## **Supplementary Information**

## Sac7 and Rho1 regulate the white-to-opaque switching in *Candida albicans*

Siwy Ling Yang<sup>1</sup><sup>¶</sup>, Guisheng Zeng<sup>1</sup><sup>¶</sup>, Fong Yee Chan<sup>1</sup>, Yan-Ming Wang<sup>1</sup>, Dongliang Yang<sup>2</sup>, and Yue Wang<sup>1, 3</sup>\*

<sup>1</sup>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673; <sup>2</sup>Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210046, People's Republic of China; <sup>3</sup>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597



**Fig. S1:** Wild-type (GZY903) and haploid deletion mutants (as indicated) were streaked onto YPD (pH 6.0, +PB) plates and incubated at 30°C for 7 days to allow the formation of single colonies. Representative images of colonies from each strain are shown. Asterisks indicate mutants with much less red colonies than the wild type. Bar, 5 mm.



**Fig. S2:** Scanning electron micrographs of white (**A** and **B**) and opaque (**C** and **D**) cells. WT (WUM5A, A and C) and  $sac7\Delta/\Delta$  (YSL504, B and D) cells were grown on Lee's GlcNAc plates (pH 6.0, +PB) in the dark at 25°C for 6 days. Cells from white and red colonies of each strain were then grown in liquid Lee's medium with 1.25% glucose (white) or with 1.25% GlcNAc (Red) at 25°C for 3 days. To perform SEM, cells were harvested and washed once with 0.1M sodium cacodylate buffer (pH 7.4).Cells were then resuspended in fixation buffer (2.5% glutaradehyde in 0.1M sodium cacodylate buffer, pH 7.4) and incubated on shaker for 30 min at 25°C. Post-staining was done in 1% osmium tetraoxide before gradual dehydration in increasing ethanol concentrations. Dehydrated cells were dried in a critical point dryer before being mounted and sputter coated with gold (Leica). Samples were viewed in a Jeol 6701F field emission SEM.



С

| Strain               | Wh colonies | Op colonies or<br>wh colonies with<br>op regions | Total colonies | Switching<br>frequencies (%) |
|----------------------|-------------|--------------------------------------------------|----------------|------------------------------|
| WUM5A                | 105         | 291                                              | 396            | 73.4 ± 2.4                   |
| sac7 $\Delta/\Delta$ | 721         | 0                                                | 721            | $0.0 \pm 0.0 $               |
| sac7∆/∆+SAC7         | 174         | 149                                              | 323            | 46.4±4.4 <sup>]*</sup>       |

**Fig. S3:** The  $sac7\Delta/\Delta$  mutant is defective in CO<sub>2</sub>-induced white-to-opaque switching. (a) Cells of WUM5A (WT),  $sac7\Delta/\Delta$  (YSL504), and  $sac7\Delta/\Delta+SAC7$  (YSL532) were spread onto Lee's glucose plates (pH 6.0, +PB) and incubated in the presence of 5% CO<sub>2</sub> at 25°C in the dark for 4 days before photography. (b) Cells from randomly selected red and white colonies of the tested strains were suspended in water and examined under a microscope. (c) The white-to-opaque switching frequency for GH1322,  $sac7\Delta/\Delta$ , and  $sac7\Delta/\Delta+SAC7$  tested on Lee's glucose plates (pH 6.0, +PB) in the presence of 5% CO<sub>2</sub>. \*, p<0.05 (Student's *t*-test).



**Fig. S4**: Rho1 negatively regulates CO<sub>2</sub>-induced white-to-opaque switching. (**a**) Cells of WUM5A or WUM5A transformed with  $RHO1^{WT}$  (YSL617),  $RHO1^{G18V}$  (YSL608), or  $RHO1^{D124A}$  (YSL613) were grown on Lee's glucose plates (pH6.0, +PB) in the presence of 5% CO<sub>2</sub> at 25°C in the dark for 4 days. Colonies formed by each strain were photographed and representative images are shown. (**b**) Representative images of white and opaque cells from the indicated strains. (**c**) CO<sub>2</sub>-induced white-to-opaque switching frequency for WUM5A, WUM5A transformed with  $RHO1^{WT}$ ,  $RHO1^{G18V}$ , or  $RHO1^{D124A}$  strains.\*, p<0.05 (Student's *t*-test).



**Fig. S5:** Wild-type (WUM5A), *sac7* $\Delta$ / $\Delta$  (YSL504) and *sac7* $\Delta$ / $\Delta$ +*SAC7* (YSL532) were grown in YPD at 30 °C overnight. The cultures were then adjusted to OD600=1, and subjected to 10 time dilution, followed by 5 times serial dilutions. 3 ul of the diluted cultures were spotted on plates of YPD, YPD with 0.01% SDS, YPD with12.5 µg/ml calcofluor white (CFW), YPD with 15 µg/ml congo red (CR), and incubated at 25°C and 30°C for 2-3 days.



