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Summary

As a convenience for the reader, we collect some basic statistical results from normal models
that are used in the main paper. The only non-standard result is that we have defined and
derived the log-centered confidence intervals for the constant coefficient of variation model.

S1 Normal Constant Standard Deviation Model

S1.1 Tests and One-sided Confidence Limits on σ

Let Y1, . . . , Yn be independent with Yi ∼ N(µ, σ2). Let s2 be the usual unbiased variance
estimate, and let S2 be the associated random variable. Then

(n− 1)S2

σ2
∼ Wn−1, (S1)

where Wn−1 is the cumulative distribution of a chi-squared distribution with n− 1 degrees of
freedom. Then a 100(1− α)% one-sided confidence interval for σ2 is[

0,
(n− 1)s2

W−1
n−1(α)

]
, (S2)

where W−1
n−1(a) be the ath quantile of that chi-squared distribution.

S1.2 Confidence Intervals on µ When σ is Known

If σ is known then a 100(1− α)% confidence interval for µ is

Cµ(y; 1− α, σ) =
[
y − Φ−1(1− α/2)σ, y + Φ−1(1− α/2)σ

]
. (S3)

where Φ−1(a) is the ath quantile of the standard normal distribution.

S2 Normal Constant Coefficient of Variation Model

S2.1 Testing and One-sided Limits for θ

Consider the normal constant CV model, where Y ∼ N(µ, σ2), and the coefficient of variation
is θ = σ/µ. We assume µ > 0. Observe a sample of n independent observations, y1, . . . , yn.
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Let θ̂ = σ̂
ȳ
, where σ̂2 is the unbiased sample variance estimate and ȳ is the sample mean.

Then T =
√
n/θ̂ is distributed non-central t with n− 1 degrees of freedom and non-centrality

parameter
√
n/θ. To test H0 : θ ≥ θ0 versus H1 : θ < θ0, we reject at the α level when

T > t−1
n−1,δ(1−α), where δ =

√
n/θ0 and t−1

df,ncp(a) is the ath quantile of the non-central t with
df degrees of freedom and non-centrality parameter ncp. This is equivalent to rejecting when

θ̂ ≤
√
n

t−1
n−1,δ(1− α)

.

A 100(1 − α`)% upper confidence limit for θ is the value θ̄ corresponding to the θ0 that just
barely rejects, in other words the value θ̄ that solves,

t−1
n−1,

√
n/θ̄

(1− α`) =

√
n

θ̂
. (S4)

S2.2 Log-centered CIs on µ When θ is Known

In this section, assume that θ is known. We derive a 100(1 − α)% confidence interval for µ
using the intersection of two one-sided confidence intervals,

Cµ(y; 1− α, θ, f) =
[
µ(y; 1− αL, θ), µ̄(y; 1− αU , θ)

]
.

where αL + αU = α. First, a (1− αL) one-sided lower confidence limit is

µ(y; 1− αL, θ) =
y

θΦ−1(1− αL) + 1
(S5)

where Φ−1(q) is the qth quantile of a standard normal. This can be shown using the fact that
since Y ∼ N(µ, σ2) and we have assumed µ > 0, then Y/µ ∼ N(1, θ2). Thus,

1− αL = Pr

[
Y
µ
− 1

θ
≤ Φ−1(1− αL)

]

= Pr

[
Y

µ
≤ θΦ−1(1− αL) + 1

]
= Pr

[
Y

θΦ−1(1− αL) + 1
≤ µ

]
.

To derive the 100(1 − αU)% upper limit, first consider the case where θΦ−1(1 − αU) < 1, so
that

1− αU = Pr

[
−Φ−1(1− αU) ≤

Y
µ
− 1

θ

]

= Pr

[
−θΦ−1(1− αU) + 1 ≤ Y

µ

]
= Pr

[
µ ≤ Y

1− θΦ−1(1− αU)

]
.
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so that (when θΦ−1(1− αU) < 1)

µ̄(y; 1− αU , θ) =
y

1− θΦ−1(1− αU)
(S6)

Let αL = fα and αU = (1− f)α, where f ∈ (0, 1). Then

Cµ(y; 1− α, θ, f) =

[
y

1 + θΦ−1(1− αL)
,

y

1− θΦ−1(1− αU)

]
(S7)

if θΦ−1(1 − αU) < 1, otherwise we define the upper limit as ∞ and set f = 1. If f = 0.5 so
that αL = αU = α/2, we call this interval a central one, meaning that both one-sided error
rates are equal and bounded at α/2.

