
SUPPLEMENTAL MATERIAL 
 

Supplemental Methods 
A. UK Biobank 
 
Individual level genetic data was available from 335,464 individuals in UK Biobank, 
after excluding one related individual of each related pair of individuals, individuals 
whose genetic sex did not match self-reported sex and extreme outliers. Of these 
individuals, 43,525 were genotyped using the Affymetrix UK BiLEVE array and 
291,939 were genotyped using the Affymetrix UK Biobank Axiom Array. Phasing 
and imputation were performed centrally, by UK Biobank, using the Haplotype 
Reference Consortium panel. As recommended by UK Biobank, we excluded any 
variants with an information measure < 0.3 and any variant not in the Haplotype 
Reference Consortium panel. 

To adjust for the presence of antihypertensive medication, we added 15 mm Hg to 
systolic blood pressure and 10 mm Hg to diastolic blood pressure of individuals on 
antihypertensive medication at baseline, as in the International Consortium for Blood 
Pressure GWAS.1 Type 2 diabetes and coronary heart disease (CHD) were both 
ascertained at baseline by self-report, followed by a verbal interview with a trained 
nurse to confirm the diagnosis. Type 2 diabetes was defined as history of diabetes 
unspecified or type 2 diabetes during verbal interview with trained nurse or 
hospitalization for or death due to ICD code E11. CHD was defined as: (1) 
Myocardial infarction (MI), coronary artery bypass grafting, or coronary artery 
angioplasty documented in medical history at time of enrollment by a trained nurse or 
(2) Hospitalization for ICD-10 code for acute myocardial infarction (I21.0, I21.1, 
I21.2, I21.4, I21.9) or (3) Hospitalization for OPCS-4 coded procedure: coronary 
artery bypass grafting (K40.1-40.4, K41.1-41.4, K45.1-45.5) or  
(4) Hospitalization for OPCS-4 coded procedure: coronary angioplasty ± stenting 
(K49.1-49.2, K49.8-49.9, K50.2, K75.1-75.4, K75.8-75.9). Definitions for all 
outcomes in UK Biobank are provided in Supplemental Table 3. 

To combine cardiometabolic trait data from both genome wide association studies and 
UK Biobank (for analysis of waist-to-hip ratio adjusted for body mass index 
(WHRadjBMI) and BMI), we used inverse variance weighted fixed effects meta-
analysis to pool estimates from UK Biobank with genome wide association study 
estimates (estimates from GIANT for WHRadjBMI and BMI). For WHRadjBMI and 
BMI, estimates were inverse normalized separately by sex, with adjustment for age, to 
allow for direct comparison to the GIANT consortium. 

B. Summary level data 
 
An overview of the included genome wide association studies is provided in Supp. 
Table 2. 
 
For lipids (LDL cholesterol, HDL cholesterol, triglycerides and total cholesterol), we 
used data from the Global Lipids Genetics Consortium, a meta-analysis of 188 587 
individuals of European descent.2 This GWAS included 37 studies genotyped using 
the Illumina Metabochip array as well as an additional 23 studies genotyped using a 
variety of arrays. 



 
For glycaemic traits, we used data from the MetaAnalyses of Glucose and 
Insulinrelated traits Consortium (MAGIC), which included 133 010 individuals of 
European ancestry without diabetes.3 This included studies genotyped using the 
Metabochip as well as studies genotyped using various arrays who were imputed to 
2.5 million SNPs using the HapMap reference panel. SNPs included on the 
Metabochip were then meta-analyzed across studies. 
 
For BMI and WHRadjBMI we used data from the Genetic Investigation of 
ANthropometric Traits (GIANT) consortium.4,5 For WHRadjBMI, data from 210,088 
individuals of European ancestry were included. For BMI, data for 322,154 
individuals of European ancestry were included. Individuals were genotyped using 
various arrays and imputed with the HapMap reference panel to 2.5 million SNPs. 

For estimated glomerular filtration rate (eGFR) and chronic kidney disease, we used 
data from the Chronic Kidney Disease Genetics consortium (CKDGen), a meta-
analysis of 133 413 individuals of European descent from 49 studies.6 Individuals 
were genotyped using various arrays and imputed with the HapMap reference panel to 
2.5 million SNPs. 
 
For coronary heart disease, we used data from the CARDIoGRAMplusC4D 1000 
Genomes imputation, a meta-analysis of 60801 coronary heart disease cases and 
123504 controls.7 Individuals were genotypes using various arrays and imputed to 9.5 
million SNPs using the1000 Genomes reference panel. 
  
