Supplementary Material for: Measuring Precision in Bioassays: Rethinking Assay Validation

by Michael P. Fay, Michael C. Sachs, and Kazutoyo Miura

Summary

As a convenience for the reader, we collect some basic statistical results from normal models that are used in the main paper. The only non-standard result is that we have defined and derived the log-centered confidence intervals for the constant coefficient of variation model.

S1 Normal Constant Standard Deviation Model

S1.1 Tests and One-sided Confidence Limits on σ

Let Y_1, \ldots, Y_n be independent with $Y_i \sim N(\mu, \sigma^2)$. Let s^2 be the usual unbiased variance estimate, and let S^2 be the associated random variable. Then

$$\frac{(n-1)S^2}{\sigma^2} \sim W_{n-1},\tag{S1}$$

where W_{n-1} is the cumulative distribution of a chi-squared distribution with n-1 degrees of freedom. Then a $100(1-\alpha)\%$ one-sided confidence interval for σ^2 is

$$\left[0, \frac{(n-1)s^2}{W_{n-1}^{-1}(\alpha)}\right],\tag{S2}$$

where $W_{n-1}^{-1}(a)$ be the ath quantile of that chi-squared distribution.

S1.2 Confidence Intervals on μ When σ is Known

If σ is known then a $100(1-\alpha)\%$ confidence interval for μ is

$$C_{\mu}(y; 1 - \alpha, \sigma) = \left[y - \Phi^{-1}(1 - \alpha/2)\sigma, \quad y + \Phi^{-1}(1 - \alpha/2)\sigma \right].$$
 (S3)

where $\Phi^{-1}(a)$ is the ath quantile of the standard normal distribution.

S2 Normal Constant Coefficient of Variation Model

S2.1 Testing and One-sided Limits for θ

Consider the normal constant CV model, where $Y \sim N(\mu, \sigma^2)$, and the coefficient of variation is $\theta = \sigma/\mu$. We assume $\mu > 0$. Observe a sample of n independent observations, y_1, \ldots, y_n .

Let $\hat{\theta} = \frac{\hat{\sigma}}{\bar{y}}$, where $\hat{\sigma}^2$ is the unbiased sample variance estimate and \bar{y} is the sample mean. Then $T = \sqrt{n}/\hat{\theta}$ is distributed non-central t with n-1 degrees of freedom and non-centrality parameter \sqrt{n}/θ . To test $H_0: \theta \geq \theta_0$ versus $H_1: \theta < \theta_0$, we reject at the α level when $T > t_{n-1,\delta}^{-1}(1-\alpha)$, where $\delta = \sqrt{n}/\theta_0$ and $t_{df,ncp}^{-1}(a)$ is the ath quantile of the non-central t with df degrees of freedom and non-centrality parameter ncp. This is equivalent to rejecting when

$$\hat{\theta} \leq \frac{\sqrt{n}}{t_{n-1,\delta}^{-1}(1-\alpha)}.$$

A $100(1 - \alpha_{\ell})\%$ upper confidence limit for θ is the value $\bar{\theta}$ corresponding to the θ_0 that just barely rejects, in other words the value $\bar{\theta}$ that solves,

$$t_{n-1,\sqrt{n}/\bar{\theta}}^{-1}(1-\alpha_{\ell}) = \frac{\sqrt{n}}{\hat{\theta}}.$$
 (S4)

S2.2 Log-centered CIs on μ When θ is Known

In this section, assume that θ is known. We derive a $100(1-\alpha)\%$ confidence interval for μ using the intersection of two one-sided confidence intervals,

$$C_{\mu}(y; 1-\alpha, \theta, f) = \left[\mu(y; 1-\alpha_L, \theta), \bar{\mu}(y; 1-\alpha_U, \theta)\right].$$

where $\alpha_L + \alpha_U = \alpha$. First, a $(1 - \alpha_L)$ one-sided lower confidence limit is

$$\underline{\mu}(y; 1 - \alpha_L, \theta) = \frac{y}{\theta \Phi^{-1}(1 - \alpha_L) + 1}$$
 (S5)

where $\Phi^{-1}(q)$ is the qth quantile of a standard normal. This can be shown using the fact that since $Y \sim N(\mu, \sigma^2)$ and we have assumed $\mu > 0$, then $Y/\mu \sim N(1, \theta^2)$. Thus,

$$1 - \alpha_L = Pr \left[\frac{\frac{Y}{\mu} - 1}{\theta} \le \Phi^{-1} (1 - \alpha_L) \right]$$
$$= Pr \left[\frac{Y}{\mu} \le \theta \Phi^{-1} (1 - \alpha_L) + 1 \right]$$
$$= Pr \left[\frac{Y}{\theta \Phi^{-1} (1 - \alpha_L) + 1} \le \mu \right].$$