**Fig. S6**: (a and b) Increase of Mkc1 phosphorylation level in  $sac7\Delta/\Delta$  (a) and *MKK2* overexpression (b) cells. Protein extracts were prepared from WT (WUM5A),  $sac7\Delta/\Delta$  (YSL504), and *MKK2* overexpression (YSL643) cells and subjected to Western analysis with anti-phosphorylated-Mkc1 antibody (Cell Signaling). The same membrane was striped and probed with anti-Cdc28 antibody ( $\alpha$ -PSTAIRE, Santa Cruz) to serve as loading control. (c) WT cells transformed with empty vector (pYGS860) or *MKK2* overexpression plasmid (pYSL93) were spread onto Lee's GlcNAc (pH 6, +PB) and incubated at 25°C in dark for 6 days before photography. Cells from red and white colonies of each strain were suspended into water and examined under a microscope for image acquisition. (d) White and red colonies ( including white colonies with red regions ) of each strain were counted for the calculation of white-to-opaque switching frequency. \*, p<0.05 (Student's *t*-test).

| Su | pple | ement | ary | Table | 1. | Yeast | strains | used | in | this | stud | y |
|----|------|-------|-----|-------|----|-------|---------|------|----|------|------|---|
|----|------|-------|-----|-------|----|-------|---------|------|----|------|------|---|

| Strain  | Genotype/Description                                                                                                                                                    | Source/Parent |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| GZY803  | $MTL\alpha$ his4 ura3 $\Delta$ ::HIS4                                                                                                                                   | (1)           |
| GZY885  | (gpb1 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 gpb1 $\Delta$ ::UFP; deletion of GPB1 in GZY803 by using pYGS1084                                               | GZY803        |
| GZY886  | ( <i>msb3</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 msb3</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>MSB3</i> in GZY803 by using pYGS1087 | GZY803        |
| GZY887  | ( <i>rho2</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 rho2</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>RHO2</i> in GZY803 by using pYGS1086 | GZY803        |
| GZY893  | ( <i>ira2</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 ira2</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>IRA2</i> in GZY803 by using pYGS1089 | GZY803        |
| GZY895  | (ypt52 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 ypt52 $\Delta$ ::UFP; deletion of YPT52 in GZY803 by using pYGS1091                                            | GZY803        |
| GZY897  | (roy1 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 roy1 $\Delta$ ::UFP; deletion of ROY1 in GZY803 by using pYGS1093                                               | GZY803        |
| GZY898  | (rgd2 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 rgd2 $\Delta$ ::UFP; deletion of RGD2 in GZY803 by using pYGS1090                                               | GZY803        |
| GZY903  | (GZY803+URA3) MTLα his4 ura3Δ::HIS4 URA3; integration of pYGS860 into GZY803                                                                                            | GZY803        |
| GZY904  | ( <i>dmn1</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 dmn1</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>DMN1</i> in GZY803 by using pYGS1100 | GZY803        |
| GZY905  | (orf19.3216Δ) <i>MTLα his4 ura3Δ::HIS4 orf19.3216Δ::UFP</i> ; deletion of <i>ORF19.3216</i> in GZY803 by using pYGS1103                                                 | GZY803        |
| GZY908  | (yrb30Δ) MTL $\alpha$ his4 ura3Δ::HIS4 yrb30Δ::UFP; deletion of YRB30 in GZY803 by using pYGS1104                                                                       | GZY803        |