For diabetes, we used data from the DIAbetes Genetics Replication and Meta-analysis 
(DIAGRAM) Consortium, a meta-analysis of 34 840 diabetes cases and 114 981 
controls, overwhelmingly of European descent.8 This meta-analysis included 12 
studies genotyped using a range of arrays and imputed with the HapMap reference 
panel to 2.5 million SNPs. These studies were meta-analysed with 26 studies 
genotyped using the Illumina Metabochip array. 
 
For migraine, we used data from the International Headache Genetics Consortium, a 
meta-analysis of 59674 migraine cases and 316 078 controls.9 Individuals were 
genotyped using a range of arrays and imputed to 9.5 million SNPs using 1000 
Genomes reference panel. 
 
Standardization 
 
While GIANT and GLGC reported effect estimates of variants in units of standard 
deviations, the MAGIC and CKDGen consortia did not. We wished to standardize 
betas from these consortia so that the effects of genetically increased nitric oxide 
signaling on cardiometabolic traits could be uniformly expressed in terms of standard 
deviations for each trait. Therefore, to standardize betas for HbA1c, fasting glucose 
and two-hour glucose from the MAGIC consortium, one SD was assumed to 
correspond to 0.53%, 0.73 mM and 0.56 mM, the pooled standard deviation of studies 
included in a previous report from the MAGIC consortium.10 As a pooled SD for log-
transformed fasting insulin was not available from the MAGIC consortium, we used 
an estimate of 0.44 from Framingham.11 To estimate the effect for estimated 
glomerular filtration rate, we used data from the National Health and Nutrition 



Examination Survey (NHANES) from 2005-2012.12 We calculated that a one unit 
increase in log(eGFR) corresponded to a 77 ml/min increase in estimated glomerular 
filtration rate or a 2.89 standard deviation increase among Caucasian individuals 
(restricted to Caucasians as CKDGen is predominantly among individuals of 
European ancestry). 
 
To express increases in lipid levels in absolute terms, which may be easier for 
clinicians to interpret, we calculated population level SDs in lipid levels using the 
National Health and Nutrition Examination Survey (NHANES) from 2005-2012.12	We 
calculated that one SD in total cholesterol was 1.03 mM, a one SD in LDL cholesterol 
was 0.90 mM, a one SD in HDL cholesterol was 0.40 mM and a one SD in 
triglycerides was 0.74 mM. 
 
C. Rare Variant Sequencing and Analysis  
 
The Myocardial Infarction Genetics (MIGen) Consortium exome sequencing was 
performed as previously described.13,14 Studies included in the MIGen consortium 
were: 1) the Italian Atherosclerosis Thrombosis and Vascular Biology (ATVB) study 
(dbGaP Study Accession phs000814.v1.p1); 2) the Exome Sequencing Project Early-
Onset Myocardial Infarction (ESP-EOMI) study(9); 3) a nested case-control cohort 
from the Jackson Heart Study (JHS); 4) the South German Myocardial Infarction 
study (dbGaP Study Accession phs000916.v1.p1); 5) the Ottawa Heart Study (OHS) 
(dbGaP Study Accession phs000806.v1.p1); 6) the Precocious Coronary Artery 
Disease (PROCARDIS) study (dbGaP Study Accession phs000883.v1.p1) ; 7) the 
Pakistan Risk of Myocardial Infarction Study (PROMIS) (dbGaP Study Accession 
phs000917.v1.p1); 8) the Registre Gironi del COR (Gerona Heart Registry or 
REGICOR) study (dbGaP Study Accession phs000902.v1.p1); 9) the Leicester 
Myocardial Infarction study (dbGaP Study Accession phs001000.v1.p1); 10) the 
BioImage study (dbGaP Study Accession phs001058.v1.p1); 11) and the North 
German Myocardial Infarction study (dbGaP Study Accession phs000990.v1.p1). 
 
The Burrows–Wheeler Aligner algorithm was used to align reads from participants to 
the reference genome (hg19). The GATK HaploTypeCaller was used to jointly call 
variants. Metrics including Variant Quality Score Recalibration (VQSR), quality over 
depth, and strand bias were then used to filter variants. We excluded samples which 
were related to other samples, which had high ratios of heterozygous to non-reference 
homozygous genotypes, which had high missing genotypes, which had a discordant 
genetic gender relative to reports gender, and samples which were discordant relative 
to genotype data.  
 
