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In this supplementary material, we provide additional figures and tables mentioned in the main

body of the paper.
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1 About the size-adjusted KS statistic

For the size-adjusted KS statistic vs proposed in this research, Figure 1 shows the empirical CDF

(the black points) and the asymptotic CDF (the red curve) given by F (z) = 1− exp(−2z2), z > 0,

where m denotes the number of genes in the gene set and n denotes the number out of the gene set.

The empirical CDF is computed based on 1000 replicates in each (m,n) combination. Clearly, the

curves are quite close, especially when m ≥ 30. This explains why the distribution of vs becomes

(nearly) independent of the set size.

Figure 1: Comparison of the empirical CDF of vs with the asymptotic CDF.

2 Additional simulation results for binary phenotypes

2.1 Comparing test sizes

As mentioned in the main body of the paper, we computed type I errors (i.e. test sizes) of the

different methods by setting the enrichment signal ω = 0.2 (i.e., H0 : no enrichment in the gene

set holds) and then compared them with the nominal significance level 0.05 under various settings.
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The following three tables present the simulated test sizes from 1000 replicate datasets for a fixed

sampling rate λ = 0.5 and a fixed value of the between-study heterogeneity τ = 1. Apparently,

the sizes of all the three iGSEA methods are consistently smaller than 0.05, meaning that they are

conservative in rejecting the null. Among the three MAPE methods, the size of MAPE-G is close

to 0.05, but sometimes below 0.05; the size of MAPE-P is usually larger than 0.05, especially for

large γ, meaning that it is aggressive in rejecting the null; and the size of MAPE-I appears to be

somewhere between MAPE-G and MAPE-P, and so sometimes above 0.05 and sometimes below

0.05. The patterns are quite similar in settings with other λ and τ values (results not reported for

brevity).

Parameters iGSEA-FE iGSEA-RE iGSEA-AT MAPE-G MAPE-P MAPE-I
γ = 0 0.05 0.04 0.04 0.05 0.06 0.06
γ = 0.2 0.04 0.05 0.04 0.04 0.04 0.04
γ = 0.4 0.05 0.04 0.04 0.05 0.07 0.06
γ = 0.6 0.04 0.04 0.04 0.04 0.06 0.05
γ = 0.8 0.04 0.03 0.03 0.04 0.06 0.05
γ = 1 0.03 0.03 0.02 0.05 0.07 0.05

Table 1: Type I errors of each method when λ = 0.5, µ = 0.3 and τ = 1.

Parameters iGSEA-FE iGSEA-RE iGSEA-AT MAPE-G MAPE-P MAPE-I
γ = 0 0.04 0.03 0.04 0.05 0.05 0.05
γ = 0.2 0.03 0.04 0.03 0.05 0.04 0.04
γ = 0.4 0.04 0.04 0.04 0.05 0.06 0.06
γ = 0.6 0.03 0.03 0.03 0.04 0.06 0.05
γ = 0.8 0.03 0.03 0.03 0.05 0.07 0.04
γ = 1 0.02 0.03 0.02 0.04 0.07 0.06

Table 2: Type I errors of each method when λ = 0.5, µ = 0.45 and τ = 1.

Parameters iGSEA-FE iGSEA-RE iGSEA-AT MAPE-G MAPE-P MAPE-I
γ = 0 0.04 0.04 0.03 0.05 0.05 0.05
γ = 0.2 0.03 0.04 0.03 0.04 0.04 0.04
γ = 0.4 0.04 0.04 0.03 0.05 0.06 0.05
γ = 0.6 0.04 0.03 0.03 0.04 0.05 0.05
γ = 0.8 0.03 0.03 0.03 0.04 0.07 0.04
γ = 1 0.04 0.03 0.02 0.04 0.1 0.06

Table 3: Type I errors of each method when λ = 0.5, µ = 0.6 and τ = 1.
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2.2 Comparing test power

We simulated the power of the methods for all of the parameter combinations (i.e., α ∈ {0.3, 0.4, 0.5},

µ ∈ {0.3, 0.45, 0.6}, λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}, γ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, τ ∈ {0.52, 1}). When

α and µ get larger, iGSEA-FE, iGSEA-RE and iGSEA-AT all have (nearly) 100% power, so we

only report detailed results for situations where these methods differ in power. The figures show

the power values for the three proposed methods and maxMAPE (the maximum power of the three

MAPE methods).

Figure 2: Power comparison for the settings with ω = 0.3, µ = 0.3 and τ = 0.52.

Figure 3: Power comparison for the settings with ω = 0.3, µ = 0.3 and τ = 1.
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Figure 4: Power comparison for the settings with ω = 0.3, µ = 0.45 and τ = 0.52.

Figure 5: Power comparison for the settings with ω = 0.3, µ = 0.45 and τ = 1.

Figure 6: Power comparison for the settings with ω = 0.3, µ = 0.6 and τ = 0.52.

5



Figure 7: Power comparison for the settings with ω = 0.3, µ = 0.6 and τ = 1.

Figure 8: Power comparison for the settings with ω = 0.4, µ = 0.3 and τ = 0.52.

Figure 9: Power comparison for the settings with ω = 0.4, µ = 0.3 and τ = 1.
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Figure 10: Power comparison for the settings with ω = 0.4, µ = 0.45 and τ = 0.52.

Figure 11: Power comparison for the settings with ω = 0.4, µ = 0.45 and τ = 1.

Figure 12: Power comparison for the settings with ω = 0.5, µ = 0.3 and τ = 0.52.
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Figure 13: Power comparison for the settings with ω = 0.5, µ = 0.3 and τ = 1.

