Supporting Information

Palladium and Nickel-Catalyzed Decarbonylative C–S Coupling to Convert Thioesters to Thioethers

Naoko Ichiishi, Christian A. Malapit, Łukasz Woźniak, Melanie S. Sanford* Department of Chemistry, University of Michigan 930 North University Avenue, Ann Arbor, Michigan 48109 United States

*Email: mssanfor@umich.edu

Table of Contents

	page #
I. Instrumental Information	S3
II. Materials and Methods	S3
III. General Procedure for Synthesis of Thioesters	S4
IV. General Procedure of Decarbonylative Thioetherification	S9
V. Competition Experiments	S22
VI. References	S24
VII. ¹ H and ¹³ C NMR Data	S25

I. Instrumental Information. NMR spectra were obtained on a Varian MR400 (400.52 MHz for ¹H; 100.71 MHz for ¹³C; 376.87 MHz for ¹⁹F), a Varian vnmrs 500 (500.10 MHz for ¹H), or a Varian vnmrs 700 (699.76 MHz for ¹H; 175.95 MHz for ¹³C) spectrometer. ¹H and ¹³C NMR chemical shifts are reported in parts per million (ppm) with the residual solvent peak (CHCl₃, 7.26 ppm for ¹H NMR and 77.23 for ¹³C NMR) as an internal reference. Multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). High resolution mass spectra were recorded on a Micromass AutoSpec Ultima Magnetic Sector mass spectrometer. Gas chromatography was carried out on a Shimadzu 17A GC using a Restek Rtx®-5 (Crossbond 5% diphenyl – 95% dimethyl polysiloxane; 15 m, 0.25 mm ID, 0.25 µm df) column.

II. Materials and Methods. Catalysts $Pd[P(o-tol_3)]_2$ and $Ni(cod)_2$ were obtained from Alfa Aesar and Strem, respectively. Phosphine ligands, $P(Ad)_2Bn$ and PCy_3 were obtained from Aldrich. All commercially available acid chlorides were purchased from commercial sources and were used as received. Non-commercial acid chlorides were synthesized according to the literature procedure.¹⁻² *p*-Xylene was refluxed with P_2O_5 overnight, fractionally distilled, and stored over 4Å MS. All reactions were conducted under a nitrogen/argon atmosphere or using standard Schlenk techniques unless otherwise stated. All reactions conducted at elevated temperatures were heated on a hot plate using an aluminum block.

III. General Procedure for Synthesis of Thioesters

From commercially available acid chlorides:

A reaction flask was equipped with a magnetic stir bar and a rubber septum, and then was evacuated and back-filled with N₂ three times. Thiol (1.0 equiv) and pyridine (1.0 equiv) were added and then dissolved in methylene chloride (0.1 M), and this solution cooled to 5 °C. The acyl chloride (1.0 equiv) was added by syringe over 5 min. The resulting suspension was stirred at 5 °C for an additional 5 min, and then stirred at room temperature overnight. The progress of the reaction was monitored by TLC. The reaction was quenched by pouring over ice water (twice the volume of the solvent). The aqueous phase was separated and extracted with methylene chloride (twice the volume of the reaction solvent x 2), and the combined organic extracts were dried over Na₂SO₄ and concentrated. The crude mixture was purified by flash column chromatography on silica gel to afford the desired thioesters. Non-commercial acid chlorides were prepared from the reaction of the corresponding carboxylic acid with thionyl chloride (1.5 to 2.0 equiv) in the presence of catalytic DMF (5 mol %) in methylene chloride (0.2 M) at room temperature.¹⁻² Evaporation of solvent and unreacted thionyl chloride afforded the crude acid chlorides, which were used for thioester synthesis without further purification.

Previously known and reported thioester substrates; *S*-phenyl benzothioate (**1a**),³ *S*-phenyl 4-methylbenzothioate (**1b**),³ *S*-phenyl 4-methoxybenzothioate (**1c**),³ *S*-phenyl 4- (trifluoromethyl)benzothioate (**1d**),³ *S*-phenyl 2-methylbenzothioate (**1g**),³ *S*-phenyl naphthalene-1-carbothioate (**1h**),³ *S*-(4-methoxyphenyl) benzothioate (**1i**),⁴ *S*-(4-fluorophenyl) benzothioate (**1j**),⁴ *S*-(4-(trifluoromethyl)phenyl) benzothioate (**1k**),⁵ *S*-(pyridin-4-yl) benzothioate (**1l**),⁶ *S*-phenyl thiophene-2-carbothioate (**1m**),³ *S*-phenyl