After variant calling and quality controls, the Variant Effect Predictor15 was used to 
annotate variants which were predicted to lead of loss-of-function: (1) nonsense 
mutations that resulted in early termination of NOS3/GUCY1A3 (2) frameshift 
mutations due to insertions or deletions of DNA; or (3) splice-site mutations which 
result in an incorrectly spliced protein. Predicted loss-of-function variants analysed 
are provided (Supplemental Tables 5-6). 
 
For analysis of rare, predicted loss-of-function variants, we pooled variants in MIGen, 
testing for the association of a predicted loss-of-function variant with coronary heart 



disease using linear and logistic regression, respectively, after adjustment for age, sex, 
cohort and five principle components.  
 
To examine the association of predicted loss-of-function variants in Type 2 Diabetes 
exome sequencing portal with blood pressure, we used the online Genetic Association 
Interactive Test in the T2D Knowledge portal. Exome sequencing was performed in 
the T2D Genes/Go T2D as previously described16 and in the SIGMA Type 2 Diabetes 
Genetics Consortium as previously described.	17 We restricted the analysis to the 
specified loss-of-function variants (Supplemental Table 6). We tested for the 
association of a loss-of-function variant with systolic and diastolic blood pressure 
using linear regression, adjusted for five principal components of ancestry. 
 
D. Gene tissue expression levels  
 
To derive effect estimates of the association between NOS3/GUCY1A3 common 
variation and gene transcription, we used publicly available data from the GTEx 
project.18 In the GTex V6p study, discovery of cis-eQTLs was performed across an 
expanded collection of 44 tissues in 449 individuals (median 16 tissues per individual, 
127 samples per tissue).  cis-eQTLs, or associations between local genetic variation 
and gene expression (≤ 1 Mb from 108 the transcription start site, TSS), were 
identified using genotype and RNA-seq data generated using the FastQTL linear 
model for each tissue, including lung and aorta. 
 
E. Mediation Analysis 
 
To examine what proportion of the decrease in risk of coronary heart disease was 
mediated through systolic blood pressure, we first estimated the causal effect of 
systolic blood pressure on coronary heart disease risk. In a recent genome wide 
association study, 54 loci were identified as being associated with systolic blood 
pressure at genome wide significance (p<5*10-8).19 For estimation of the effect of 
systolic blood pressure on coronary heart disease, we excluded variants from the 
GUCY1A3 (rs4691707) and ATP2B1 loci (rs11105354). We excluded GUCY1A3 as it 
mediates nitric oxide signaling. We excluded ATP2B1 as the allele of rs11105354 
that is associated with lower blood pressure (G) is associated with higher coronary 
heart disease risk (p=1.3*10-10), suggesting ATP2B1 has a pleiotropic effect on 
coronary heart disease independent of blood pressure.  
 
The effect of a 5 mm Hg higher systolic blood pressure on coronary heart disease was 
calculated using inverse variance weighted fixed effects meta-analysis of the effect of 
the remaining 52 loci on coronary heart disease from CARDIOGRAM 1000 
Genomes7: OR 1.21 CI 1.17, 1.24. This effect was then multiplied by the decrease in 
systolic blood pressure associated with increased nitric oxide signaling to estimate the 
decrease in CHD risk mediated through decrease in systolic blood pressure levels. We 
then subtracted this estimate to derive the remaining proportion of CHD risk 
unaccounted for by a decrease in systolic blood pressure. 



Supplemental Tables 
 

Supplemental Table 1. Characteristics of individuals in UK Biobank. 
N Individuals 335464 
Age ± SD, years 57.4 + 8.0 
Male, n (%) 155661 (46.4%) 
UK BiLEVE Array, n (%) 43525 (12.9%) 
Systolic Blood Pressure + SD, mm Hg* 143.3 + 21.7 mm Hg 
Diastolic Blood Pressure + SD, mm Hg* 84.3 + 11.8 mm Hg 
Body Mass Index + SD, kg/m2 27.4 + 4.8 kg/m2 
Waist-to-Hip Ratio + SD 0.87 + 0.09 
Type 2 Diabetes, n (%) 15727 (4.7%) 
Coronary Heart Disease, n (%) 12445 (3.7%) 
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; BP, 
blood pressure; SD, standard deviation; BMI, body mass index. 
*Adjusted for presence of antihypertensive medication (Supplemental Methods A) 
 
