i
��
; t
�
s
�
~j
���

� �
1� d

�
s
�
~i
�
; s
�
~j
���

;

where the summation applies over all pairs of adjacent pixels~i and~j, sð~i Þ is
the ID number of the cell occupying the pixel~i, tðsð~i ÞÞ is the identity

(endoderm, ectoderm, or medium) of that cell, and dðx; yÞ is the Kronecker
function. This formulation means that energy only applies to neighboring

pixels that belong to different cells and the energetic cost of that adhesion

depends on the identity of both cells involved. For the adhesion energies, we

used the parameters in Table 1.

The relative values of these parameters were chosen to fulfill the

following criteria: the adhesion energy between the two tissues has to be

intermediate between the two homotypic adhesion energies to account for

complete engulfment, and the effective surface tension of the endoderm

has to be double that of the ectoderm, in agreement with experiments.

The surface tension of one tissue was estimated as

stissue ¼ Jtissue=medium � Jtissue=tissue
2

:

The second contribution to the Hamiltonian was the limited compressibility

of cells, which means that they resist any deviation from a target volume,

leading to the following formulation:
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Hvolume ¼
X
s

lvolðVðsÞ � VtÞ2;

where the summation applies over all cells, lvol is the inverse compress-

ibility of the cells, VðsÞ is the volume of cell s, and Vt is the target volume.

In our simulations, we used the same compressibility for both cell types

with the following parameters: lvol ¼ 20 and Vt ¼ 64.

The last contribution represents the cell’s membrane tension. Numeri-

cally, this means that there is an energy penalty for the surface of each

cell if it deviates from a target value, leading to the following formulation:

Hsurface ¼
X
s

lsurfaceðSðsÞ � StÞ2

where the summation applies over all cells, lsurface is the inverse membrane

compressibility of the cells, SðsÞ is the surface of cell s, and St is the target
surface. In our simulations, we used the samemembrane compressibility for

both ectodermal and endodermal epithelial cells, with the following param-

eters: lsurface ¼ 5 and St ¼ 96.

Overall, the Hamiltonian controlling the dynamics was the sum of the

three contributions above. The activity of the cells was then represented

as a temperature parameter that allows them to overcome local energy

barriers to reach the energetically optimal situation. In our simulations,

the temperature was set to 1000, with the exception of our simulations of

differential motility that kept the same temperature for the endoderm but

used 500 for the ectoderm.

Simulations were initialized, in most cases, as rectangular random mix-

tures of cells (initialized as cubes with four pixel sides) from both cell types.

The width and length of the rectangles were kept equal and were varied

from 30 to 140 pixels whereas the thickness was kept at 12 pixels, except

for the data presented in Fig. S11. For sorting with spherical initial condi-

tions, we initiated the simulation as a randommixture of both cell types in a

sphere with a radius of 40 pixels. To simulate fusion, two spheres, in con-

tact, for a single tissue type were initiated with a radius of 22 pixels each.

For analysis, data were saved at intervals ranging from 2 to 30 simulation

steps depending on the system size. An image representing the horizontal

slice in the middle of the aggregate’s height was recorded and detailed

data on the identity of each pixel were saved. The horizontal slices were

used to calculate blob sizes and boundary lengths in the same way as

described in Analysis of Sorting Dynamics. The saved time series data

were used to reconstruct the three-dimensional dynamics of each cell’s

center of mass. For cell sorting, we ran triplicates of the simulations at

10 different sizes. For each size, one exponent for blob size and one for

boundary length were obtained by linear fitting their dynamics on a log-

log plot in MATLAB. The values reported are means of the values obtained

for the seven largest aggregate sizes leading to a total of 21 simulations. For

single cell dynamics, the data presented come from a single simulation at

the largest size studied, but which is representative of all simulations.
Immunohistochemistry

Aggregates from AEP animals were prepared as described above and fixed

at different time points in 4% paraformaldehyde in HM for 15 min at RT.

They were washed three times for 10 min each in phosphate-buffered saline

(PBS), and permeabilized for 5 min in PBS supplemented with 0.5% Triton

X-100 (Sigma). A blocking solution was prepared using 1% bovine serum

albumin (Fisher Bioreagents), 10% fetal bovine serum (Thermo Fisher

Scientific), and 0.1% Triton X-100 in PBS. Aggregates were blocked in

this solution for 2 h at RT. The samples were incubated in anti-Hydra

laminin, mAb 52 antibody (34), diluted to 1:200 in the blocking solution,

overnight at 4�C. Negative controls were performed by omitting the

primary antibody and using blocking solution alone. Next, samples were

washed six to eight times in PBS at RT over the course of 3–5 h, before
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incubating overnight in a 1:500 dilution, in blocking solution, of an anti-

mouse horseradish peroxidase secondary antibody (Enzo Life Sciences,

Farmingdale, NY). The next day, samples were again extensively washed

in PBS before a 1 h incubation in PBT (1:2000 Tween [Sigma] and 0.2%

bovine serum albumin in PBS). Detection of the horseradish peroxidase

secondary antibody was performed in PBT supplemented with 1:10000

H2O2 (Avantor, Central Valley, PA) and 1:1000 N-hydroxysuccinimide-

fluorescein (Thermo Fisher Scientific) for 30 min. Samples were washed

multiple times at RT and incubated overnight at 4�C in PBS. Samples

were imaged on an Olympus IX81 inverted microscope. The resulting

images were analyzed by measuring the averaged signal intensity in the

middle of the aggregate. This value was normalized by the same measure-

ment performed on the negative controls. Results from four different exper-

iments were averaged and their standard deviation calculated.
Centripetal aggregations

