1 Title: Sertraline, Paroxetine, and Chlorpromazine Are Rapidly Acting Anthelmintic

2 **Drugs Capable of Clinical Repurposing.**

- 3 Authors: Janis C. Weeks¹, William M. Roberts¹, Caitlyn Leasure², Brian M. Suzuki³,
- 4 Kristin J. Robinson¹, Heather Currey⁴, Phurpa Wangchuk⁵, Ramon M. Eichenberger⁵,
- 5 Aleen D. Saxton⁴, Thomas D. Bird^{4,6,7,8}, Brian C. Kraemer^{4,7,9,10}, Alex Loukas⁵, John M.
- 6 Hawdon², Conor R. Caffrey³, and Nicole F. Liachko^{4,9*}

7 Supplemental Information:

8 Supplementary Table S1. Drugs with anthelmintic bioactivity in *C. elegans*

9

Compound	Clinical Use	Administration	Mechanism
Chlorpromazine	anti- psychotic	oral, injection, intravenous	dopamine receptor antagonist
Demeclocycline	anti-biotic	oral	tetracycline family member; inhibits protein synthesis
Econazole Nitrate	anti-fungal	topical, suppository	imidazole class molecule; inhibits synthesis of ergosterol thereby disrupting fungal cell membranes
Flecainide	anti- arrhythmia	oral	sodium channel blocker
Floxuridine	anti-cancer	intra-arterial infusion	pyrimidine analog; inhibits the S- phase of cell division
Fludarabine	anti-cancer	intravenous, oral	purine analog; inhibits DNA synthesis
5-Fluorouracil	anti-cancer	intravenous, topical	pyrimidine analog; irreversibly inhibits thymidylate synthase
Hexachlorophene	anti- bacterial	topical	inhibits bacterial electron transport chain of gram-positive bacteria
Miconazole Nitrate	anti-fungal, anti- parasite	topical, oral	imidazole class molecule; inhibits synthesis of ergosterol thereby disrupting fungal cell membranes
Minocycline	anti-biotic	oral, injection, intravenous	tetracycline family member; inhibits protein synthesis
Paroxetine	anti- depressant	oral	selective serotonin reuptake inhibitor
Sertraline	anti- depressant	oral	selective serotonin reuptake inhibitor
Triclosan	anti- bacterial	topical	inhibits bacterial fatty acid synthesis

10 Supplementary Table S2. *C. elegans* developmental stages 48 h after drug

11 exposure

12

[Drug], μM	Sertraline	Paroxetine	Chlorpromazine	
0 (DMSO control)	L4	L4	L4	
10	L2	L2 L2/L		
25	L1/L2	L2	L2	
50	L1/L2	L1/L2	L2	
75	L1	L1	L1/L2	
100	L1	L1	L1/L2	
125	L1	L1	L1	
150	L1	L1	L1	

13

14 Developmental stage(s) of the entire tested *C. elegans* population (live and dead) were

assessed 48 h after being plated as embryos on agar that contained sertraline,

16 paroxetine or chlorpromazine at the indicated concentrations (see Figure 1A). "L"

17 denotes larval stage. N > 80 worms per group.

18

19 Supplementary Table S3. Candidate anthelmintic pathway genes tested.

20

<i>C. elegans</i> gene	Mutation tested	Human homolog	Function/Resistance	SRT effect	PXT effect	CPZ effect			
Anthelmintic Resistance Genes									
acr-23	ok2804	CHRNA6	monepantel resistant	N	N	N			
avr-14; avr-	ad1305;	GLRA2/3	ivermectin resistant	N	N	N			
15; glc-1	vu227;								
	pk54								
ben-1	e1880	TUBB4B	benzimidazole resistant	N	N	N			
bre-1	ye4	GMDS	BT toxin resistant	N	N	N			
slo-1	js379	KCNMA1	emodepside resistant	N	S	Ν			
unc-29	e193	CHRNA4	levamisole resistant	N	Ν	Ν			
unc-50	e306	UNC50	levamisole resistant	N	S	S			
Dopamine Signaling									
cat-2	e1112	TH	dopamine biosynthesis	S	S	S			
dat-1	ok157	DAT	dopamine transporter	N	N	N			
dop-2; dop-	vs105;	DRD2	dopamine D2 receptor	N	N	N			
3	vs106								
Octopamine Signaling									
ser-3	ok2007	ADRA1A	octopamine receptor	N	Ν	N			
	ad1774								
tbh-1	n3247	DBH	tyramine beta-hydroxylase	Ν	Ν	N			
Serotonin S	ignaling								
glr-1	n2641	GRIA1	AMPA receptor	N	N	N			
nrf-5	sa513	-	fluoxetine resistant	N	N	N			
nrf-6	sa525	-	fluoxetine resistant	N	S	N			
mod-1	ok103	GABRB3	serotonin gated chloride	N	N	N			
			channel						
mod-5	n822	SCL6A4	serotonin transporter	S	S	Ν			
ser-4	ok512	HTR1D2	G-protein coupled	N	Ν	N			
			receptors						
ser-7; ser-1	tm1325;	HTR7; HTR2	G-protein coupled receptor	N	Ν	N			
	ok345								
tph-1	n4622	TPH2	serotonin biosynthesis	N	Ν	N			
Tyramine Signaling									
ser-2	pk1357	HTR1A	tyramine receptor	N	N	N			
tdc-1	n3419	DDC	tvrosine decarboxvlase	N	N	Ν			

21

22 Effect of drug treatment on mutant worms relative to wild-type *C. elegans*. Each drug

was tested at 25 μ M, 50 μ M, 100 μ M and 150 μ M in duplicate wells, and each

experiment was repeated at least twice. N = 50-100 worms/ well. Mutant worm

development, motility and survival were compared to that of wild-type worms at the

same concentrations of drug. SRT, sertraline; PXT, paroxetine; CPZ, chlorpromazine.

S, sensitive (increased mutant lethality relative to wild-type); N, no difference between

- wild-type and mutant responses; R, resistance (decreased mutant lethality relative to
- 29 wild-type).

30