| GZY912  | (arl1 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 arl1 $\Delta$ ::UFP; deletion of ARL1 in GZY803 by using pYGS1108                                               | GZY803        |
| GZY913  | (arl3 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 arl3 $\Delta$ ::UFP; deletion of ARL3 in GZY803 by using pYGS1109                                               | GZY803        |
| GZY915  | (guf1 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 guf1 $\Delta$ ::UFP; deletion of GUF1 in GZY803 by using pYGS1112                                               | GZY803        |
| GZY916  | (sac7 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 sac7 $\Delta$ ::UFP; deletion of SAC7 in GZY803 by using pYGS1088                                               | GZY803        |
| GZY950  | (sac7Δ) MTL $\alpha$ his4 ura3Δ::HIS4 sac7Δ::FRT; loop out of URA3 from GZY916                                                                                          | GZY916        |
| GZY1092 | (sac7 $\Delta$ +URA3) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 sac7 $\Delta$ ::FRT URA3; integration of pYGS860 into GZY950                                               | GZY950        |
| GZY1121 | (GZY803+URA3+dTMT) MTLα his4 ura3Δ::HIS4 URA3 OP4::dTomoto-SAT1; integration of pYSL54 into GZY903                                                                      | GZY903        |
| GZY1141 | (sac7 $\Delta$ +URA3+dTMT) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 sac7 $\Delta$ ::FRT URA3 OP4::dTomoto-SAT1;<br>integration of pYSL54 into GZY1092                     | GZY1092       |
| GZY1146 | (sac7Δ+SAC7) MTLα his4 ura3Δ::HIS4 sac7Δ::FRT sac7::SAC7-URA3; integration of pYSL60<br>into GZY950                                                                     | GZY950        |
| GZY1153 | (sac7Δ+SAC7+dTMT) MTLα his4 ura3Δ::HIS4 sac7Δ::FRT sac7::SAC7-URA3 OP4::dTomoto-<br>SAT1; integration of pYSL54 into GZY1146                                            | GZY1146       |
| GZY1130 | (sac7Δ+WOR1 <sup>0E</sup> +dTMT) MTLα his4 ura3Δ::HIS4 sac7Δ::FRT wor1::TetO-Myc-WOR1-TetR-<br>URA3 OP4::dTomoto-SAT1; integration of pYSL54 into YSL36                 | YSL36         |
| YGJ01   | (yip4 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 yip4 $\Delta$ ::UFP; deletion of YIP4 in GZY803 by using pGJX01                                                 | GZY803        |
| YGJ02   | (yip5 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 yip5 $\Delta$ ::UFP; deletion of YIP5 in GZY803 by using pGJX02                                                 | GZY803        |
| YGJ03   | (ypt6 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 ypt6 $\Delta$ ::UFP; deletion of YPT6 in GZY803 by using pGJX03                                                 | GZY803        |
| YGJ04   | ( <i>nug1</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 nug1</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>NUG1</i> in GZY803 by using pGJX04   | GZY803        |
| YGJ05   | (glo3 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 glo3 $\Delta$ ::UFP; deletion of GLO3 in GZY803 by using pGJX05                                                 | GZY803        |
| YGJ06   | (age2 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 age2 $\Delta$ ::UFP; deletion of AGE2 in GZY803 by using pGJX06                                                 | GZY803        |
| YHZ01   | (gyp1 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 gyp1 $\Delta$ ::UFP; deletion of GYP1 in GZY803 by using pHZX01                                                 | GZY803        |
| YHZ02   | ( $qvp5\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 $qvp5\Delta$ ::UFP: deletion of GYP5 in GZY803 by using pHZX02                                                  | GZY803        |