Endoderm and ectoderm tissue pieces were dissociated into single cell

suspensions in the same manner as used for the preparation of cell aggre-

gates. Cell concentrations were measured using a Brightline hemacytom-

eter (Sigma) and equalized by adding DM to the most concentrated cell

suspension. We placed 800 mL of these suspensions in the wells of a

24-well plate (Genesee Scientific, San Diego, CA) on a DS-500E rotary

shaker (VWR International, Radnor, PA) for 30 min at 75 Rpm. The

resulting aggregates were then imaged under a Leica MZ16FA stereo

microscope. Images were analyzed in ImageJ to extract the projected

area of each resulting aggregate.
RESULTS

A natural starting point for distinguishing between the most
prominent explanations of cell sorting in Hydra, i.e., differ-
ential tissue surface tension versus differential motility, is to
perform measurements on the dynamics of cell sorting.
Then, as the mechanisms driving sorting in these models
are either based on tissue rheological properties or single
cell motility, we quantitatively assessed these two aspects.
Dynamics of cell sorting in Hydra aggregates

All models of Hydra cell sorting predict that the two
initially mixed cell populations spontaneously separate,
with ectoderm engulfing endoderm. The dynamics of sort-
ing, however, depend on the model driving forces and their
analysis could therefore possibly enable a distinction
between the two proposed types of explanation. To test
this, we prepared aggregates from transgenic Hydra in
which the two epithelial layers express different fluorescent
proteins. As expected, the aggregates initially showed a
random mixture of both cell types (Fig. 1 A) and were
disk-shaped, because cells are aggregated via centrifugation
(see Materials and Methods). Over the course of 4–10 h, the
two cell populations spontaneously separated and the disk-
shaped aggregate rounded up into a solid sphere (Movie
S1). The ectodermal cells moved toward the outside of the
aggregate whereas the endodermal cells moved toward the
center, leading to a sphere-within-a-sphere configuration.
Once sorting was complete, the aggregates ejected excess
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cells as they transitioned into a hollow bilayer epithelial
sphere. The bilayer sphere eventually broke symmetry and
regenerated into an adult polyp (Fig. S1). Hydra cell aggre-
gates are therefore a true in vivo system, despite their
apparent simplicity. Indeed, regeneration from aggregates
occurs even in epithelial Hydra that have been reduced to
ectoderm and endoderm through removal of the interstitial
cell lineage (35). Interstitial stem cells and their progeny
thus do not significantly alter cell sorting and the system
can be treated as a two-component mixture. The other
potentially important player in cell sorting is the extracel-
lular matrix (ECM) (36), which separates the two epithelial
tissues in the intact animal. However, using antibody stain-
ing we verified that laminin, a major component of Hydra
ECM, did not seem to be synthesized at significant levels
during the timescale of cell sorting (Fig. S2), in agreement
with previous reports (37). Thus, sorting does not appear
to depend on the presence of ECM.

To allow for a direct comparison of our experimental
results with existing theoretical models and predictions,
we focused on measuring quantities that are commonly
used in the cell sorting field. One such quantity is the sorting
index, which measures the average fraction of neighboring
cells that are of the opposite type. In an evenly mixed aggre-
gate, the initial value of the sorting index is 0.5. The index
decreases as sorting proceeds and saturates at a value that
depends on the system size. The sorting index is difficult
to measure experimentally as it requires knowledge of the
position, neighbors, and identity of all cells within an aggre-
gate. However, the sorting index is directly proportional to
the length of the boundary (see Materials and Methods) be-
tween the tissues and therefore follows the same functional
form. With the exception of a more complex model taking
into account the biochemical dynamics of adhesion proteins
(14), this decrease follows a power law for models based on
either DAH or differences in motility. The exponents, how-
ever, vary depending on the details of the model such as the
ratio of cells from both types (38) or the differences in
motility built into the model (17).

Using automated image analysis (Fig. 1 B), we measured
the length of the boundary between endoderm and ectoderm
as a function of time (see Materials and Methods). The
boundary length’s decrease seems to follow a power law
(Fig. 1 C) with exponent �0.74 5 0.24 (mean 5 SD,
n ¼ 17, Fig. S2). This exponent is significantly higher
than those reported in various theoretical works, which
ranged from �0.025 to �0.33 (13,16,17,38), implying that
the observed sorting is faster than previously suggested.
We present a more detailed analysis and explanation of
this result in the Discussion.

Another quantity used in the cell sorting field is the typical
blob (cluster) size of both tissues as a function of time. The
definition of the typical blob size varies from one study to the
next. Because this measure is also commonly used in the
study of phase separation through spinodal decomposition
(39), we chose here to use the same definition (see Materials
and Methods). This allowed us to directly compare our dy-
namics to a purely physical situation. This definition also
presents the advantage of measuring a single blob size for
both tissues instead of having two quantities to characterize
the dynamics. The blob size is linked to the total sorting
time, as sorting is complete once the typical blob size rea-
ches a value comparable to the system size.