2.3 Detail in generating multiple gene sets

To compare the sensitivity and specificity of the methods in Section 6.1, we generated 200 gene

sets. Table 4 illustrates how different types of gene sets were constructed. Out of the 1000 genes

in the genome, the first 100 genes are UR genes, the last 100 genes are DR genes, and the rest are

EE genes. UR, DR and EE genes in each gene set are randomly chosen from the corresponding

populations. Table 5 provides the detailed design about how to generate gene expression levels.

Set Type UR genes DR genes EE genes
Enriched by UR genes 20% 10% 70%
Enriched by DR genes 10% 20% 70%

Non-enriched 10% 10% 80%

Table 4: Design detail in constructing gene sets; 30% of the gene sets are enriched by UR genes,
another 30% are enriched by DR genes, and the remaining 40% are non-enriched.

Gene ID Gene expression in each study Effect size β of a RE gene Effect size β of an FE gene
1-100 N(β, 1) N(0.45, 0.52) 0.45
101-900 N(0, 1) N/A N/A
901-1000 N(β, 1) N(−0.45, 0.52) -0.45

Table 5: Design detail in generating expression levels for different types of genes. Genes 1-100 are
UR genes, Genes 101-900 are EE genes, and Genes 901- 1000 are DR genes.
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2.4 ROC curves

Figure 14 presents an example of ROC curves in each γ setting using a randomly generated dataset.

Figure 14: ROC curves for detecting multiple enriched gene sets using iGSEA-FE, iGSEA-RE,
iGSEA-AT, and maxMAPE. The purple curve on the plots actually represents the performance of
MAPE-P because it is the best of its kind.

2.5 Comparing FDRs

In Table 6, we report empirical FDRs for the six methods under the settings described in the

Parameters iGSEA-FE iGSEA-RE iGSEA-AT MAPEG MAPEP MAPEI
γ = 0 0.05 0.07 0.06 0.25 0.08 0.10
γ = 0.2 0.06 0.06 0.06 0.21 0.09 0.10
γ = 0.4 0.06 0.06 0.05 0.20 0.09 0.09
γ = 0.6 0.07 0.06 0.06 0.18 0.08 0.09
γ = 0.8 0.07 0.07 0.06 0.19 0.09 0.09
γ = 1 0.08 0.07 0.07 0.21 0.08 0.09

Table 6: Empirical FDRs of each method in the multiple-gene-set simulation for binary phenotypes.

multiple-gene-set simulation of Section 5.1, and compare their values with the targeted level δ =

0.05. Note that when calculating the Q-values, our iGSEA methods obtain π̂0 using the R package

“qvalue” (Bass et al., 2015) while the MAPE methods always set π̂0 = 1 (Shen & Tseng 2010), as

mentioned in Section 4. We find that the three iGSEA methods have FDRs pretty close to 0.05,

although they are slightly inflated. By contrast, the inflation from the three MAPE methods is
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more severe, especially for MAPE-G. Also, we observe that MAPE-I falls between MAPE-G and

MAPE-P, but it is closer to the better one MAPE-P.

3 About data application

Data Set Name Type Number of Controls Number of Cases
GSE14814 (Zhu et al. 2010) Microarray 7 21
CL (Shedden et al. 2008) Microarray 17 65
Moff (Shedden et al. 2008) Microarray 27 52

NCI_U133A (Shedden et al. 2008) Microarray 18 86
GSE37764 (Kim et al. 2013) RNA-seq 6 6

Table 7: Lung adenocarcinoma datasets involved in data analysis

We used five real datasets from microarray and NGS experiments to evaluate the methods. The

four microarray datasets were pre-processed following the steps in Chen et al. (2013). The

RNA-seq dataset was downloaded from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE37765. Table 7 provides the detail of each dataset, including the name, source, type

of experiment and sample size.

KEGG Pathways
iGSEA

MAPE-G MAPE-P MAPE-I
FE RE AT

ABC_Transporters 0.065 0.019 0.060 0.415 0.464 0.515
Alpha_Linolenic_Acid_Metabolism 0.066 0.053 0.041 0.419 0.481 0.514

Apoptosis 0.014 0.009 0.011 0.349 0 0.003
Ascorbate_And_Aldarate_Metabolism 0.014 0.045 0.011 0.402 0.294 0.369

Basal_Cell_Carcinoma 0.316 0.109 0.301 0.361 0.039 0.079
Ether_Lipid_Metabolism 0.063 0.036 0.041 0.420 0.169 0.258

Glycosaminoglycan_Biosynthesis_Keratan_Sulfate 0.311 0.177 0.043 0.420 0.486 0.520
Glycosaminoglycan_Degradation 0.065 0.074 0.033 0.413 0.135 0.217

Glyoxylate_And_Dicarboxylate_Metabolism 0 0 0 0.155 0.106 0.078
Huntingtons_Disease 0.156 0.024 0.045 0.411 0.516 0.520

Hypertrophic_Cardiomyopathy_HCM 0.063 0.023 0.025 0.276 0.055 0.088
Long_Term_Depression 0 0 0 0.447 0.533 0.331
Lysine_Degradation 0.041 0.034 0.023 0.333 0.102 0.163

Oxidative_Phosphorylation 0.166 0.045 0.115 0.413 0.529 0.526
Primary_Immunodeficiency 0.197 0.206 0.038 0.470 0.536 0.531
Type_I_Diabetes_Mellitus 0.021 0.083 0.065 0.420 0.129 0.209

Table 8: The estimated Q-values of identified KEGG pathways
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We tested KEGG pathways. Gene sets with Q-values <5% were identified as enriched in the

analysis. Table 8 provides the estimated Q-values of all the KEGG pathways identified by at

least one of the six methods, with those <5% bolded. The pathways that were only identified by

iGSEA-AT are marked in red.
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