| YHZ03  | (gyp6Δ) MTL $\alpha$ his4 ura3Δ::HIS4 gyp6Δ::UFP; deletion of GYP6 in GZY803 by using pHZX03                                                                                           | GZY803 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| YHZ04  | (gyp8 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 gyp8 $\Delta$ ::UFP; deletion of GYP8 in GZY803 by using pHZX04                                                                | GZY803 |
| YWH01  | (vtc1 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 vtc1 $\Delta$ ::UFP; deletion of VTC1 in GZY803 by using pWHT01                                                                | GZY803 |
| YWH02  | ( <i>mdr1</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 mdr1</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>MDR1</i> in GZY803 by using pWHT02                  | GZY803 |
| YWH03  | ( <i>rho4</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 rho4</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>RHO4</i> in GZY803 by using pWHT03                  | GZY803 |
| YWH04  | ( <i>bem2</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 bem2</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>BEM2</i> in GZY803 by using pWHT04                  | GZY803 |
| YWH05  | (hbs1 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 hbs1 $\Delta$ ::UFP; deletion of HBS1 in GZY803 by using pWHT05                                                                | GZY803 |
| YWH06  | (trs120 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 trs120 $\Delta$ ::UFP; deletion of TRS120 in GZY803 by using pWHT06                                                          | GZY803 |
| YWH07  | (trs130 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 trs130 $\Delta$ ::UFP; deletion of TRS130 in GZY803 by using pWHT07                                                          | GZY803 |
| YWH08  | (gem1 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 gem1 $\Delta$ ::UFP; deletion of GEM1 in GZY803 by using pWHT08                                                                | GZY803 |
| YWH09  | (arf1 $\Delta$ ) MTL $\alpha$ his4 ura3 $\Delta$ ::HIS4 arf1 $\Delta$ ::UFP; deletion of ARF1 in GZY803 by using pWHT09                                                                | GZY803 |
| YWH10  | ( <i>rho3</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 rho3</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>RHO3</i> in GZY803 by using pWHT10                  | GZY803 |
| YWH11  | ( <i>Irg1</i> $\Delta$ ) <i>MTL</i> $\alpha$ <i>his4 ura3</i> $\Delta$ :: <i>HIS4 Irg1</i> $\Delta$ :: <i>UFP</i> ; deletion of <i>LRG1</i> in GZY803 by using pWHT11                  | GZY803 |
| WUM5A  | (GH1322) $MTL\alpha/\alpha$ ura3 $\Delta$ ::FRT/ura3 $\Delta$ ::FRT                                                                                                                    | (2)    |
| YSL36  | (sac7Δ+WOR1 <sup>oE</sup> ) MTLα his4 ura3Δ::HIS4 sac7Δ::FRT wor1::TetO-Myc-WOR1-TetR-URA3;<br>integration of pYSL06 into GZY950                                                       | GZY950 |
| YSL501 | <i>MTLα/α ura3Δ::FRT/ura3Δ::FRT SAC7/sac7Δ::UFP;</i> deletion of <i>SAC7</i> in WUM5A by using pYGS1088                                                                                | WUM5A  |
| YSL502 | MTLα/α ura3Δ::FRT/ura3Δ::FRT SAC7/sac7Δ::FRT; loop out of URA3 from YSL501                                                                                                             | YSL501 |
| YSL503 | (sac7Δ/Δ) <i>MTLα/α ura3Δ::FRT/ura3Δ::FRT sac7Δ::UFP/sac7Δ::FRT;</i> deletion of SAC7 in YSL502<br>by using pYSL21                                                                     | YSL502 |
| YSL504 | (sac7Δ/Δ) <i>MTLα/α ura3Δ::FRT/ura3Δ::FRT</i> sac7Δ::FRT/sac7Δ::FRT; loop out of <i>URA3</i> from<br>YSL503                                                                            | YSL503 |
| YSL505 | (sac7Δ/Δ+WOR1 <sup>0E</sup> ) MTLα/α ura3Δ::FRT/ura3Δ::FRT sac7Δ::FRT/sac7Δ::FRT WOR1/wor1::TetO-<br>Myc-WOR1-TetR-URA3; integration of pYSL06 into YSL504                             | YSL504 |
| YSL509 | (WUM5A+vector) ; <i>MTLα/α ura3Δ::FRT/ura3Δ::FRT URA3</i> ; integration of pYGS860 into WUM5A                                                                                          | WUM5A  |
| YSL512 | (WUM5A+SAC7 <sup>οE</sup> ) <i>MTLα/α ura3Δ::FRT/ura3Δ::FRT SAC7/sac7::TetO-Myc-SAC7-TetR-URA3</i> ;<br>integration of pYSL153 into WUM5A                                              | WUM5A  |
| YSL532 | (sac7Δ/Δ+SAC7) MTLα/α ura3Δ::FRT/ura3Δ::FRT sac7Δ::FRT/sac7Δ::SAC7-URA3; integration of<br>pYSL60 into YSL504                                                                          | YSL504 |
| YSL564 | ( <i>Myc-RHO1<sup>D124A</sup>) MTLα/α ura3Δ::FRT/ura3Δ::FRT RHO1/rho1::TetO-Myc- RHO1<sup>D124A</sup>-TetR-URA3</i> ;<br>integration of pYGS1279 into WUM5A                            | WUM5A  |
| YSL570 | ( <i>Myc-RHO1<sup>G18V</sup>) MTLα/α ura3Δ::FRT/ura3Δ::FRT RHO1/rho1::TetO-Myc- RHO1<sup>G18V</sup>-TetR-URA3</i> ;<br>integration of pYGS1280 into WUM5A                              | WUM5A  |
| YSL601 | (Myc-RHO1 <sup>618V</sup> +SAC7-HA) MTLα/α ura3Δ::FRT/ura3Δ::FRT RHO1/rho1::TetO-Myc- RHO1 <sup>G18V</sup> -<br>TetR-URA3 SAC7/sac7::SAC7-HA-SAT1; integration of pYSL79 into YSL570   | YSL570 |
| YSL607 | (SAC7-HA) MTLα/α ura3Δ::FRT/ura3Δ::FRT SAC7/sac7::SAC7-HA-SAT1; integration of pYSL79<br>into WUM5A                                                                                    | WUM5A  |
| YSL608 | ( <i>RHO1<sup>G18V</sup>) MTLα/α ura3Δ::FRT/ura3∆::FRT RHO1/rho1::Myc-RHO1<sup>G18V</sup>-URA3</i> ; integration of<br>pYSL82 into WUM5A                                               | WUM5A  |
| YSL609 | (Myc-RHO1 <sup>D124A</sup> +SAC7-HA) MTLα/α ura3Δ::FRT/ura3Δ::FRT RHO1/rho1::TetO-Myc- RHO1 <sup>D124A</sup> -<br>TetR-URA3 SAC7/sac7::SAC7-HA-SAT1; integration of pYSL79 into YSL564 | YSL564 |