We found that the typical blob size seems to increase as a
power law (Fig. 1D), with an exponent of 0.495 0.24 (mean
5 SD, n ¼ 17, Fig. S3). Again, this implies faster sorting
than previously reported (11,13,38). Of note, scaling rules
imply that blob size and boundary ratio should have equal ex-
ponents of opposite sign. Our mean values are quite different
(0.74 vs. 0.49), but still within experimental uncertainties of
each other. The real exponent is likely intermediate between
these values. In addition, the analysis of the sorting dynamics
and the span of data is limited by the intrinsic timescales of
the sorting process. The power law behavior of these quanti-
ties can thus be questioned (Fig. S3). However, the precise
functional form of these dynamics does not change our obser-
vation that sorting is faster than previously published results.

In summary, although studying cell sorting dynamics is
instructive, it was insufficient to distinguish between sorting
mechanisms. Indeed, different models make predictions on
the dynamics of sorting that are quite similar to one another.
In particular, although we observe power law behaviors as
predicted by most models, our experimentally determined
exponents are significantly larger than any previously pub-
lished values; we therefore cannot draw conclusions on
the sorting mechanism from these experiments alone.

However, because the different models for cell sorting
also make assumptions and predictions regarding the
properties of each tissue separately and/or on the behavior
of single cells within aggregates, we performed experiments
at these scales to further probe the possible mechanisms
explaining cell sorting.
Physical behavior of separated tissues

The DAH is based on the assumption that each tissue be-
haves like a liquid on long timescales. Sorting is then driven
by the effective interfacial and surface tensions of the two
tissues. Cells, like liquid molecules, have a lower contact
free energy with each other than with the medium. Cellular
rearrangements thus tend to minimize the tissue’s contact
area with the medium, which is similar to the effect of sur-
face tension in liquids (3,40).

For full sorting and engulfment to occur, these rheolog-
ical quantities need to obey the following inequality (6):

sendo > secto þ gendo=ecto;

where s represents the tissue’s surface tensions and
gendo=ecto represents their interfacial tension.
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DAH thus predicts that each tissue flows on long time-
scales and that the effective surface tension of endoderm
is higher than that of ectoderm. Because these questions
have to be addressed for each tissue separately, this requires
their physical separation. To do so, we adapted previously
published protocols (29) (see Materials and Methods) to
chemically dissolve the ECM, which leads to the physical
separation of the tissues.

Using this separation method, we obtained tissue pieces
containing only one of the two epithelial cell types, and
then observed their long-term behaviors. Tissue pieces
rounded up (Movie S2) and fused (Movie S3) on time-
scales of minutes to a few hours, thus demonstrating
liquid behavior. This justifies the use of concepts such
as surface tension and viscosity. To determine both of
these quantities, we used micro-aspiration experiments
(Fig. 2, A–C; Movie S4), in which tissue pieces are
aspirated into a micropipette using negative pressure.
The pressure needed to initiate aspiration is directly
related to the surface tension of the tissue of interest
(41) according to
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DPC ¼ 2s

�
1

Rp

� 1

R

�
;

where DPC is the critical pressure required to trigger
aspiration, s is the surface tension, Rp is the radius of the
micropipette, and R is that of the tissue piece.

We estimated surface tensions this way and found the sur-
face tension of endoderm to be higher than that of ectoderm
(Fig. 2 B; Table S1), in agreement with the DAH (13.4 5
1.1 and 9.1 5 0.7 dyn/cm, respectively, mean 5 SE;
n ¼ 13 and 14, respectively). In addition, the first phase of
aspiration (Fig. 2 C) is dominated by the visco-elastic
response of the tissues, leading to an exponential relaxation.
The characteristic time of this relaxation t is given by (41)

t ¼ 3ph

E
;

where E and h are the elastic modulus and viscosities,
respectively. Using previous measurements of the elastic
FIGURE 2 Rheology of individual tissues. (A)

Still sequence of micro-aspiration experiment per-

formed on an endoderm tissue piece. (B) Quantifica-

tion of surface tensions from micro-aspiration

experiments. The bars show mean 5 SE; n ¼ 13

and 14 for endoderm and ectoderm, respectively.

(C) Sample quantification of aspirated length of an

endoderm piece as a function of time showing a short

viscoelastic phase used to estimate viscosity, and a

long linear phase. The dashed line corresponds to a

numerical fit of the data using a short term exponen-

tial decay and a long term linear phase as described

in the Materials and Methods, in accordance with

theoretical models of microaspiration. (D) Still

sequence of rounding up experiment on an ectoderm

tissue piece. (E) Quantification of aspect ratio as a

function of time of the experiment shown in (D),

the dashed line represents an exponential fit to the

data in black. (F) Quantification of surface tensions

from rounding up experiments. The bars show

mean 5 SE; n ¼ 17 and 15 for endoderm and

ectoderm, respectively. To see this figure in color,

go online.
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moduli with parallel plate compression (42), we found the
viscosities of endoderm and ectoderm to be 3.7 5 0.7 104

and 4.8 5 0.6 104 Pa, respectively (mean 5 SE; n ¼ 10
and 9, respectively; Table S1), similar to measurements
performed on other cell aggregates including from chicken
embryonic cells (3) and mouse sarcoma cells (41,43).

