Electronic Properties of Synthetic Shrimp Pathogens-derived DNA Schottky Diodes

Nastaran Rizan^{1,2,3}, Chan Yen Yew^{1,2,4}, Maryam Rajabpour Niknam^{1,2,5}, Jegenathan Krishnasamy¹, Subha Bhassu^{2,4}, Goh Zee Hong^{2,4}, Sridevi Devadas^{2,4}, Mohamed Shariff Mohd Din⁸, Hairul Anuar Tajuddin³, Rofina Yasmin Othman^{2,4}, Siew Moi Phang^{1,6}, Mitsumasa Iwamoto⁷ and Vengadesh Periasamy^{1*}

¹Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

²Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

³Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

⁴Centre for Research in Biotechnology for Agriculture (CEBAR), 50603 Kuala Lumpur

⁵HIR functional molecules laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

⁶Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia

⁷Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8552, Japan

⁸ Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

*Corresponding Author: Associate Professor Dr. Vengadesh Periasamy, Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia. Email: <u>vengadeshp@um.edu.my</u>, Tel: +60-379674038.

PRAWN CHECKER - V1

PCR detection emphasises the designed primers which targets the corresponding sequence. The above results show that the dual priming oligonucleotide (DPO) primers designed targeted on prawn and shrimp viruses. These patented primers were able to detect and differentiate the type of virus infection. A mixture of primers set allows simultaneous detection of 4 types of virus infections through band sizes. While in this paper, we emphasised in using DNA-specific Schottky diodes to generate I-V curve profiles in differentiating the types of virus infection. Different ATCG combination and nucleic acid sequence will generate different I-V curves which can be utilised to differentiate the type of infection. Our results indeed have been compared with the PCR result in generating reasonable data (I/V curve) in concluding the type of I/V curve versus type of infection.

```
Detection using PRAWN CHECKER - V1 DNA viruses primer mix
 BP (721 bp)
 MB (515 bp)
IHHNV (458 bp)
 WSSV (300 bp)
 Lane 1: The DNA 4plex result (4 target DNA viruses)
 Lane 2: sample infected by BP virus
 Lane 3: sample infected by MB virus
 Lane 4: sample infected by IHHNV virus
 Lane 5: sample infected by WSSV virus
 Lane 6: sample infected by MrNv virus
 Lane 7: sample infected by IMNV virus
 Lane 8: sample infected by TSV virus
 Lane 9: sample infected by YHV virus
 Lane 10: NTC (No Template Control)
 Lane 11: DNA marker
```

Figure S1. Multiplex of DNA viruses using DPO primers mixture. Lane 1 shows the multiplex bands of 4 multiplex DNA viruses while lane 2 to 5 shows individual bands of DNA viruses with different band size.

Detection using PRAWN CHECKER - V1 RNA viruses primer mix

Figure S2. Multiplex of RNA viruses using dual priming oligonucleotide (DPO) primers mixture. Lane 1 shows the multiplex bands of 4 multiplex RNA viruses while lane 7 to 10 shows individual bands of RNA viruses with different band size.

This new technique provides the potential to achieve sensitive and high-throughput species identifications. The simplicity nature of these methods is suitable for the development of a hand-held DNA diagnostic device. The following steps were undertaken to demonstrate the reproducibility and sensitivity of the electronic sensor;

Please refer to the Supplementary Figure below, which explains the positive biased I-V profiles for different concentrations of DNA AHPND (from about 300 ng/ul to 5 ng/ul).

In this technique, we prepared different concentrations of DNA strands to investigate the sensitivity of the sensor operation. Extensive experiments (more than 50 repetitions each) were carried-out to obtain data from different concentrations of DNA (high to lowest levels) to proof the sensitivity of this electronic sensor.

Figure S3: Positive biased I-V profiles for different concentrations of DNA AHPND (from about 300 ng/ul to 5 ng/ul). The small error bars indicate the high repeatability and sensitivity of the experiments carried-out.