| YSL616(RH01 <sup>G18V</sup> +WOR1 <sup>OE</sup> ) MTLα/α ura3Δ::FRT/ura3Δ::FRT RH01/rho1::Myc-RH01 <sup>G18V</sup> -URA3<br>WOR1/wor1::TetO-Myc-WOR1-TetR-SAT1; integration of pYGS1312 into YSL608YSL61YSL617(RH01 <sup>WT</sup> ) MTLα/α ura3Δ::FRT/ura3Δ::FRT RH01/rho1::Myc-RH01-URA3; integration of<br>pYGS1315 into WUM5AWUM:YSL619MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP sac7Δ::FRT/sac7Δ::FRT; deletion of RAS1 in<br>YSL504 by using pYGS1317YSL51YSL621MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP sac7Δ::FRT/sac7Δ::FRT; loop out of URA3<br>from YSL619YSL623YSL623(ras1Δ/Δ sac7Δ/Δ) MTLα/α ura3Δ::FRT rAS1/ras1Δ::FRT ras1Δ ::UFP/ras1Δ::FRT<br>sac7Δ::FRT/sac7Δ::FRT, deletion of RAS1 in YSL621YSL634YSL634MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP; deletion of RAS1 in WUM5A by using<br>PYGS1317WUM: | 08<br>5A<br>04 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| YSL617(RH01 <sup>WT</sup> ) MTLα/α ura3Δ::FRT/ura3Δ::FRT RH01/rho1::Myc-RH01-URA3; integration of<br>pYGS1315 into WUM5AWUM:YSL619MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP sac7Δ::FRT/sac7Δ::FRT; deletion of RAS1 in<br>YSL504 by using pYGS1317YSL507YSL621MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::FRT sac7Δ::FRT/sac7Δ::FRT; loop out of URA3<br>from YSL619YSL62YSL623(ras1Δ/Δ sac7Δ/Δ) MTLα/α ura3Δ::FRT/ura3Δ::FRT ras1Δ::UFP/ras1Δ::FRT<br>sac7Δ::FRT/sac7Δ::FRT, deletion of RAS1 in YSL621 by using pYGS1318YSL634YSL634MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP; deletion of RAS1 in WUM5A by using<br>pYGS1317WUM5                                                                                                                                                                                             | 5A<br>04       |
| YSL619MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP sac7Δ::FRT/sac7Δ::FRT; deletion of RAS1 in<br>YSL504 by using pYGS1317YSL504YSL621MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::FRT sac7Δ::FRT/sac7Δ::FRT; loop out of URA3<br>from YSL619YSL62YSL623(ras1Δ/Δ sac7Δ/Δ) MTLα/α ura3Δ::FRT/ura3Δ::FRT ras1Δ ::UFP/ras1Δ::FRT<br>sac7Δ::FRT/sac7Δ::FRT, deletion of RAS1 in YSL621 by using pYGS1318YSL634YSL634MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP; deletion of RAS1 in WUM5A by using<br>                                                                                                                                                                                                                                                                                                                                    | 04             |
| YSL621   MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::FRT sac7Δ::FRT/sac7Δ::FRT; loop out of URA3   YSL6     YSL623   (ras1Δ/Δ sac7Δ/Δ) MTLα/α ura3Δ::FRT/ura3Δ::FRT ras1Δ ::UFP/ras1Δ::FRT sac7Δ::FRT sac7Δ::FRT/sac7Δ::FRT, deletion of RAS1 in YSL621 by using pYGS1318   YSL634     YSL634   MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP; deletion of RAS1 in WUM5A by using pYGS1317   WUM5                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| YSL623   (ras1Δ/Δ sac7Δ/Δ) MTLα/α ura3Δ::FRT/ura3Δ::FRT ras1Δ ::UFP/ras1Δ::FRT sac7Δ::FRT/sac7Δ::FRT, deletion of RAS1 in YSL621 by using pYGS1318   YSL634   MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP; deletion of RAS1 in WUM5A by using pYGS1317   WUM5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19             |
| YSL634 MTLα/α ura3Δ::FRT/ura3Δ::FRT RAS1/ras1Δ::UFP; deletion of RAS1 in WUM5A by using WUM5<br>pYGS1317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5A             |
| $\text{YSL637} \qquad MTL\alpha/\alpha \text{ ura3}\Delta::FRT/ura3\Delta::FRT RAS1/ras1\Delta::FRT; \text{ loop out of } URA3 \text{ from YSL634} \qquad \qquad \text{YSL63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34             |
| YSL639(ras1Δ/Δ) MTLα/α ura3Δ::FRT/ura3Δ::FRT ras1Δ::UFP/ras1Δ::FRT; deletion of RAS1 in GH1322YSL63by using pYGS1318YSL63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37             |
| YSL643WUM5A+MKK2 <sup>OE</sup> ; MTLα/α ura3Δ::FRT/ura3Δ::FRT MEK1/mek1::TetO-Myc-MEK1-TetR-URA3;<br>integration of pYSL93 into WUM5AWUM5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5A             |