The viscosity estimates can further be used to indepen-
dently determine tissue surface tensions from rounding up
experiments, because this behavior is driven by surface
tension and slowed by viscosity. Similar to what has been
reported for other cellular aggregates (32), the dynamics
of a Hydra tissue piece rounding up, measured as the
decrease of the piece’s aspect ratio over time, was exponen-
tial (Fig. 2 E). The characteristic time t of this exponential
relaxation is given by

t ¼ A
hR

s
;

where R is the radius of the tissue piece and A is a numerical
prefactor that depends on geometry. This numerical prefac-
tor has been estimated to be on the order of 0.95 in different
circumstances (44), but is unknown in our case. Because we
are primarily interested in the relative differences between
the surface tensions of both tissues, knowledge of this
prefactor is not crucial. Using the viscosity measurements
obtained by micro-aspiration, we found a higher surface
tension for endoderm when compared to ectoderm (3.3 5
0.6 and 1.5 5 0.2 dyn/cm, respectively, mean 5 SE;
n ¼ 17 and 15, respectively) (Fig. 2 F; Table S1). We attri-
bute the difference of these absolute values from the micro-
aspiration results to the undetermined prefactor in rounding.
The relative differences in surface tensions obtained through
both methods are of the same order, although not exactly
similar. This difference in relative measurements are likely
due to experimental imprecisions and the large variability
we observed in the samples.

In principle, fusion experiments could be similarly used
to estimate surface tension. However, although endoderm
tissue pieces readily fused (Movie S5), ectoderm pieces
fused rarely and only if freshly cut surfaces were brought
into contact (Movie S5). We attribute these different be-
haviors to the polarity of ectoderm pieces, which was pre-
viously reported (24). Because of polarization, cells in
contact with the outside medium may lack adhesion mol-
ecules facing out and thus are unable to fuse with a neigh-
boring piece. This lack of boundary cell-cell interaction
would have no effect on rounding up and micro-aspira-
tion, and little effect on cell sorting, because polarization
would only happen once ectodermal cells reach the
aggregate boundary. Thus, although polarization can be
neglected in these other experiments, it dominates ecto-
derm behavior during fusion and complicates estimates
of tissue surface tensions from fusion experiments.
Furthermore, it has been reported that ectodermal cells
form an outer cuticle made of glycoproteins when in con-
tact with the outside medium (45). The purpose of this
cuticle in the adult animal is still debated, but it most
likely serves as a protecting layer for ectodermal cells.
It could also be important in regulating osmotic pressure
and/or the composition of the Hydra surface microbiome
(45). The cuticle could prevent the adhesion between
two different tissue pieces and thus explain the lack of
fusion observed in our experiments without having a sig-
nificant effect on sorting dynamics.

Finally, we repeated a qualitative experiment previously
performed by Technau and Holstein (20). We showed that
under similar aggregating forces and at similar cell
densities, endodermal cells made larger aggregates than
ectodermal ones, a signature of their higher cohesiveness
(Fig. S4), in agreement with experiments performed at the
single cell level (22).

Overall, we demonstrated that both tissues show liquid-
like behaviors on long timescales (rounding up, flowing),
and that the endoderm has a higher surface tension than
the ectoderm. The difference is high enough to explain
cell sorting (6). Our estimates of tissue viscosities and
surface tensions are in good agreement with previously pub-
lished values on aggregates of embryonic tissues from
chicken (3,6,40) or zebrafish (4), which were all on the order
of 104–105 Pa for viscosities and 1–30 dyn/cm for surface
tensions. Together these results demonstrate that differential
surface tension plays an important role during cell sorting in
Hydra aggregates.
Single cell dynamics during sorting

Our results show that differences in surface tension can
drive cell sorting, but they do not exclude the involvement
of other mechanisms such as differences in cell motility. To
evaluate whether differential cell motility plays a role in
cell sorting in Hydra aggregates, we tracked individual
cells during the sorting process. To achieve single cell
tracking within the aggregates, we prepared aggregates in
which 5% of the cells were transgenic, expressing a fluo-
rescent protein. These aggregates were analyzed using three
dimensional two-photon time-lapse imaging. From the
resulting videos, we reconstructed single cell trajectories
for both tissues, in the first 4–6 h of sorting (Fig. 3 A).
We found cell speeds to be on the order of 50 mm/h, con-
stant throughout this time window, and comparable for
both cell types (Fig. 3 B). The mean-square displacements
(MSDs) of both cell types were weakly super-diffusive (po-
wer law with exponent of 1.3–1.4), and again, similar
(Fig. 3 C). This indicates that cell motion was mostly
random and thus that directed cell motility does not play
a role in cell sorting. This is further demonstrated by the
fact that cell directionality was also similar for both cell
types, despite their differing final positions (inside versus
outside) (Fig. 3 D). These results held true for all of the
Biophysical Journal 113, 2827–2841, December 19, 2017 2835



FIGURE 3 Single cell dynamics. (A) Recon-

structed cell tracks from two-photon imaging

color-coded by time. Axes are in microns.

(B) Quantification of mean speeds of both cell

types from one representative experiment. (C)

Log-log plot of MSDs in the same experiment.

The black dashed line shows the behavior of a

power law with an exponent of one, i.e., purely

diffusive motion. This shows that cell motion is

slightly super-diffusive. A linear fit yields diffusion

constants of 564 5 63 and 657 5 23 mm2/h (best

fit 5 95% confidence interval) for endoderm and

ectoderm, respectively. (D) Quantification of direc-

tionality from the same representative experiment.

