

Supplementary Figure 1. Pharmacological modulation of MAPK/ERK pathway activation in neonatal rat ventricular myocyte cultures. (a) Expression of phosphorylated (activated) ERK1/2 and total ERK1/2 by Western blot under baseline conditions (control) and following treatment with arachidonic acid (aa; 200 μ M, 2 h), okadaic acid (oa, 10 nM; 1 h), or inhibitor of Raf1 (Raf1-I, 20 μ M; 1 h). P-ERK signals normalized to ERK signals (and indexed to GAPDH). (b) Phospho-ERK1/2 expression before and after treatment with endothelin-1 (ET-1, 10 nM; 24 h) or angiotensin-II (AngII, 1 μ M; 24 h), and additional treatment with aa (200 μ M; 2 h), oa (10 nM; 1 h), or Raf1-I (20 μ M; 1 h). Bar graphs in (a) and (b) show phospho-ERK1/2 over ERK1/2 (indexed to GAPDH), relative to the mean expression level in control cells. Data are mean±SEM, n=3 different cell culture batches per condition; duplicate analysis per batch; *p<0.05, **p<0.01, and ***p<0.001, by Holm-Sidak method following ANOVA.

Supplementary Figure 2. Expression of phospho-titin and PP5 in healthy and diseased dog left ventricular tissue. (a) Site-specific N2Bus phosphorylation by Western blot in myocardial tissue from healthy canine hearts vs. hypertensive (Hypert.) hearts with diastolic dysfunction. Detection with phospho-specific antibody to human P-S4010. Bar graph shows the mean±SEM (n=5/group) phosphorylation level in hypertensive hearts relative to that in control hearts. (b) PP5 expression in healthy canine hearts vs. hypertensive hearts (n=5/group). Bar graph shows the mean±SEM (n=5/group) expression level in hypertensive hearts relative to that in control hearts. *p<0.05, by two-tailed Student's t-test.

Supplementary Figure 3. Effect of PKA, PKG, and PP5c on passive tension of single permeabilized cardiomyocytes from WT and PP5 TG mouse hearts. (a) Passive tension (F_{passive}) vs. SL curves of PP5 TG and WT cardiomyocytes in relaxing solution, before and after treatment with catalytic subunit of PKA. (b) F_{passive}-SL curves of PP5 TG and WT cardiomyocytes before and after treatment with cGMP-activated PKG. (c) F_{passive}-SL curves of WT cardiomyocytes before and after treatment with cGMP-activated PKG and additional exposure to PP5c. Data are mean±SEM, n=6 cells/condition (a and b), n=5 cells/condition (c). Curves are second-order polynomial fits to the means. *p<0.05, TG vs. WT; #p<0.05, WT+PKA vs. WT in (a) and WT+PKG vs. WT in (b) and (c); †p<0.05, TG+PKA vs. TG in (a), TG+PKG vs. TG in (b), and WT+PKG+PP5c vs. WT+PKG in (c); all by two-tailed Student's t-test.

Supplementary Figure 4. Properties of signaling molecules in PP5 TG and WT mouse cardiomyocytes. (a) Localization of FHL-1 in cardiomyocytes from PP5 TG and WT hearts by indirect immunofluorescence. Anti-FHL-1 antibody (secondary antibody: Cy3-conjugated IgG), counterstained with anti-PEVK (titin) antibody (secondary antibody: FITC-conjugated IgG). Bars, 5 μ m (main) and 1 μ m (insets). (b) Expression levels of PP1, PP2a, and ERK1/2 in PP5 TG mouse hearts, relative to those in WT hearts, by Western blot. Bar graphs show mean±SEM, n=4 hearts/group; duplicate analysis/heart.

Figure 1b

Figure 1c

CoIP: Beads (no PP5) + N2Bus-myc (CONTROL)			CoIP: Beads + PP5-HA + N2Bus-myc		
WB: HA (PP5)	WB: I	myc (N2Bus)	WB: HA (PP5)	WB: myc (N2Bus)	
IP WCL Flow HA(F Input through Wash Elua	P5) WCL Flow te Input through	IP: HA (PP5) Wash Eluate	IP: WCL Flow HA(PP5) Input through Wash Eluate	IP: WCL Flow HA(PP5) Input through Wash Eluate	
	kDa 100 70 55		kDa 100 70 55		

Figure 2e

Figure 3a

Figure 3b

Figure 3c

Figure 3e

Figure 3f

Figure 4a

Figure 4d

Figure 6a

Figure 6b

Figure 6c

Figure 7a

Supplementary Figure 5. Uncropped images of blots and gels used in main figures.

The number of the corresponding figure is shown above the panels. Regions used for figures are boxed. Position of molecular mass marker is shown on the side (kDa or MDa).

Supplementary Figure 1a

Supplementary Figure 1b

Supplementary Figure 2a

Supplementary Figure 2b

Supplementary Figure 6. Uncropped images of blots and gels used in

supplementary figures. The number of the corresponding figure is shown above the panels. Regions used for figures are boxed. Position of molecular mass marker is shown on the side (kDa or MDa).

Name	Restriction site	Sequence
Titin N2Bus 5'	Ndel (CATATG)	GACATGACTGATACCCCCTGC
Titin N2Bus 3'	Sall (GTCGAC)	GCCATCCTCTTTGATTAAGC
Titin N2Bus 5'	BamHI GGATCC)	GACATGACTGATACCCCCTGC
Titin N2Bus 3'	Xhol (CTCGAG)	GCCATCCTCTTTGATTAAGC
N2Bus C-Term 5'	EcoRI (GAATTC)	CTTGTTACTTCGGCAAAGTCTGTAACAG
N2Bus C-Term 3'	Xhol (CTCGAG)	GCCATCCTCTTTGATTAAGCCACCCTCAG
PP5 full-length 5'	EcoRI (GAATTC)	ATGGCGATGGCGGA
PP5 full-length 3'	Xhol (CTCGAG)	TCACATCATTCCTAGCTGCA
PP5 catalytic 5 ⁴	EcoRI (GAATTC)	AGCATGACCATTGAGGAT
PP5 catalytic 3'	Xhol (CTCGAG)	CATCATTCCTAGCTGCAG
PP5 TPR 5'	EcoRI (GAATTC)	GCAGAGGAGC
PP5 TPR 3'	Xhol (CTCGAG)	GTCATGGGGCT
PP5 TPR+ 5'	EcoRI (GAATTC)	ATGGCGATGGCGGA
PP5 TPR+ 3'	Xhol (CTCGAG)	GTCTTCAAGCTTGGGTCC
Hsp90 5'	EcoRI (GAATTC)	ATGCCCCCGTGTTCGGGC
Hsp90 3'	Xhol (CTCGAG)	GTCTACTTCTTCCATG
FHL-2 5'	EcoRI (GAATTC)	ATGACTGAGCGCTTTGAC
FHL-2 3'	Xhol (CTCGAG)	TCAGATGTCTTTCCCACAG
Titin N2A 5'	EcoRI (GAATTC)	GCTGGCAGGGAAATAAAGC
Titin N2A 3'	Sall (GTCGAC)	GGTGGCACTGCTCTGATAGG
Titin PEVK 5'	EcoRI (GAATTC)	CCTGGAGGTGAAAAGAAAG
Titin PEVK 3'	Xhol (CTCGAG)	GGTGAACGGGGCTT

Supplementary Table 1. Primers for PCR used to generate recombinant WT constructs.