Hickman, M.A., Zeng, G., Forche, A., Hirakawa, M.P., Abbey, D., Harrison, B.D., Wang, Y.M., Su, C.H., Bennett, R.J., Wang, Y., Berman, J. The 'obligate diploid' *Candida albicans* forms mating competent haploids. *Nature*. 7: 55-9 (2013).
Strauss, A., Michel, S., Morschhauser, J. Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of *Candida albicans*. *J Bacteriol*. 183: 3761-3769 (2001).

## Supplementary Table 2. Plasmid constructs used in this study

| Construct | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CIP10U    | <i>C. albicans</i> integration vector with <i>URA3</i> as the selection marker; generated by replacing the <i>RP10</i> gene in the vector Clp10 <sup>1</sup> with 700 bp <i>GAL4</i> untranslated region ( <i>UTR</i> ) at <i>Cla</i> I and <i>Pst</i> I.                                                                                                                                                                                                                                       |
| pYGS860   | UTR*/CIP10U; an Ascl site was generated at the middle of UTR by site-directed mutagenesis and used to linearize the plasmid for integration.                                                                                                                                                                                                                                                                                                                                                    |
| pYGS1084  | GPB1Δ::UFP/pBKS; <i>GPB1</i> promoter region (~500 bp) and terminator region (~400 bp) were PCR-amplified and cloned into the vector pBKS at <i>Kpnl-Xhol</i> and <i>Notl-SacII</i> , respectively, to flank the <i>URA3</i> flipper <sup>2</sup> (UFP) located between <i>Xhol</i> and <i>Notl</i> . The knock-out cassette was released by <i>Kpnl</i> and <i>SacII</i> for transformation to generate <i>gpb1Δ::UFP</i> .                                                                    |
| pYGS1086  | RHO2 $\Delta$ ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>rho2<math>\Delta</math>::UFP</i> .                                                                                                                                                                                                                                                                   |
| pYGS1087  | MSB3Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>msb3Δ::UFP</i> .                                                                                                                                                                                                                                                                                              |
| pYGS1088  | SAC7Δ::UFP/pBKS #1; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>sac7Δ::UFP</i> and <i>sac7Δ::FRT</i> .                                                                                                                                                                                                                                                                     |
| pYGS1089  | IRA2Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>ira2Δ::UFP</i> .                                                                                                                                                                                                                                                                                              |
| pYGS1090  | RGD2Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>rgd2Δ::UFP</i> .                                                                                                                                                                                                                                                                                              |
| pYGS1091  | YPT52A::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>ypt52A::UFP</i> .                                                                                                                                                                                                                                                                                            |
| pYGS1093  | ROY1Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>roy1Δ::UFP</i> .                                                                                                                                                                                                                                                                                              |
| pYGS1100  | DMN1 $\Delta$ ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>dmn1</i> $\Delta$ ::UFP.                                                                                                                                                                                                                                                                             |
| pYGS1103  | ORF19.3216Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>orf19.3216Δ::UFP</i> .                                                                                                                                                                                                                                                                                  |
| pYGS1104  | YRB30A::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>yrb30A::UFP</i> .                                                                                                                                                                                                                                                                                            |
| pYGS1108  | ARL1A::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>arI1</i> Δ:: <i>UFP</i> .                                                                                                                                                                                                                                                                                     |
| pYGS1109  | ARL3A::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>arI3A::UFP</i> .                                                                                                                                                                                                                                                                                              |
| pYGS1112  | GUF1 $\Delta$ ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by <i>Kpn</i> I and <i>Sac</i> II for transformation to generate <i>guf1<math>\Delta</math>::UFP</i> .                                                                                                                                                                                                                                                                   |
| pYGS1244  | TetO-Myc-RHO1 <sup>WT</sup> -UTR*-TetR/CIP10U; <i>RHO1</i> coding region including its terminator (1 to 1097 bp) was PCR-amplified and cloned into pYSL06 at <i>Clal-Pst</i> to replace <i>WOR1n. UTR</i> * was then PCR-amplified and cloned at <i>Pacl-Pst</i> to replace part of <i>RHO1</i> terminator. The plasmid was linearized by <i>Ascl</i> within <i>UTR</i> * for integration to express <i>RHO1</i> .                                                                              |
| pYGS1254  | $P_{OP4}$ -dTomato-UTR/CIP10U; the <i>C. albicans</i> codon-optimized <i>dTomato</i> <sup>3</sup> was PCR-amplified and cloned into CIP10U at <i>Xhol-Clal</i> , followed by <i>UTR</i> (cloned at <i>Clal</i> and <i>Pstl</i> ). The promoter of <i>OP4</i> (-600 to -1 bp, <i>P<sub>OP4</sub></i> ) was PCR-amplified and cloned at <i>Kpnl-Xhol</i> to control the expression of <i>dTomato</i> . The plasmid was linearized by <i>Bsa</i> Bl within <i>P<sub>OP4</sub></i> for integration. |
| pYGS1279  | TetO-Myc-RHO1 <sup>D124A</sup> -UTR*-TetR/CIP10U; pYGS1244 was used as the template for site-directed mutagenesis to introduce D124A mutation on RHO1. The plasmid was linearized by <i>Ascl</i> within <i>UTR</i> * for integration to express <i>RHO1</i> <sup>D124A</sup> .                                                                                                                                                                                                                  |
| pYGS1280  | TetO-Myc-RHO1 <sup>G18V</sup> -UTR*-TetR/CIP10U; pYGS1244 was used as the template for site-directed mutagenesis to introduce G18V mutation on RHO1. The plasmid was linearized by <i>Asc</i> I within <i>UTR</i> * for integration to express <i>RHO1</i> <sup>G18V</sup> .                                                                                                                                                                                                                    |
| pYGS1312  | TetO-Myc-WOR1n-TetR/CIP10SAT1; SAT1 from pYSL54 was cloned into pYSL06 at Mlul-Not to replace the URA3 marker. The plasmid was linearized by BstEll within WOR1n for integration to overexpress WOR1 in the absence of doxycycline.                                                                                                                                                                                                                                                             |