Directionality is averaged over all traceable cells

and the bars represent mean 5 SD (n ¼ 20 and

17 for endoderm and ectoderm, respectively;

p > 0.05). To see this figure in color, go online.
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experiments that were analyzed (n ¼ 9). Quantitatively,
the MSDs yielded diffusion coefficients on the order of
a few hundred microns squared per hour, the same order
of magnitude as was reported for two-dimensional Hydra
aggregates (46). Finally, we found no differences in
speed distributions and velocity autocorrelation functions
between ectodermal and endodermal cells (Fig. S5). The
velocity autocorrelation functions showed a rapid expo-
nential decrease (on the order of a single experimental
time step), which shows that any persistence of single
cell motion can be neglected for both tissues, in our
experiments.

Of note, we observed a general vertical trend in the
displacement of the cells, which is explained by the fact
that aggregates start in a mostly flat state and round up
as they sort. To test if our results were dominated by the
global motion of the aggregate, we performed experiments
where all nuclei were stained to correct for this global mo-
tion and obtained similar results (Fig. S6). This shows that,
although important, the global motion of the aggregate
does not impact our conclusions. The main difference
was that center-of-mass, motion-corrected MSDs were
basically linear (Fig. S6), implying that the coherent
component of the cell motion is due to rounding up and
not cell sorting, again in agreement with experiments per-
formed in two dimensions (47). Finally, these corrected
MSDs no longer showed the increasing trend at long times
visible in Fig. 3 C. This illustrates that this effect is due to
the rounding up of the aggregates and is not a signature of
cell sorting.

In summary, our data at the single cell level do not reveal
any intrinsic motility differences between the two cell types.
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This implies that differential motility does not play a role in
cell sorting in Hydra aggregates.
DAH-based numerical simulations of cell sorting

Because our experiments showed that differential surface
tension governs cell sorting without differential motility
playing a significant role, we used numerical simulations
to probe the effects of both mechanisms and test their ability
to reproduce our experimental data. We applied a CPM to
simulate cell sorting using the freely available Compu-
Cell3d software (http://www.compucell3d.org/) (33). The
simulations are based on differential adhesive forces be-
tween pairs of cells depending on their identities. Individual
cells tend to keep their volumes (finite compressibility) and
their surface area (finite deformations). To mimic our exper-
iments as closely as possible, simulations were run in three
dimensions using various numbers of cells. Initially the ag-
gregates were in a flat configuration with a thickness of three
cells and the long sides were varied from 7.5 to 35 cells
(Fig. 4 A), leading to a total number of cells ranging from
a hundred to several thousand. Although the largest simu-
lated aggregates were smaller than the largest aggregates
in the experiments (on the order of 104 cells), they were
large enough to model aggregates capable of regeneration.
In addition, we tuned the adhesion parameters to obtain a
surface tension twice as high for the endoderm as for the
ectoderm (see Materials and Methods), the same order of
magnitude found in our experimental measurements.

As expected, we found that these features were sufficient
to drive both cell sorting (Fig. 4 A; Movie S6) and the round-
ing up of the aggregate observed in experiments (Fig. 1 A).

http://www.compucell3d.org/


FIGURE 4 DAH-based numerical simulations.

(A) Still sequence of themiddle slice in a simulation.

Endodermal cells are shown in magenta (online) and

ectodermal cells are shown in green (online). Stills

are shown at 0, 300, 800, and 2000 simulation steps.

(B) Measurement of speeds over time for a represen-

tative simulation at the largest size. (C) Log-log plot

of the MSD of the same simulation as in (B). The

black dashed line shows the behavior of a power

law with an exponent of one or diffusive behavior.

A linear fit yields diffusion constants of 0.084 5

0.004 pixel2/simulation step and 0.07 5 0.004

pixel2/simulation step (best fit 5 95% confidence

interval). (D) Quantification of directionality from

the same representative simulation. Directionality

is averaged over all cells and the bars represent

mean 5 SD (n ¼ 1837 for both tissues) (E) Log-

log plot of boundary length as a function of time

for five different initial sizes. Each plot represents

the mean of three independent simulations. The

dashed black line shows the behavior of a power

law with exponent �0.55. (F) Log-log plot of blob

size as a function of time for 10 different initial

sizes. Each plot represents the mean of three inde-

pendent simulations. The dashed black line shows

the behavior of a power law with exponent 0.59.

For (E) and (F), the sizes are given as number of

pixels in the long side of the flat aggregates. To

see this figure in color, go online.
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Regarding single cell dynamics, both cell types showed
similarmotility behaviors as shownby their respective speeds,
MSDs, or directionality (Fig. 4, B–D). We found the MSDs
to be slightly super-diffusive (exponent of 1.2–1.3), in agree-
ment with our experimental results (Fig. 3 C). As in our
experiments, we found that the velocity autocorrelation
functions (Fig. S5) rapidly decay to zero. This shows that
in the simulations, as in experiments, persistence of
motion does not play a key role in the sorting dynamics.

To quantitatively reconcile length scales between
simulations and experiments, we used typical cell sizes
(four pixels in simulations and 20 microns in experiments).
In simulations, as in experiments, we found that individual
cell speeds were constant and similar for both tissues. We
thus decided to equalize the speeds, which led to each
simulation step being on the order of 10 s. This, in turn,
led to sorting times ranging from 1 to 10 h, in agreement
with experimental observations (Fig. S7).