To derive the $100(1 - \alpha_U)\%$ upper limit, first consider the case where $\theta\Phi^{-1}(1 - \alpha_U) < 1$, so that

$$1 - \alpha_U = Pr \left[-\Phi^{-1}(1 - \alpha_U) \le \frac{\frac{Y}{\mu} - 1}{\theta} \right]$$
$$= Pr \left[-\theta \Phi^{-1}(1 - \alpha_U) + 1 \le \frac{Y}{\mu} \right]$$
$$= Pr \left[\mu \le \frac{Y}{1 - \theta \Phi^{-1}(1 - \alpha_U)} \right].$$

so that (when $\theta\Phi^{-1}(1-\alpha_U)<1$)

$$\bar{\mu}(y; 1 - \alpha_U, \theta) = \frac{y}{1 - \theta \Phi^{-1}(1 - \alpha_U)}$$
 (S6)

Let $\alpha_L = f\alpha$ and $\alpha_U = (1 - f)\alpha$, where $f \in (0, 1)$. Then

$$C_{\mu}(y; 1 - \alpha, \theta, f) = \left[\frac{y}{1 + \theta \Phi^{-1}(1 - \alpha_L)}, \frac{y}{1 - \theta \Phi^{-1}(1 - \alpha_U)} \right]$$
 (S7)

if $\theta\Phi^{-1}(1-\alpha_U) < 1$, otherwise we define the upper limit as ∞ and set f = 1. If f = 0.5 so that $\alpha_L = \alpha_U = \alpha/2$, we call this interval a central one, meaning that both one-sided error rates are equal and bounded at $\alpha/2$.

We define a log-centered interval, as a confidence interval for $\log(\mu)$ of the form $\log(y) \pm r$. Taking the log of both confidence limits in equation S7, we get

$$\left[\log(y) - \log\left\{1 + \theta\Phi^{-1}(1 - \alpha_L)\right\}, \log(y) - \log\left\{1 - \theta\Phi^{-1}(1 - \alpha_U)\right\}\right]$$

or equivalently,

$$\left[\log(y) - \log\left\{1 + \theta\Phi^{-1}(1 - \alpha f)\right\}, \log(y) + \log\left\{\frac{1}{1 - \theta\Phi^{-1}(1 - \alpha[1 - f])}\right\}\right].$$

In other words, if there is an f that gives

$$1 + \theta \Phi^{-1}(1 - \alpha f) = \frac{1}{1 - \theta \Phi^{-1}(1 - \alpha[1 - f])},$$

then we define that f as f_{logc} and get a log-centered interval with

$$r(\theta, 1 - \alpha) = \log \left\{ 1 + \theta \Phi^{-1} (1 - \alpha f_{logc}) \right\} = \log \left\{ \frac{1}{1 - \theta \Phi^{-1} (1 - \alpha [1 - f_{logc}])} \right\}.$$
 (S8)

If a log-centered interval exists, it will not be a central interval.

As mentioned previously, if $\theta\Phi^{-1}(1-\alpha) > 1$ then we cannot get a log-centered interval and we set $\bar{\mu} \equiv \infty$. Additionally, if f gets very close to 0, then the lower limit approaches 0. So we may have $\underline{\mu} = 0$ due to computer rounding, in which case we cannot write the confidence interval as a log-centered one.