S4

pyridine-3-carbothioate (1n),⁷ S-phenyl (*E*)-3-phenylprop-2-enethioate (1p),⁸ S-phenyl 2-phenylethanethioate (1q),⁹ S-benzyl benzothioate (1s),¹⁰ and S-ethyl 2-phenylethanethioate (1t)¹¹ were prepared according to the general procedure using commercially available acid chlorides and thiols. ¹H and ¹³C NMR specta are attached in SI Section VI and data matched those reported in the literature.³⁻¹¹

Methyl 4-((phenylthio)carbonyl)benzoate (1e). General procedure was followed using 4-(methoxycarbonyl)benzoic acid (2.0 mmol). Compound 1e was obtained as a white solid in 75% yield: mp 146–148 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.15 (d, J = 8.6 Hz, 2H), 8.08 (d, J = 8.6 Hz, 2H), 7.53 (m, 2H), 7.50–7.44 (multiple peaks, 3H), 3.97 (s, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 189.9, 166.3, 140.2, 135.2, 134.6, 130.2, 130.0, 129.6, 127.6, 127.0, 52.8; HRMS ESI calcd for C₁₅H₁₃O₃S [M+H]⁺ *m*/*z* 273.0585, found 273. 0590.

S-Phenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzothioate (1f). General procedure was followed using 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (2.0 mmol). Compound **1f** was obtained as a white solid in 72% yield: **mp** 93–94 °C; ¹**H NMR** (700 MHz, CDCl₃) δ 8.00 (d, J = 8.2 Hz, 2H), 7.91 (d, J = 8.2 Hz, 2H), 7.54–7.50 (m, 2H), 7.48–7.45 (multiple peaks, 3H), 1.37 (s, 12H); ¹³**C NMR** (176 MHz, CDCl₃) δ 190.6, 138.8, 135.3, 135.3, 129.8, 129.5, 127.5, 126.7, 84.5, 25.1 (the carbon directly

attached to the boron atom was not detected, likely due to quadropolar relaxation); **HRMS** ESI calcd for $C_{19}H_{22}BO_3S [M+H]^+ m/z$ 341.1383, found 341.1389.

S-Phenyl 4-oxo-4*H***-chromene-2-carbothioate (10).** General procedure was followed using 4-oxo-4*H***-chromene-2-carboxylic acid (2.0 mmol).** Compound **10** was obtained in 45% yield as a white solid: **mp** 152–154 °C; ¹**H NMR** (700 MHz, CDCl₃) δ 8.23 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.79 (ddd, *J* = 8.7, 7.1, 1.7 Hz, 1H), 7.64 (dd, *J* = 8.4, 1.0 Hz, 1H), 7.55-7.46 (multiple peaks, 6H), 7.02 (s, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 185.7, 178.2, 156, 155.7, 135.1, 135.0, 130.5, 129.8, 126.4, 126.2, 125.3, 124.9, 118.8, 110.7; **HRMS** ESI calcd for C₁₆H₁₁O₃S [M+H]⁺ *m*/*z* 283.0429, found 283.0426.

S-phenyl (*E*)-4-phenylbut-3-enethioate (1r). General procedure was followed using (*E*)-4-phenyl-3-butenoyl chloride (900 mg, 5.0 mmol). Purification by flash chromatography afforded the compound as a yellow oil (260 mg, 25% yield):¹² ¹H NMR (700 MHz, CDCl₃) δ 7.44-7.40 (multiple peaks, 7H), 7.33 (t, *J* = 7 Hz, 2H), 7.26 (s, 1H), 6.60 (d, *J* = 7 Hz, 1H), 6.33 (dt, *J* = 18, 7 Hz, 1H), 3.55 (d, *J* = 7 Hz, 2H); ¹³C NMR (176 MHz, CDCl₃) δ 195.5, 136.6, 135.1, 134.5, 129.4, 129.2, 128.6, 127.8, 127.7, 126.4, 120.7, 47.5; HRMS ESI calcd for C₁₆H₁₅OS [M+H]⁺ *m/z* 255.0844, found 255.0847.

S-Phenyl 4-(*N*,*N*-dipropylsulfamoyl)benzothioate (1u). General procedure was followed using probenecid (2.0 mmol). Compound 1u was obtained in 85% yield as a white solid: **mp** 93–94 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.13 (d, *J* = 8.4 Hz, 2H), 7.92 (d, *J* = 8.5 Hz, 2H), 7.53–7.50 (m, 2H), 7.49-7.45 (multiple peaks, 3H), 3.12–3.10 (m, 4H), 1.56 (m, 4H), 0.88 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 189.4, 144.9, 139.6, 135.2, 130.1, 129.6, 128.2, 127.6, 126.7, 50.2, 22.2, 11.4; HRMS ESI calcd for C₁₉H₂₄NO₃S₂ [M+H]⁺ *m/z* 378.1198, found 378.1199.