For aggregate-scale dynamics in the simulations, we found
that both the length of the boundary between the two tissues
(Fig. 4 E) and the typical blob size (Fig. 4 F) followed power
laws. For larger aggregates, these exponents were indepen-
dent of size (Fig. S8). The boundary length decreased
as the power �0.55 5 0.11 of time, whereas the blob
size increased as the power 0.59 5 0.03 (mean 5 SD,
n ¼ 21 simulations at seven different initial sizes). These
values are both within the error ranges we obtained in the
experiments.
Finally, our model also correctly reproduced the fluid-like
behavior of separated tissues as shown by simulations of
fusion (Movie S7) and engulfment (Movie S8). Taken
together, these results demonstrate that a numerical simula-
tion based solely on DAH, reproducing the geometry of our
experiments and with model parameters partly coming from
experimental measurements (see Materials and Methods)
was sufficient to reproduce the data we obtained at different
scales. Therefore, we conclude that DAH is sufficient to
explain cell sorting in three-dimensional Hydra aggregates.

It is possible, however, that differential cell motility acts
in addition to differential interfacial tensions and speeds up
sorting. To test the effect of adding differential motility, we
ran simulations including both mechanisms by separately
tuning the effective temperatures of both tissues. Clearly,
cellular processes are not driven by thermal fluctuations,
but temperature here is a measure of the activity of cell ex-
tensions and thus models cell activity and motility. In accor-
dance with previously published data suggesting that sorting
might be driven by the activity of endodermal epithelial
cells only (24), we decreased the effective temperature of
ectodermal cells by a factor of two and measured the
dynamics. We found that the aggregate-scale dynamics
(rounding up, blob size, and boundary length) were indeed
accelerated slightly by this change (Fig. S9). However, as
expected, this change induced a clear difference in cell
speeds between the two tissues, with the endodermal cells
being faster than ectodermal ones (Fig. S9). This is in
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contradiction to our experimental results from single cell
tracking experiments (Fig. 3). In addition, models of cell
sorting based on differential motility evolve to a final
configuration in which islands of slow-moving cells are sur-
rounded by coherent streams of motile ones (16,48). The
final state we obtained during cell sorting does not corre-
spond to an internal stream of endodermal cells and passive
ectoderm. Indeed, we find no clear decrease in cell speeds as
sorting proceeds (Fig. 3 B). These results, in our opinion,
clearly negate any significant role for differences in cell
motility in the process of cell sorting in Hydra aggregates.
DISCUSSION

Relevance of the Hydra aggregate model

Hydra‘s self-organizing properties during regeneration from
cell aggregates renders it a powerful system for the in vivo
study of pattern formation. One could argue, however, that
this dissociation-reaggregation ofHydra cells does not occur
naturally and thus is not relevant to normal biology. How-
ever, the phenomenon yields normal Hydra polyps and
thus provides insights into the physical principles that
govern cell behavior in an in vivo setting. Moreover, the
Hydra aggregate system allows precise analysis of the auton-
omous properties of cells that contribute to the formation of
multicellular structures. This is particularly relevant to our
understanding of how multicellularity evolved in animals.

Although this work focused on the physical mechanisms
driving cell sorting in Hydra aggregates, future work will
need to dissect the underlying molecular machinery that
gives rise to the observed surface tension differences.
Importance of geometry

Our quantitative analysis of cell sorting dynamics revealed
that sorting in Hydra aggregates is faster than published
theoretical predictions. In addition, our results disagree
with previous work claiming that full sorting is not observed
in Hydra aggregates, that sorting slows down logarithmi-
cally, and that sorting could take as long as 100 h (10,11).
The largest aggregates used in our study achieved full sorting
in 6–10 h (Fig. 1 A; Fig. S7) before forming a central cavity.
Moreover, we only observed partial sorting on shorter time-
scales and for the largest aggregates studied. Quantitatively,
the speed of sorting is reflected by the exponents controlling
the dynamics of blob sizes and boundary lengths.

For blob size, our value of 0.49 5 0.24 is higher than the
result reported by Nakajima and Ishihara (38) (1/3) and
Belmonte et al. (13) (0.28). Both articles use the DAH
model to explain sorting in two dimensions but differ
from our experiments in some key aspects. In particular,
Nakajima and Ishihara (38) use periodic boundary condi-
tions in two dimensions, making any effect of the outside
medium irrelevant, and Belmonte et al. (13) use a modified
2838 Biophysical Journal 113, 2827–2841, December 19, 2017
Vicsek model in two dimensions, in which the ectodermal
cells outnumber the endodermal cells three to one.

Similarly, models of sorting driven by differences in cell
motility that are either intrinsic (16) or dependent on the
cells’ local environment (17) have found slower dynamics
than we observed (exponents of �0.22 and �0.17,
respectively). Here, too, the underlying models differ from
our experiments: Beatrici and Brunnet (16) also used a modi-
fied Vicsek model in two dimensions in which both cell types
have fixed velocities, one cell type being four times faster
than the other one, which is not the case in our experimental
data. Of note, the authors of this work only predicted full
sorting in the case where faster cells largely outnumbered
slower ones, and their final configuration was the opposite
of what was shown experimentally in (18). Finally,
Strandkvist et al. (17) also used two-dimensional simulations
with periodic boundary conditions and tuned the difference
in cell motilities to be from 8-fold to 64-fold, two major
differences from our experimental setup and observations.