Please refer to the Supplementary data below, which shows real sequences of our samples

Sequences of viral gene

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) (987bp)

ATGTGCGCCG	ATTCAACAAG	ATCAAGCCCA	AGGAAAAGAT	CCAGGAGGGA
TGCACATAAT	GAAGACGAAG	AACACGCCGA	GGGATCAAGT	GGACCAGACC
CACACAGATG	TCTACAATTC	AATACGGGAG	ACTCAATACA	TATTACTTTC
CAAACAAGAA	GATACTTCGA	ATTCGACGCT	GCCAATGATG	GAAACTTCGA
CGGAAAAAAC	TTATACTGCC	TCCCACTACA	TTGGATGAAC	TTATATCTCT
ATGGACTAAA	AAGCAGTGAC	AGTTCAGCAA	CAGAAACACA	GCGATATAAG
ATGGTAAAGT	CAATGATGAA	AACCTACGGA	TGGAAAGTTC	ACAAAGCAGG
CGTCGTAATG	CACTCAATGG	TACCCCTTAT	GAAAGACTTA	AAGGTATCAG
GAGGAACATC	ATTTGAAACT	CTCACATTTA	CAGATACCCC	ATATTTAGAA
ATATTTAAGG	ATACTACTGG	ACTACATAAT	CAACTAGCAA	CTAAGGAAGC
CGACGTAACA	TTAGCAAAAT	GGATACAAAA	TCCGCAACTT	GTGACAGTAC
AATCAACAGC	AGCAAATTAT	GAAGACCCAA	TCCAACAATT	TGGATTTATG
GAACAAATGC	GAACTGGAGA	CCGAAAAGCC	TATACAATCC	ATGGTGACAC
TAGAAACTGG	TATGGCGGAG	AAATACCAAC	AACCGGACCC	ACGTTCATCC
CAAAATGGGG	TGGCCAAATG	AAGTGGGACA	AACCAAGCAT	TGGAAACCTA
GTCTACCCAG	CGGATCACCA	TACAAACGAC	TGGCAACAAA	TCTTCATGAG
AATGTCACCA	ATCAAAGGAC	CAAATGGAGA	CGAACTTAAA	CTTGGCTGCA
GAGTACAAGC	CGACTTCTTC	CTCAACCTAG	AAGTACGACT	CCCACCACAA
GGATGTGTCT	CAAGTTTGGG	AATGTTACAA	TATCTTCACG	TACCATCTAC
TGGACAACTT AACAGATGTT ATATTATGCA TACTAAC				

Monodon baculovirus (MBV) (600bp)

ATGTTCGACG	ATAGCATGAT	GATGGAAAAT	ATGGACGACC	TTAGTGGAGA
TCAGAAGATG	GTGCTCACAC	TTGCTGCGGC	TGGTGCTGTG	GCTGGAGCAT
CGAAGATGTT	GAACGAAGCT	GCAGACCTGA	AGAAAAATTA	CAAGGATACT
CCACTTGAAG	AATATTTCAA	AGATAAGTAT	TCAGGCAACA	AAAAAAGAAA
GATCACTGAT	CAGGAATTTG	AACTCCCTAA	GTCTATTGAT	CCACTTGAAA
ATCATTTCAA	AGGACTGTCC	CGTCCTCGTG	TAGGCCCTCG	AATGGCAAAA
CAGCTTGCAA	ATAAAATGAG	TGACAACAAA	ATGCATTATA	AATTTAACAG
CTTTCAGACA	AATAAACACT	TTAATACTCA	CACAATTTAC	AAGCGAACAA
ATCTCACTTC	TTCTAAACTA	ATGGGCTTTT	CGGGTCAGAG	TGATTTTGGC
GTACCCAAAT	ACAACAGTGC	AGTCACACTT	CCTCTGGAAG	TATTGGAATT
TTGGGTAGGT	GACAACACAA	ATCCTAATGT	TGAACATTCT	AAGGGTAGTA
TGGCATTGAA	AAATAGTGAA T	GTATGATTG CA	TCTATGAA ACT	ГАААСТТ

Taura syndrome virus (TSV) (900bp)