- pYGS1315 Pro-Myc-RHO1<sup>WT</sup>-UTR\*/CIP10U; the *RHO1* promoter region (-800 to -1 bp) was PCR-amplified and cloned into CIP10U at *KpnI-Xhol* to control the expression of a 6x*Myc* epitope (cloned at *Xhol-Clal*). *RHO1* coding region including its terminator (1 to 842 bp) was then PCR-amplified and cloned at *Clal-PacI* to fuse in frame with the *Myc* epitope, and followed by *UTR*\* cloned at *PacI-PstI*. The plasmid was linearized by *Stul* within the *RHO1* promoter region for integration.
- pYGS1317 RAS1Δ::UFP/pBKS #1; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *ras1Δ::UFP* and *ras1Δ::FRT*.
- pYGS1318 RAS1Δ::UFP/pBKS #2; a C-terminal region of *RAS1* (376-873 bp) was PCR-amplified and cloned into pYGS1317 at *Not*I-SacII to replace the terminator region. The knock-out cassette was released by *Kpn*I and SacII for transformation to generate *ras1*Δ::*UFP* and *ras1*Δ::*FRT*.
- pGJX01 YIP4A::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *SacII* for transformation to generate *yip4*Δ::UFP.
- pGJX02 YIP5Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *SacII* for transformation to generate *yip5Δ::UFP*.
- pGJX03 YPT6Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *SacII* for transformation to generate *ypt6Δ::UFP*.
- pGJX04 NUG1Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*l and *Sac*II for transformation to generate *nug1Δ::UFP*.
- pGJX05 GLO3Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *glo3Δ::UFP*.
- pGJX06 AGE2 $\Delta$ ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *age2\Delta::UFP*.
- pHZX01 GYP1Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *gyp1Δ::UFP*.
- pHZX02 GYP5Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *gyp5Δ::UFP*.
- pHZX03 GYP6Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *gyp6*Δ::*UFP*.
- pHZX04 GYP8Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *gyp8Δ::UFP*.
- pWHT01 VTC1Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *SacII* for transformation to generate *vtc1Δ*::*UFP*.
- pWHT02 MDR1 $\Delta$ ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *mdr1\Delta::UFP*.
- pWHT03 RHO4Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*l and *Sac*II for transformation to generate *rho4Δ::UFP*.
- pWHT04 BEM2Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*l and *Sac*II for transformation to generate *bem2Δ::UFP*.
- pWHT05 HBS1Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *SacII* for transformation to generate *hbs1*Δ::*UFP*.
- pWHT06 TRS120Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *trs120Δ*::*UFP*.
- pWHT07 TRS130\Delta::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *trs130*Δ::*UFP*.
- pWHT08 GEM1Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *gem1*Δ::*UFP*.
- pWHT09 ARF1Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *SacII* for transformation to generate *arf1Δ::UFP*.
- pWHT10 RHO3Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *Sac*II for transformation to generate *rho3*Δ::*UFP*.
- pWHT11 LRG1Δ::UFP/pBKS; the plasmid was constructed in the same say as pYGS1084. The knock-out cassette was released by *Kpn*I and *SacII* for transformation to generate *Irg1Δ::UFP*.