We attribute this difference in dynamics to the specific
initial conditions used in our experiments and simulations,
i.e., a three-dimensional flat configuration. The equivalent
configuration in two dimensions would be a thin line which,
to our knowledge, has never been investigated. In addition,
it has been shown that dimensionality by itself has a pro-
found effect on the mechanisms of sorting (49). Although
sorting in two dimensions was found to rely solely on cyto-
skeletal fluctuations, hydrodynamic instabilities can also
play a role in three dimensions (49).

Because we (Fig. 3 C) and others (46) have established
that cell motion is mostly random during Hydra cell sorting,
the distance that an ectodermal cell has to travel to get in
contact with the outside medium is greatly reduced in a
flat geometry. Of note, rounding up of the initially flat
aggregates took longer than cell sorting, as observed in
experiments (Figs. 1 A and 4 A). This implies that this effect
of geometry applied throughout the sorting process. To
further probe this, we ran simulations modifying the initial
geometry of the aggregates to make them spherical.

This change in geometry induced only partial sorting on
timescales in which comparably sized, flat aggregates would
fully sort. This result is in agreement with previous results
obtained from simulations of DAH in two dimensions from
circular initial conditions (10), the direct equivalent of the ge-
ometry tested here. Quantitatively, we found that changing
the initial geometry decreased the exponent of blob size in-
crease to 0.19 (Fig. S10), a value closer to the theoretical pre-
dictions discussed above. Of note, these simulations also
showed that the MSDs of both cell types were then diffusive
(Fig. S10), further confirming that the coherent component of
motion observed both in our experiments and simulations
stems from the rounding up of the aggregates.

Finally, to confirm the important role of the initial
geometry, we also varied the initial thickness of the square
aggregates from three cell sizes to seven and observed the
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effect of this change on sorting dynamics (Fig. S11). We
indeed found that the thicker the initial aggregate, the slower
the sorting, further supporting our hypothesis regarding the
role of the initial geometry on sorting dynamics.
Distinguishing between models of cell sorting

We have shown through our simulations that differential sur-
face tension is sufficient to recapitulate our experimental
data on both the dynamics of sorting and the behavior of sin-
gle cells. Furthermore, we have incorporated differential
motility into the simulations in the form of different temper-
atures to test whether differences in motility acted in combi-
nation with differential surface tension to drive Hydra cell
sorting. We incorporated differential motility in the simula-
tion by varying the temperature of the two cell types. Of
note, it has been demonstrated experimentally that the mo-
tion of retinal cells from chick embryos during sorting
was properly captured by the CPM in which temperature
models membrane fluctuations (50). Varying temperature
separately for both tissues is thus a proper way of modeling
intrinsic differences in cell activity and motility. As a result,
in these simulations we observed differences in single cell
behavior that we did not observe in the experimental data.
Therefore, we conclude that differences in motility do not
play a dominant role in Hydra cell sorting.

One possibly important process that we could not test with
our experimental arrangement is the effect of the local envi-
ronment on the motility of the cells, i.e., how do cells adjust
their motility to the identity of their neighbors? This has
been shown to suffice to drive sorting (17) and has been
observed experimentally. Rieu et al. (46,47) quantified the
motility of endodermal cells in Hydra cell aggregates of
different compositions: pure endoderm, pure ectoderm, and
evenly mixed. Overall, their results show that cells move
in a mostly random fashion and are most mobile in a purely
ectodermal environment. However, differences in motility in
response to a cell’s immediate surrounding are expected
from the DAH, and intrinsic differences in motility are not
required. Indeed, in a purely endodermal cell aggregate,
cell adhesions are expected to be stronger and thus cell
motion to be more limited. We therefore believe that this
aspect does not contradict our results.

In the model proposed by Strandkvist et al. (17), cells
react to their environment by changing their persistence
time of motion. Persistence can thus also drive cell sorting.
We have not studied that aspect here because our experi-
mental data do not reveal any role for persistent motion in
cell sorting, but such an effect could be implemented in a
CPM (51) and its effect studied.
CONCLUSIONS

Our multiscale, interdisciplinary approach has answered a
long-standing question regarding the mechanisms driving
cell sorting in Hydra regeneration. We found that 1) differ-
ences in interfacial tensions between the tissues drive
sorting, and 2) there are no intrinsic differences in cell
motility between cell types. Our results thus rule out
differential motility as a significant contributor to Hydra
cell sorting. We confirmed our experimental results using
numerical simulations and unexpectedly found that the
initial geometry of the system is an important determinant
of its sorting dynamics. We propose that this geometrical
effect is the reason why our experimental power law
exponents disagree with previously published theoretical
values. Quite naturally, these previous studies have focused
on the most common geometries and boundary conditions
(in two dimensions: periodic boundary conditions with no
edges or circular geometries), whereas our three-dimen-
sional Hydra aggregates start from a flat configuration and
round up as sorting occurs. In light of these results, we sug-
gest that it may be worthwhile revisiting prior theoretical
works on cell sorting in other systems and, going forward,
simulate new experiments of cell sorting using the same
geometrical arrangement that occurs in experiments.