 



 
Supplemental Table 2. Characteristics of genome wide association studies included in 
this study.	 
Consortium Outcome/Trait Sample Size Genotyping 
GLGC2 LDL cholesterol 

HDL cholesterol 
Total cholesterol 
Triglycerides 

Up to 188 587 
individuals 

37 studies using metabochip, 
23 studies using various 
arrays 

MAGIC3 Fasting glucose 
Fasting insulin 
Two hour glucose 
HbA1c 

Up to 133 010 
individuals 

Various arrays, imputation to 
2.5 million SNPs using 
HapMap reference panel 

GIANT4,5 Waist-to-hip ratio 
Waist 
circumference 
Hip circumference 
Body mass index 

Up to 322,154 
individuals 

Various arrays, imputation to 
2.5 million SNPs using 
HapMap reference panel 

CKDGen6 Serum estimated 
glomerular 
filtration rate 
Chronic kidney 
disease 

Up to 133 413 
individuals 

Various arrays, imputation to 
2.5 million SNPs using 
HapMap reference panel 

CARDIoGRAM 
Consortium7 

Coronary heart  
disease 

Up to 60801 
cases/ 123504 
controls 

Various arrays, imputation to 
9.5 million SNPs using 1000 
Genomes reference panel 

DIAGRAM8 Diabetes Up to 34 840 
cases/ 114 981 
controls 

37 studies using Metabochip, 
23 studies various arrays, 
imputation to 2.5 million 
SNPs using HapMap 
reference panel 

IHGC9 Headache Up to 59 674 
cases / 316 078 
controls 

Various arrays, imputation to 
9.5 million SNPs using 1000 
Genomes reference panel 

Abbreviations: CARDIoGRAM, Coronary ARtery DIsease Genome wide Replication 
and Meta-analysis; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; 
GIANT, Genetic Investigation of ANthropometric Traits; GLGC, Global Lipids Genetics 
Consortium; MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium; 
CKDGen, Chronic Kidney Disease Genetics Consortium; IHGC, International Headache 
Genetics Consortium; SNPs, single nucleotide polymorphism; LDL cholesterol, low-
density lipoprotein cholesterol; HDL cholesterol, high-density lipoprotein cholesterol. 
 
 
 
 
 
 



 
Supplemental Table 3. Definitions of outcomes  
Outcome Definition (UK Biobank unless otherwise specified) 

Coronary heart disease 

Inverse variance weighted fixed effects meta-analysis of CARDIOGRAM 
Exome Consortium20 outcome (coronary heart disease) and UK Biobank 
outcome:  
(1) Myocardial infarction (MI), coronary artery bypass grafting, or 
coronary artery angioplasty documented in medical history at time of 
enrollment by a trained nurse or  
(2) Hospitalization for ICD-10 code for acute myocardial infarction (I21.0, 
I21.1, I21.2, I21.4, I21.9) or  
(3) Hospitalization for OPCS-4 coded procedure: coronary artery bypass 
grafting (K40.1-40.4, K41.1-41.4, K45.1-45.5) or  
(4) Hospitalization for OPCS-4 coded procedure: coronary angioplasty ± 
stenting (K49.1-49.2, K49.8-49.9, K50.2, K75.1-75.4, K75.8-75.9) 

Atrial fibrillation/flutter 
History of atrial fibrillation or flutter during verbal interview with trained 
nurse or hospitalization for or death due to ICD code I48 

Heart failure 

History of heart failure during verbal interview with trained nurse or 
hospitalization for or death due to ICD code I11.0, I13.0, I13.2, I125.5, I42, 
I50 

Stroke 

History of stroke, adjudicated by UK Biobank centrally as report of stroke 
during verbal interview with trained nurse or hospitalization for or death 
due to ICD code I60-64 
(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=462)   

Peripheral vascular disease 

History of peripheral vascular disease or intermittent claudication during 
verbal interview with trained nurse or hospitalization for or death due to 
ICD code I70, I73.8 or I73.9  

Venous thromboembolism 

History of venous thromboembolism, deep vein thrombosis or pulmonary 
embolism during verbal interview with trained nurse or hospitalization for 
death due to I26, I80.1, I80.2, I81, or I82.0 

Aortic stenosis 
History of aortic stenosis during verbal interview with trained nurse or 
hospitalization for ICD code I06.0, I06.2 I35.0 or I35.2 