S3 Lognormal Constant Coefficient of Variation Model

S3.1 Confidence Interval on θ from Log Normal Model with Constant Coefficient of Variation

Assume Y_1, \ldots, Y_n are independent and all distributed lognormal, so that $Z_i = \log(Y_i) \sim N(\xi, \nu)$. In terms of mu and σ we have

$$E(Y_i) = \mu = \exp(\xi + \frac{\nu}{2})$$
 and $Var(Y_i) = \sigma^2 = \mu^2 \{ \exp(\nu) - 1 \}$

so that

$$\theta = \frac{\sigma}{\mu} = \sqrt{\exp(\nu) - 1}.$$
 (S9)

Then since Z_1, \ldots, Z_n are normal with variance ν , and since θ is a monotonic function of ν , we can use the normal methods (see Section S1.1) to test the null that $\theta \geq \theta_0$. In other words, the null, $H_0: \theta \geq \theta_0$, can be equivalently be written as the null, $H_0: \sqrt{\exp(\nu) - 1} \geq \sqrt{\exp(\nu_0) - 1}$ where $\theta_0 = \sqrt{\exp(\nu_0) - 1}$. Or equivalently, as $H_0: \nu \geq \nu_0$.

Let s_z^2 be the sample variance of the Z_i . Then following Section S1.1 we reject the null (in any of its parameterizations) at the α_ℓ level whenever

$$s_z^2 \le \frac{\nu_0 W_{n-1}^{-1}(\alpha_\ell)}{n-1}$$

or equivalently

$$\tilde{\theta} = \sqrt{\exp(s_z^2) - 1} \le \sqrt{(\theta_0^2 + 1)^{\frac{W_{n-1}^{-1}(\alpha_\ell)}{n-1}} - 1}.$$
 (S10)

When $\frac{W_{n-1}^{-1}(\alpha)}{n-1} = 1$ or equivalently, when $\alpha = \alpha_{\ell} = W_{n-1}(n-1)$ then this is the same as rejecting when $\tilde{\theta} \leq \theta_0$. Thus, a $(1 - \alpha_{\ell})\%$ one-sided confidence limit on θ is the value of θ_0 that just barely rejects. In other words,

$$\bar{\theta}(1 - \alpha_{\ell}) = \sqrt{-1 + exp\left(\frac{(n-1)s_z^2}{W_{n-1}^{-1}(\alpha_{\ell})}\right)}.$$
 (S11)

S3.2 Confidence Interval on μ from Log Normal Model with Known Constant Coefficient of Variation

Now consider the confidence interval for μ when ν is known. First, let $\underline{\xi}(z) = z - \sqrt{\nu} \Phi^{-1}(1 - \alpha_L)$ and $\bar{\xi}(z) = z + \sqrt{\nu} \Phi^{-1}(1 - \alpha_U)$ be the lower and upper limits of a $100(1 - \alpha)\%$ confidence interval for ξ , where $\alpha_L + \alpha_U = \alpha$. Then

$$1 - \alpha = Pr\left[\underline{\xi}\left\{Z\right\} \le \xi \le \bar{\xi}\left\{Z\right\}\right]$$
$$= Pr\left[\exp\left(\underline{\xi}\left\{Z\right\} + \frac{\nu}{2}\right) \le \mu \le \exp\left(\bar{\xi}\left\{Z\right\} + \frac{\nu}{2}\right)\right]$$

since $\mu = \exp(\xi + \nu/2)$. We use $\nu = \log(\theta^2 + 1)$ to get the confidence interval. In other words, the $100(1-\alpha)\%$ confidence interval for μ is the union of the two one-sided confidence intervals, giving $(\underline{\mu}(y; 1-\alpha_L), \bar{\mu}(y; 1-\alpha_U))$. Using $\alpha_L = f\alpha$ and $\alpha_U = (1-f)\alpha$, we rewriting the intervals as

$$\underline{\mu}(y; 1 - \alpha f) = \exp \{\log(y) - r_L\},\,$$

where $r_L = \sqrt{\nu}\Phi^{-1}(1-\alpha f) - \nu/2$, and

$$\bar{\mu}(y; 1 - \alpha(1 - f)) = \exp\{\log(y) - r_U\},\$$

where $r_U = \sqrt{\nu}\Phi^{-1}(1 - \alpha(1 - f)) + \nu/2$. We can get a log-centered interval by solving for the $f \in (0, 0.5)$ that solves $r_L = r_U$, or equivalently the f_{logc} that solves

$$\Phi^{-1}(1 - \alpha f_{logc}) - \Phi^{-1}(1 - \alpha(1 - f_{logc})) = \sqrt{\nu}.$$

Thus, the effective standard deviation of log(Y) is $r(\theta, 0.6827)$, where

$$r(\theta, 1 - \alpha) = \sqrt{\nu} \Phi^{-1} (1 - \alpha (1 - f)) + \nu/2,$$
 (S12)

and from equation S9, $\nu = \log(\theta^2 + 1)$.