We define a log-centered interval, as a confidence interval for log(µ) of the form log(y)± r.
Taking the log of both confidence limits in equation S7, we get[

log(y)− log
{

1 + θΦ−1(1− αL)
}
, log(y)− log

{
1− θΦ−1(1− αU)

}]
or equivalently,[

log(y)− log
{

1 + θΦ−1(1− αf)
}
, log(y) + log

{
1

1− θΦ−1(1− α[1− f ])

}]
.

In other words, if there is an f that gives

1 + θΦ−1(1− αf) =
1

1− θΦ−1(1− α[1− f ])
,

then we define that f as flogc and get a log-centered interval with

r(θ, 1− α) = log
{

1 + θΦ−1(1− αflogc)
}

= log

{
1

1− θΦ−1(1− α[1− flogc])

}
. (S8)

If a log-centered interval exists, it will not be a central interval.
As mentioned previously, if θΦ−1(1−α) > 1 then we cannot get a log-centered interval and

we set µ̄ ≡ ∞. Additionally, if f gets very close to 0, then the lower limit approaches 0. So
we may have µ = 0 due to computer rounding, in which case we cannot write the confidence
interval as a log-centered one.

S3 Lognormal Constant Coefficient of Variation Model

S3.1 Confidence Interval on θ from Log Normal Model with Con-
stant Coefficient of Variation

Assume Y1, . . . , Yn are independent and all distributed lognormal, so that Zi = log(Yi) ∼
N(ξ, ν). In terms of mu and σ we have

E(Yi) = µ = exp(ξ +
ν

2
) and V ar(Yi) = σ2 = µ2 {exp(ν)− 1}
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so that

θ =
σ

µ
=
√

exp(ν)− 1. (S9)

Then since Z1, . . . , Zn are normal with variance ν, and since θ is a monotonic function of
ν, we can use the normal methods (see Section S1.1) to test the null that θ ≥ θ0. In other
words, the null, H0 : θ ≥ θ0, can be equivalently be written as the null, H0 :

√
exp(ν)− 1 ≥√

exp(ν0)− 1 where θ0 =
√

exp(ν0)− 1. Or equivalently, as H0 : ν ≥ ν0.
Let s2

z be the sample variance of the Zi. Then following Section S1.1 we reject the null (in
any of its parameterizations) at the α` level whenever

s2
z ≤

ν0W
−1
n−1(α`)

n− 1

or equivalently

θ̃ =
√

exp(s2
z)− 1 ≤

√
(θ2

0 + 1)
W−1
n−1(α`)

n−1 − 1. (S10)

When
W−1
n−1(α)

n−1
= 1 or equivalently, when α = α` = Wn−1(n − 1) then this is the same as

rejecting when θ̃ ≤ θ0. Thus, a (1 − α`)% one-sided confidence limit on θ is the value of θ0

that just barely rejects. In other words,

θ̄(1− α`) =

√
−1 + exp

(
(n− 1)s2

z

W−1
n−1(α`)

)
. (S11)

S3.2 Confidence Interval on µ from Log Normal Model with Known
Constant Coefficient of Variation

Now consider the confidence interval for µ when ν is known. First, let ξ(z) = z−
√
νΦ−1(1−αL)

and ξ̄(z) = z +
√
νΦ−1(1 − αU) be the lower and upper limits of a 100(1 − α)% confidence

interval for ξ, where αL + αU = α. Then

1− α = Pr
[
ξ {Z} ≤ ξ ≤ ξ̄ {Z}

]
= Pr

[
exp

(
ξ {Z}+

ν

2

)
≤ µ ≤ exp

(
ξ̄ {Z}+

ν

2

)]

since µ = exp(ξ + ν/2). We use ν = log (θ2 + 1) to get the confidence interval. In other
words, the 100(1− α)% confidence interval for µ is the union of the two one-sided confidence
intervals, giving (µ(y; 1−αL), µ̄(y; 1−αU)). Using αL = fα and αU = (1− f)α, we rewriting
the intervals as