Finally, as the importance of studying physical driving
forces in the context of embryonic development is
increasingly recognized, our work demonstrates that a
similar approach is equally fruitful in studying regeneration,
which is an exciting field waiting to be explored in more
depth using physical and biomechanical approaches.
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Supplementary movies 

Movie S1.Time lapse imaging of sorting of a watermelon aggregate. The ectoderm is shown in green 
and the endoderm in magenta. The change in projected area is a signature of rounding up which 
occurs on a longer time scale than cell sorting. 

Movie S2. Representative rounding up experiment on an endoderm tissue piece. 

Movie S3. Long term fusion of two endoderm tissue pieces. 

Movie S4. Long term behavior of an aspirated endoderm tissue piece. 

Movie S5. Comparison of fusion success rate between endoderm and ectoderm tissue pieces in 
similar conditions. 

Movie S6. Representative sorting simulation. A 2d slice in the middle of the aggregate and a 3d view 
are shown side by side. Axes are in pixels. 

Movie S7. 3d views of simulations of fusion of two pieces of the same cell type, axes in pixels. 

Movie S8. View of a 2d slice of a simulation showing the engulfment of an endoderm tissue piece by 
an ectoderm one. Axes in pixels. 

Figure S1. Image sequence of a watermelon aggregate all the way to full regeneration. Scales bars: 
200µm except in the last panel where it is 500µm. 

 



 

Figure S2. Quantification of laminin levels from antibody stainings. The signal intensity is normalized 
to a negative control without primary antibody. Thus, a value of 1 represents an absence of signal 
and a value of 1.5 represents a signal 50% brighter than this negative control. Notably, there is no 
significant increasing trend in the amount of signal observed over the course of sorting.

 

Fig S3. Exponents of blob size increase (A) and boundary decrease (B) as a function of aggregates final 
sizes in experiments (n=17 from 5 technical replicates). (C-D) Semilog plots of blob size (C) and 
boundary length (D) of the data shown in Fig 1. 



 

 

Figure S4. Cell clusters obtained by centripetal aggregation of single cells for endoderm and 
ectoderm. The obtained clusters have projected areas of 2554±1183µm2 and 606±273µm2 

(mean±SEM, n=7 and 30 respectively) for endoderm and ectoderm. 

 

Figure S5. Speed distributions (A) and velocity auto-correlation functions (B) from single cell tracking 
during one representative experiment. (C) Velocity auto-correlation function from one simulation. 



 

 

Figure S6. (A-B) Nuclear tracks color coded by time (in h) before (A) and after (B) center of mass 
correction. (C-D) Corresponding mean square displacements of all nuclei (black) and ectodermal cells 
(green) before (C) and after (D) center of mass correction. 

 

 

Figure S7. Log-log plot of sorting times as a function of aggregate size for experiments (A) and 
simulations (B). In (A), each point represents a single aggregate (n=17 from 5 technical replicates) 



and error bars represent uncertainty from two different visual inspections. In (B), each point 
represents the average of three separate simulations and error bars represent standard deviation.    

 

 

Figure S8. Exponents of blob size increase (A) and boundary decrease (B) as a function of final 
aggregate sizes in simulations. Each data point is obtained from the averaged dynamics of three 
simulations performed at the same size. No effect of size was observed except for the three smallest 
sizes that were excluded from the averages shown in the main text. 

 

 



Figure S9. Dynamics of sorting with differential motility. A) Snapshots of sorting at different time 
points (0, 300 and 900MCS). B) Log-log plot of blob size as a function of time for the average of six 
different simulations. The dashed red line shows the behavior of a power law with exponent 0.71. C) 
Log-log plot of boundary length as a function of time for the average of six different simulations. The 
dashed red line shows the behavior of a power law with exponent -0.74. D) Measurement of speeds 
over time for a representative simulation. E) Mean square displacement of the same simulation as in 
D). 

 

 

Figure S10. Simulations of sorting from spherical initial conditions. A) Snapshots of sorting at 
different time points (0, 300 and 900MCS). B) Log-log plot of blob size as a function of time for the 
average of six different simulations. The dashed red line shows the behavior of a power law with 
exponent 0.19. C) Log-log plot of boundary length as a function of time for the average of six 
different simulations. The dashed red line shows the behavior of a power law with exponent -0.11. D) 
Measurement of speeds over time for a representative simulation. E) Mean square displacement of 
the same simulation as in D). 



 

Figure S11. Log-log plot of blob size as a function of time for three different thicknesses (3,5 and 7 
cell sizes) for simulated aggregates. Each curve is the mean of six simulations with 80*80 pixels large 
aggregates. 

Measurement Method Endoderm Ectoderm n= 

Elastic 
modulus 

Parallel plate compression (41) 4.4 +/- 0.1 
kPa 

4.9 +/- 0.7 
kPa 

88 and 83 

Viscosity Micro-aspiration 3.7 ± 2.0 
10^4 Pa.s 

4.8 +/- 1.9 
10^4 Pa.s 

10 and 9 

Surface tension Micro-aspiration 13.4 +/- 4.0 
dyn/cm 

9.1 +/- 2.6 
dyn/cm 

14 and 13 

Surface tension Rounding 3.3 +/- 2.7 
dyn/cm 

1.5 +/- 0.9 
dyn/cm 

17 and 15 

 

Table S1. Rheological measurements, values are mean±STD. 
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