Type 2 Diabetes 

Inverse variance weighted fixed effects meta-analysis of DIAGRAM 
Consortium outcome (type 2 diabetes) and UK Biobank (history of 
diabetes unspecified, type 2 diabetes during verbal interview with trained 
nurse or hospitalization for or death due to ICD code E11) 

Chronic kidney disease 
Chronic Kidney Disease Genetics Consortium outcome6 (creatinine 
estimated glomerular filtration rate <60 ml/min) 

Inflammatory bowel disease 

History of inflammatory bowel disease, Crohn’s disease or ulcerative 
colitis during verbal interview with trained nurse or hospitalization for or 
death due to ICD code K50 or K51 

Gastric reflux  
History of gastric reflux during verbal interview with trained nurse or 
hospitalization for or death due to ICD code K21 

Irritable bowel syndrome 
History of irritable bowel syndrome during verbal interview with trained 
nurse or hospitalization for or death due to ICD code K58 

Gallstone 
History of gallstones during verbal interview with trained nurse or 
hospitalization for or death due to ICD code K56.3 or K80 

Hyperthyroidisim 
History of hyperthyroidism during verbal interview with trained nurse or 
hospitalization for or death due to ICD code E05 

Hypothyroidism 
History of hypothyroidism during verbal interview with trained nurse or 
hospitalization for or death due to ICD code E03 

Gout 
History of gout during verbal interview with trained nurse or 
hospitalization for or death due to ICD code M10 

Enlarged prostate History of enlarged prostate during verbal interview with trained nurse or 



hospitalization for or death due to ICD code N40 

Uterine fibroids 
History of uterine fibroids during verbal interview with trained nurse or 
hospitalization for or death due to ICD code D25 

Migraine 

Inverse variance weighted fixed effects meta-analysis of International 
Headache Genetics Consortium outcome (migraine) and UK Biobank 
(history of migraine during verbal interview with trained nurse or 
hospitalization for or death due to ICD code G43) 

Depression 
History of depression during verbal interview with trained nurse or 
hospitalization for or death due to ICD code F32 

Anxiety 
History of anxiety/panic attacks during verbal interview with trained nurse 
or hospitalization for or death due to ICD code F41 

Osteoporosis 
History of osteoporosis during verbal interview with trained nurse or 
hospitalization for or death due to ICD code M80 or M81 

Osteoarthritis 
History of osteoarthritis during verbal interview with trained nurse or 
hospitalization for or death due to ICD code M15-19 

Sciatica 
History of sciatica during verbal interview with trained nurse or 
hospitalization for or death due to ICD code M54.3 

Prolapsed disc 
History of prolapsed disc/slipped disc during verbal interview with trained 
nurse or hospitalization for or death due to ICD code M50.2 or M51.2 

Asthma 
History of asthma during verbal interview with trained nurse or 
hospitalization for or death due to ICD code J45 or J46 

COPD/Emphysema 

History of chronic obstructive airways disease, emphysema/chronic 
bronchitis or emphysema during verbal interview with trained nurse or 
hospitalization for or death due to ICD code J41-44 

Pneumonia 
History of pneumonia during verbal interview with trained nurse or 
hospitalization for or death due to ICD code J12-18 

Allergic rhinitis 
History of hayfever during verbal interview with trained nurse or 
hospitalization for or death due to ICD code J30 

Breast cancer 
History of breast cancer during verbal interview with trained nurse or 
hospitalization for or death due to ICD code C50 

Colorectal cancer 

History of large bowel cancer/colorectal cancer, colon cancer/sigmoid 
cancer or rectal cancer during verbal interview with trained nurse or 
hospitalization for or death due to ICD code C18 

Skin cancer 

History of skin cancer, malignant melanoma, non-melanoma skin cnacer, 
basal cell carcinoma or squamous cell carcinoma during verbal interview 
with trained nurse or hospitalization for or death due to ICD code C43-44 

Prostate cancer 
History of prostate cancer during verbal interview with trained nurse or 
hospitalization for or death due to ICD code C61 

Cervical cancer 
History of cervical cancer or cin cells at the cervix during verbal interview 
with trained nurse or hospitalization for or death due to ICD code C53 

Other cancer 

History of any other cancer than lung cancer, colorectal cancer, skin 
cancer, prostate cancer or cervical cancer during verbal interview with 
trained nurse 