S4 Proof that Coverage of Log-Centered Confidence Intervals Do Not Depend on μ Values

We want to show that, given θ , the following does not depend on $\mu(x_1), \ldots, \mu(m)$ or $\mu^* = \mu(x^*)$:

$$\begin{split} \Pi(1-\gamma) &= Pr\left[\log(Y^*) - r\left(\bar{\theta}(\mathbf{Y},q), 1-\gamma\right) \leq \log(\mu^*) \leq \log(Y^*) + r\left(\bar{\theta}(\mathbf{Y},q), 1-\gamma\right)\right] \\ &= Pr\left[\log(Y^*/\mu) - r\left(\bar{\theta}(\mathbf{Y},q), 1-\gamma\right) \leq 0 \leq \log(Y^*/\mu) + r\left(\bar{\theta}(\mathbf{Y},q), 1-\gamma\right)\right]. \end{split}$$

The proof is completed if we show three things: (i) the distribution of Y^*/μ^* only depends on θ , (ii) the distribution of $\bar{\theta}(\mathbf{Y},q)$ only depends on θ , and $r(\theta, 1-\gamma)$ only depends on θ . We take these one-at-a-time.

- (i) Show the distribution of Y^*/μ only depends on θ . We do this separately for the two models.
 - **Normal constant CV model:** We have $Y^* \sim N(\mu^*, \sigma^2(x^*))$. Dividing by μ^* we get $Y^*/\mu^* \sim N(1, \sigma^2(x^*)/\mu^{*2}) = N(1, \theta^2)$.
 - **Lognormal constant CV model:** We have $\log(Y^*) \sim N(\xi(x^*), \nu) = N(\log(\mu^*) \nu(x^*)/2, \nu(x^*))$, so that $\log(Y^*) \log(\mu^*) = \log(Y^*/\mu^*) \sim N(-\nu(x^*)/2, \nu(x^*))$. Finally, $\nu(x^*) = \log(\theta^2 + 1)$.
- (ii) Show the distribution of $\bar{\theta}(\mathbf{Y}, q)$ only depends on θ . Since $\bar{\theta}(\mathbf{Y}, q) = \max_{j=1,\dots,m} \bar{\theta}_j(\mathbf{Y}_j, 1 \alpha_\ell)$ where $\alpha_\ell = (1-q)^m$, we just need to show that $\bar{\theta}_j(\mathbf{Y}_j, 1-\alpha_\ell)$ for each j depends only on θ . We do this separately for the two models.
 - **Normal constant CV model:** Equation S4 gives $\bar{\theta}_j(\mathbf{Y}_j, 1 \alpha_\ell)$ for any level j (the js are suppressed in that section). The only random variable in equation S4 is $\hat{\theta}$, and we know that the distribution of $T = \sqrt{n}/\hat{\theta}$ is non-central t with n-1 degrees of freedom and non-centrality parameter \sqrt{n}/θ . So the distribution of $\hat{\theta}$ only depends on n and θ .

- **Lognormal constant CV model:** From equation S11 (the js are suppressed in that section), we see that the only random variable that $\bar{\theta}_j(\mathbf{Y}_j, 1 \alpha_\ell)$ depends on is S_z^2 which is the sample variance of Z_1, \ldots, Z_n where for each $i = 1, \ldots, n$, $Z_i \sim N(\xi(x_j), \nu(x_j))$. By standard results showing the independence of the sample variance from the mean, S_z^2 depends only on $\nu(x_j) = \log(\theta^2 + 1)$.
- (iii) Show $r(\theta, 1 \gamma)$ only depends on θ .
 - **Normal constant CV model:** From equation S8 we see that $r(\theta, 1-\gamma)$ only depends on θ , since the calculation of f_{logc} only uses θ .
 - **Lognormal constant CV model:** From equation S12 we see that $r(\theta, 1 \gamma)$ only depends on θ , since $\nu = \log(\theta^2 + 1)$ and the calculation of f only uses ν .