µ(y; 1− αf) = exp {log(y)− rL} ,
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where rL =
√
νΦ−1(1− αf)− ν/2, and

µ̄(y; 1− α(1− f)) = exp {log(y)− rU} ,

where rU =
√
νΦ−1(1−α(1− f)) + ν/2. We can get a log-centered interval by solving for the

f ∈ (0, 0.5) that solves rL = rU , or equivalently the flogc that solves

Φ−1(1− αflogc)− Φ−1(1− α(1− flogc)) =
√
ν.

Thus, the effective standard deviation of log(Y ) is r(θ, 0.6827), where

r(θ, 1− α) =
√
νΦ−1(1− α(1− f)) + ν/2, (S12)

and from equation S9, ν = log(θ2 + 1).

S4 Proof that Coverage of Log-Centered Confidence In-

tervals Do Not Depend on µ Values

We want to show that, given θ, the following does not depend on µ(x1), . . . , µ(m) or µ∗ =
µ(x∗):

Π(1− γ) = Pr
[
log(Y ∗)− r

(
θ̄(Y, q), 1− γ

)
≤ log(µ∗) ≤ log(Y ∗) + r

(
θ̄(Y, q), 1− γ

)]
= Pr

[
log(Y ∗/µ)− r

(
θ̄(Y, q), 1− γ

)
≤ 0 ≤ log(Y ∗/µ) + r

(
θ̄(Y, q), 1− γ

)]
.

The proof is completed if we show three things: (i) the distribution of Y ∗/µ∗ only depends on
θ, (ii) the distribution of θ̄(Y, q) only depends on θ, and r(θ, 1 − γ) only depends on θ. We
take these one-at-a-time.

(i) Show the distribution of Y ∗/µ only depends on θ. We do this separately for the two
models.

Normal constant CV model: We have Y ∗ ∼ N(µ∗, σ2(x∗)). Dividing by µ∗ we get
Y ∗/µ∗ ∼ N(1, σ2(x∗)/µ∗2) = N(1, θ2).

Lognormal constant CV model: We have log(Y ∗) ∼ N(ξ(x∗), ν) = N(log(µ∗) −
ν(x∗)/2, ν(x∗)), so that log(Y ∗) − log(µ∗) = log(Y ∗/µ∗) ∼ N(−ν(x∗)/2, ν(x∗)).
Finally, ν(x∗) = log(θ2 + 1).

(ii) Show the distribution of θ̄(Y, q) only depends on θ. Since θ̄(Y, q) = maxj=1,...,m θ̄j(Yj, 1−
α`) where α` = (1 − q)m, we just need to show that θ̄j(Yj, 1 − α`) for each j depends
only on θ. We do this separately for the two models.

Normal constant CV model: Equation S4 gives θ̄j(Yj, 1−α`) for any level j (the js

are suppressed in that section). The only random variable in equation S4 is θ̂, and
we know that the distribution of T =

√
n/θ̂ is non-central t with n− 1 degrees of

freedom and non-centrality parameter
√
n/θ. So the distribution of θ̂ only depends

on n and θ.
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Lognormal constant CV model: From equation S11 (the js are suppressed in that
section), we see that the only random variable that θ̄j(Yj, 1 − α`) depends on
is S2

z which is the sample variance of Z1, . . . , Zn where for each i = 1, . . . , n,
Zi ∼ N(ξ(xj), ν(xj)). By standard results showing the independence of the sample
variance from the mean, S2

z depends only on ν(xj) = log(θ2 + 1).

(iii) Show r(θ, 1− γ) only depends on θ.

Normal constant CV model: From equation S8 we see that r(θ, 1−γ) only depends
on θ, since the calculation of flogc only uses θ.

Lognormal constant CV model: From equation S12 we see that r(θ, 1 − γ) only
depends on θ, since ν = log(θ2 + 1) and the calculation of f only uses ν.
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