Abbreviations: COPD, chronic obstructive pulmonary disease; ICD, international classification of disease 

 
 
 
 
 
 
 
 



 
 
 
 
Supplemental Table 4. Common variants in NOS3 and GUCY1A3 loci used in the nitric 
oxide signaling genetic risk score. 
Variant Gene Effect MAP-

Lowering 
Alelle 

MAP-
Raising 
Allele  

MAP-Lowering 
Allele 
Frequency 
(UK Biobank) 

Effect on 
MAP 
levels 
(mm Hg) 

rs3918226 NOS3 Promoter C T 0.92 0.68 
rs7692387 GUCY1A3 Intron A G 0.19 0.32 
 
 
 
 



Supplemental Table 5. Rare loss-of-function variants in NOS3 and GUCY1A3 in MIGen. 
CHR:POS_REF/ALT GENE Consequence Amino Acid Change Cases 

With 
Variant 

Controls 
with 

Variant 
7:150692313_C/T NOS3 Stop gained Gln61Ter 1 0 
7:150693999_TG/T NOS3 Frameshift  2 0 
7:150695475_C/T NOS3 Stop gained Gln205Ter 0 1 
7:150696043_C/T NOS3 Stop gained Gln276Ter 0 1 
7:150696132_G/GC NOS3 Frameshift  2 0 
7:150696174_G/A NOS3 Splice donor  1 0 
7:150698642_G/A NOS3 Stop gained Trp480Ter 1 0 
7:150704345_G/A NOS3 Stop gained Trp698Ter 1 0 
7:150706357_T/G NOS3 Splice donor  1 1 
7:150708027_G/A NOS3 Stop gained Trp979Ter 1 0 
7:150709455_CT/C NOS3 Frameshift  1 0 
7:150709543_ATGACATTGAGAGCAAAGGTGAG/A NOS3 Splice donor  1 0 
7:150711007_G/C NOS3 Splice donor  0 1 
4:156618221_C/T  GUCY1A3   Stop gained Arg68Ter 1 0 
4:156625146_G/A   GUCY1A3 Splice donor  1 0 
4:156629431_C/T  GUCY1A3 Stop gained Gln121Ter 1 0 
4:156631714_A/T  GUCY1A3 Stop gained Lys133Ter 1 0 
4:156631799_A/AT GUCY1A3 Frameshift  1 0 
4:156632362_C/T GUCY1A3 Stop gained Arg349Ter 1 0 
4:156634280_AT/A  GUCY1A3 Frameshift   0 1 
4:156638351_T/G  GUCY1A3 Stop gained Leu538Ter 0 1 
4:156651181_G/C   GUCY1A3 Splice acceptor  0 1 
4:156651352_AT/A  GUCY1A3 Frameshift  1 1 
 
 
 



Supplemental Table 6. Rare loss-of-function variants in NOS3 and GUCY1A3 used in T2D GENES. 
CHR:POS_REF/ALT GENE Consequence Amino Acid Change Participants with Variant 
7:150695676_C/T NOS3 Stop gained Arg242Ter 2 
7:150695722_AG/A NOS3 Frameshift  1 
7:150697628_TCC/T NOS3 Frameshift  1 
7:150698396_CA/C NOS3 Frameshift  2 
7:150703523_AG/TGA NOS3 Frameshift  2 
7:150703584_T/C NOS3 Splice donor  1 
7:150704338_C/T NOS3 Stop gained Arg696Ter 3 
7:150706066_C/T  NOS3 Stop gained Arg721Ter 1 
7:150707816_C/A NOS3 Stop gained Tyr939Ter 1 
7:150710317_A/G NOS3 Splice acceptor  1 
7:150710928_GC/G NOS3 Frameshift  1 
4:156629400_AAG/A GUCY1A3 Frameshift  2 
4:156632156_C/A GUCY1A3 Stop gained Ser280Ter 1 
4:156632405_T/C  GUCY1A3 Splice donor  1 
4:156634315_AC/A GUCY1A3 Frameshift  1 
4:156634415_C/T  GUCY1A3 Stop gained Gln418Ter 1 
4:156634421_C/T  GUCY1A3 Stop gained Arg420Ter 2 
4:156634427_C/T GUCY1A3 Stop gained Gln422Ter 1 
4:156651181_G/C GUCY1A3 Splice acceptor  1 
4:156651352_AT/A GUCY1A3 Frameshift  1 
 