AACATCAAAC	TATATGGGCA	TGCCCCATCT	GTGACATCTT	CAGTATATCC
GTCTACTCAG	TCCGGATATG	ATGATGATTG	TCCCATTGTG	CATGCGGGAA
CTGATGAGGA	TTCTTCTAAA	CAGGGGATTG	TCTCAAGGGT	TGCAGACACC
GTTGGTGCGG	TGGCAAATGT	AGTAGATGGG	GTAGGAGTAC	CTATTCTATC
CACAATTGCC	AAGCCTGTTT	CCTGGGTGTC	GGGCGTAGTG	AGTAATGTAG
CTTCAATGTT	CGGATTTTCA	AAAGATAGGG	ATATGACGAA	AGTCAACGCA
TATGAGAACT	TACCTGGTAA	GGGCTTCACT	CATGGTGTTG	GCTTCGATTA
TGGCGTACCC	CTGTCTCTTT	TCCCTAACAA	TGCCATTGAT	CCCACAATTG
CAGTGTCTGA	AGGATTAGAT	GAAATGTCTA	TTGAATACCT	AGCACAGCGA
CCATATATGC	TCAACAGATA	CACTATCAGA	GGTGGTGACA	CTCCTGATGA
ACATGGAACA	ATTATTGCAG	ATATTCCAGT	GAGTCCTGTC	AATTTTAGTT
TGTATGGTAA	AGTTATTGCT	AAGTATCGCA	CCCTATTCGC	TGCCCCAGTT
AGTCTAGCTG	TAGCAATGGC	TAATTGGTGG	CGTGGAAATA	TTAACCTTAA
TCTTCGCTTT	GCTAAGACGC	AGTACCATCA	ATGCAGATTG	CTGGTGCAAT
ATCTCCCCTA	TGGTAGTGGT	GTTCAACCAA	TAGAAAGTAT	CCTTTCACAG
ATCATCGACA	TCTCACAAGT	CGATGATAAG	GGTATTGACA	TTGCTTTTCC
TTCCGTCTAT	CCCAATAAGT	GGATGCGAGT	GTACGATCCA	GCGAAAGTTG
GGTACACGGC AGATTGTGCC CCAGGCCGAA TCGTCATTTC CGTTCTCAAC				

Yellowhead virus(YHV) (684bp)

ATGAACCGTC	GTACACGCAC	CGCAACTCCT	ATGCCTCGTC	GTCGCCTACC
TCCTTCCAAC	CGACTCACTC	GCAATGCAAG	GCTCATCGAG	ATTCCTCAAT
CCTTCGCAGT	CGAACGCGGA	AATGGATGGA	TGTTGGCATA	TGCCCCAGGT
AAAAATCCAC	TACCGGGAAA	AGTCATCGCT	CGTATGCAGG	CATCTCCATT
CATTCAAGGA	CTTCAAGAAC	AATCCCTCCA	AGTTGTCAAG	TCATCTGATG
GTAAGTATTC	AATTTCAAAG	AGATACGGTA	AAATGGCCAT	CACCTATCTT
AATCCCAACG	ATCCCATTCT	GCCAAAGCGT	TCAACACAGA	AGTCAATCGT
TCCCGATCCT	TCCCTTGACA	TAGAGAACCT	AGCTGAAGGT	ATCCACGCAA
TGAGCCTTGA AGACGACGAA CCCATGGAAA CACAATCA				

The electronic method employed in this work is highly accurate and will strongly depend on the electronic pathway presented to regarding the resistance pathway provided by the base sequence. Due to the nature of current conduction mechanism, it is well understood that conductivity signature will only be influenced by the "least resistance" pathway which will strongly be dependent on both the base sequence and number of base pair. In this context, it is understood that with different base sequences but with a same number of base pairs, each of the 2 DNA sequences demonstrate characteristic or fingerprinting electronic profiles unique to their charge pathway mechanism.

However, we still carried-out the necessary experiment to demonstrate the variations that arise even within different DNA sequences but with the same number of base pairs shown below; please refer to the supplementary Figure below:

S4: Four sets of complementary strands of DNA with a length of 20bp were designed, synthesized and subjected IV characterization. Each set had a different sequence. Sequence 1 is rich in GC bases (GC=70%), sequence 2 is rich in AT bases (GC= 25%) while sequence 3 and sequence 4 have same GC bases (GC=50%). These sequences exhibited different electronic profile.

Sequence 1

5'	GCA TTC GGC GCG GCG TAA CG	3'
3'	CGT AAG CCG CGC CGC ATT GC	5'

Sequence 2

5'	ATA CCT GTC AGA AAT TAA TA	3'		
3'	TAT GGA CAG TCT TTA ATT AT	5'		
Sequence 3				
5'	GCA TGA TCC CTG ACT ATG TC	3'		
3'		5'		

Sequence 4

5'	TAA GCA CGT CTG ACC ATG TC	3'
3'	ATT CGT GCA GAC TGG TAC AG	5'