| pYSL06  | TetO-Myc-WOR1n-TetR/CIP10U; the tetracycline operator sequence ( <i>TetO</i> ) was cloned into CIP10U at K <i>pn</i> l-<br>X <i>ho</i> I to control the expression of a 6 <i>xMyc</i> epitope (cloned at X <i>ho</i> I-C <i>la</i> I). The N-terminal coding region of<br>WOR1 (4 to 433 bp) was PCR-amplified and cloned at C <i>la</i> I-P <i>st</i> I to fuse in frame with the 6 <i>xMyc</i> epitope. The<br>tetracycline-repressible transactivator ( <i>TetR</i> ) was cloned after WOR1 at <i>Pst</i> I-MIuI. Both <i>TetO</i> and <i>TetR</i> were<br>PCR-amplified from the genomic DNA of JKC1141 <sup>4</sup> . The plasmid was linearized by <i>Bst</i> EII within WOR1 <i>n</i> for<br>integration to overexpress WOR1 in the absence of doxycycline. |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pYSL21  | SAC7Δ::UFP/pBKS #2; a C-terminal region of SAC7 (1272-1848 bp) was PCR-amplified and cloned into pYGS1088 at <i>Not</i> I-SacII to replace the terminator region. The knock-out cassette was released by <i>Kpn</i> I and SacII for transformation to generate sac7Δ::UFP and sac7Δ::FRT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pYSL54  | $P_{OP4}$ -dTomato-UTR/CIP10SAT1; the nourseothricin resistance marker SAT1 was PCR-amplified from pNIM1 <sup>5</sup> and cloned into pYGS1254 at <i>Mlul-Not</i> I to replace <i>URA3</i> . The plasmid was linearized by <i>Bsa</i> BI within $P_{OP4}$ for integration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| pYSL60  | Pro-SAC7-Ter/CIP10U; the SAC7 gene (including its 900 bp promoter region and 455 bp terminator region) was PCR-amplified and cloned into CIP10U between <i>Kpn</i> I and <i>Cla</i> I. The plasmid was linearized by <i>Bsa</i> BI within the promoter for integration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| pYSL79  | SAC7c-HA-UTR/CIP10SAT1; the C-terminal region of SAC7 (849 to 1845 bp) was PCR-amplified and cloned into CIP10U at <i>Kpn</i> l- <i>Xho</i> l to fuse in frame with a 2xHA epitope (cloned at <i>Xho</i> l- <i>Cla</i> l) and followed by <i>UTR</i> (cloned at <i>Cla</i> l- <i>Pst</i> l). <i>URA3</i> in the resulting plasmid was then replaced with SAT1 by <i>Mlu</i> l- <i>Not</i> l digestion. The plasmid was linearized by <i>Nsi</i> l within SAC7c for integration.                                                                                                                                                                                                                                                                                    |
| pYSL82  | Pro-Myc-RHO1 <sup>G18V</sup> -UTR*/CIP10U; pYGS1315 was used as the template for site-directed mutagenesis to introduce G18V mutation on RHO1. The plasmid was linearized by <i>Stul</i> within the <i>RHO1</i> promoter region for integration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pYSL84  | Pro-Myc-RHO1 <sup>D124A</sup> -UTR*/CIP10U; pYGS1315 was used as the template for site-directed mutagenesis to introduce D124A mutation on RHO1. The plasmid was linearized by <i>Stul</i> within the <i>RHO1</i> promoter region for integration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| pYSL93  | TetO-Myc-MKK2-UTR*-TetR/CIP10U; <i>MKK2</i> coding region was PCR-amplified and cloned into pYGS1244 at<br><i>Clal-PacI</i> to replace <i>RHO1</i> . The plasmid was linearized by <i>AscI</i> within <i>UTR</i> * for integration to express <i>MKK2</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pYSL153 | TetO-Myc-SAC7-UTR*-TetR/CIP10U; the SAC7 coding region (1 to 1848 bp) was PCR-amplified and cloned into pYSL06 at C <i>lal-Bst</i> EII to replace an N-terminal fragment of <i>WOR1n</i> and fuse in frame with the 6x <i>Myc</i> epitope. <i>UTR</i> * was then PCR-amplified and cloned at <i>Bst</i> EII- <i>Pst</i> I to replace the remaining region of <i>WOR1n</i> . The plasmid was linearized by <i>Ascl</i> within <i>UTR</i> * for integration to overexpress <i>SAC7</i> in the absence of doxycycline.                                                                                                                                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

<sup>1.</sup> Murad, A.M., Lee, P.R., Broadbent, I.D., Barelle, C.J., and Brown, A.J. Clp10, an efficient and convenient integrating vector

for *Candida albicans*. Yeast 16: 325-327 (2000). 2. Morschhauser, J., Michel, S. & Staib, P. Sequential gene disruption in *Candida albicans* by FLP-mediated site-specific recombination. *Mol Microbiol* 32: 547-556 (1999).

<sup>3.</sup> Gratacap, R.L., Rawls, J.F., Wheeler, R.T. Mucosal candidiasis elicits NF-kB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Dis Model Mech 6:1260-70 (2013).

Shen, J., Cowen, L.E., Griffin, A.M., Chan, L., Köhler, J.R. The *Candida albicans* pescadillo homolog is required for normal hypha-to-yeast morphogenesis and yeast proliferation. Proc Natl Acad Sci USA 105: 20918-23 (2008).Park, Y.N.,
Morschhauser, J. Tetracycline-Inducible Gene Expression and Gene Deletion in *Candida albicans*. Eukaryot Cell 4:1328-

<sup>1342 (2005).</sup>