 
 



Supplemental Figures and Figure Legends 
 

 
 
Supplemental Figure 1. Study design. Abbreviations: CARDIOGRAMplusC4D, 
Coronary ARtery DIsease Genome-wide Replication and Meta-analysis plus The 
Coronary Artery Disease Genetics consortium7; DIAGRAM, 
DIAbetes Genetics Replication And Meta-analysis8; GIANT, Genetic Investigation 
of ANthropometric Traits4,5; GLGC, Global Lipids Genetics Consortium2; MAGIC, 
Meta-Analyses of Glucose and Insulin-related traits Consortium3; CKDGen, Chronic 
Kidney Disease Genetics Consortium6; IHGC, International Headache Genetics 
Consortium.9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	
	
	

	

• Two variants in NOS3 
and GUCY1A3 

• Associated with 
increased NOS3 and 
GUCY1A3 expression 

• Associated with lower 
mean arterial pressure 

Primary Analysis:  
9 different 
cardiometabolic diseases 
 

Secondary Analysis: 16 
different cardiometabolic 
traits 

Secondary Analysis: 
Phenome-wide 
association study of 26 
different phenotypes 

•UK Biobank (N=335464) 
•CARDIOGRAMplusC4D (N=184305) 
•DIAGRAM (N=149821) 
•CKDGen (N=133413) 
•  
•UK Biobank (N=335464) 
•GIANT (N=322154) 
•GLGC (N=188578) 
•MAGIC (N=133010) 
•CKDGen (N=133413) 
 

•UK Biobank (N=335464) 
•CKDGen (N=133413) 
• IHGC (N=375752) 

Variants Analyses Data Sources 



 
 
 
	

 
 
Supplemental Figure 2. Association of nitric oxide signaling genetic score (per 5 mm Hg 
lower MAP) with FEV1 by quartile of baseline pulmonary function. Estimates were 
derived in UK Biobank using linear regression, adjusted for age, sex, ten principal 
components of ancestry and a dummy variable for array type. Abbreviations: FEV1, 
forced expiratory volume in one second. 
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Test for interaction: p=0.34 



 
Supplemental Figure 3. Association of nitric oxide signaling genetic score with coronary 
heart disease. Estimate in UK Biobank was derived using logistic regression, adjusted for 
age, sex, ten principal components and array type. Estimate in CARDIOGRAM was 
derived using inverse variance weighted fixed effects meta-analysis. OR, odds ratio; 
CHD, coronary heart disease. CARDIOGRAM, Coronary ARtery DIsease Genome wide 
Replication and Meta-analysis. 
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Supplemental Figure 4. Association of nitric oxide signaling genetic score with coronary 
heart disease, peripheral arterial disease and stroke, standardized to a 2.5 mm Hg, 5 mm 
Hg and 10 mm Hg mean arterial pressure reduction. Estimates were derived in UK 
Biobank using logistic regression, adjusted for age, sex, ten principal components and 
array type. Estimates for coronary heart disease additionally included summary estimates 
from CARDIOGRAM and were pooled using inverse variance weighted fixed effects 
meta-analysis. OR, odds ratio; SD, standard deviation; COPD, chronic obstructive 
pulmonary disease. CARDIOGRAM, Coronary ARtery DIsease Genome wide 
Replication and Meta-analysis. 
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Supplemental Figure 5. Mediation analysis of the association of nitric oxide signaling 
genetic score with coronary heart disease. Estimates were derived through inverse 
variance weighted fixed effects meta-analysis of estimates in UK Biobank (derived using 
logistic regression, adjusted for age, sex, ten principal components and array type) and 
CARDIOGRAM. OR, odds ratio; SBP, systolic blood pressure; CHD, coronary heart 
disease. CARDIOGRAM, Coronary ARtery DIsease Genome wide Replication and 
Meta-analysis. 
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Supplemental Figure 6. Association of rare, predicted loss-of-function variants in the 
nitric oxide signaling pathway with diastolic blood pressure. Estimates for diastolic blood 
pressure from MIGen were derived using linear regression, with adjustment for sex, 
cohort and five principal components of ancestry. Estimates for diastolic blood pressure 
from T2D Genes were derived using linear regression with adjustment for five principal 
components of ancestry. Abbreviations: OR, odds ratio; DBP, diastolic blood pressure; 
MIGen, Myocardial Genetics Consortium.  
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