S-(4-Methoxyphenyl) 4-(*N*,*N*-dipropylsulfamoyl)benzothioate (1v). General procedure was followed using probenecid (2.0 mmol). Compound 1v was obtained in 92% yield as a white solid: **mp** 88–89 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.12 (d, *J* = 8.3 Hz, 2H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 3.85 (s, 3H), 3.18–2.95 (m, 4H), 1.56 (m, 4H), 0.88 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 190.38, 161.24, 144.82, 139.61, 136.71, 128.21, 127.55, 117.13, 115.33, 55.62, 50.17, 22.17, 11.4; HRMS ESI calcd for C₂₀H₂₆NO₄S₂ [M+H]⁺ *m/z* 408.1303, found 408.1306.

S-(4-Fluorophenyl) 4-(*N*,*N*-dipropylsulfamoyl)benzothioate (1w). General procedure was followed using probenecid (2.0 mmol). Compound 1w was obtained in 67% yield as a white solid: mp 86-87 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.11 (d, *J* = 8.5 Hz, 2H), 7.92 (d, *J* = 8.5 Hz, 2H), 7.56–7.39 (m, 2H), 7.17 (t, *J* = 8.6 Hz, 2H), 3.29–2.92 (m, 4H), 1.56 (m, 4H), 0.88 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 189.4, 164.0 (d, *J* = 251.0 Hz), 145.1, 139.3, 137.3 (d, *J* = 8.7 Hz), 128.2, 127.6, 121.9 (d, *J* = 3.7 Hz), 117.0 (d, *J* = 22.2 Hz), 50.2, 22.2, 11.4; ¹⁹F NMR (471 MHz, CDCl₃) δ –110.4; HRMS ESI calcd for C₁₉H₂₃FNO₃S₂ [M+H]⁺ *m/z* 396.1103, found 396.1108.

IV. General Procedure for the Decarbonylative Thioetherification General Procedure A: Pd (or Ni-)-Catalyzed Reaction on Small Scale

In a glovebox, the thioester substrate (0.05 mmol, 1 equiv), $Pd(P(o-tol)_3)_2$ (2.9 mg, 0.005 mmol, 0.1 equiv), $P(Ad)_2Bn$ (3.6 mg, 0.2 equiv), and 5Å molecular sieves were combined in *p*-xylene (0.3 mL) in a 4 mL vial. The vial was connected to a reflux condenser that was capped with a rubber septum, and the reaction mixture was removed from the glovebox. An argon balloon was placed on the top of the condenser (Figure S1, **Set-up A**), and the reaction was heated for 20 h at the indicated temperature. After cooling to room temperature, the reaction mixture was diluted with dichloromethane (2 mL) and passed through a pad of silica gel before being analyzed by GC and GCMS. Neopentylbenzene (0.05 mmol) was used for internal standard to determine GC yields of products. Under Ni catalysis, an analogous procedure was performed using Ni(cod)₂ (0.005 mmol, 0.1 equiv), PCy₃ (0.2 equiv), and toluene as the solvent with heating at 130 °C, and using reaction **Set-up B**.

General Procedure B: Pd(or Ni-)-Catalyzed Reaction on Larger Scale for Isolation

Reactions were conducted analogously to **General Procedure A**, but on a 0.3 mmol scale using **Set-up A**. The reaction mixture was diluted with Et₂O, passed through a plug of silica and concentrated by rotavap. The resulting crude residue was purified by flash column chromatography on a Biotage Isolera Flash Purification System. In a few cases, the phosphine ligands co-eluted with the product. In these cases, the isolated product/phosphine mixture was re-dissolved in methylene chloride, and CuCl (0.4 equiv) was added. This mixture was stirred for 20 min at room temperature. The Cl–Cu–P(o-tol₃)₂ precipitated from solution and was removed by passing through a plug of silica gel using 4:1 hexanes/EtOAc as the eluent. The filtrate was concentrated to afford the thioether product. Under Ni catalysis, an analogous procedure was performed on a 0.1

to 0.3 mmol scale with toluene as the solvent, heating at 130 °C using reaction **Set-up A**.

Figure S1. Reaction Set-up. **Set-up A**: 4-mL vial fitted with a condenser and Ar balloon; **Set-up B**: a 10-mL tall vial.

Set-up A (4-mL vial fitted with a condenser and Ar balloon)

Set-up B (a 10-mL tall vial)

Table S1. Preliminary Investigation of Decarbonylative C–S Coupling Using GeneralProcedure A and BrettPhos as Ligand: Effect of Temperature

	S (1a)		10 mol % Pd(P(<i>o</i> -tol) ₃) ₂ 10 mol % Brettphos solvent, temp, 20 h Ar balloon	→ () (2a)
-	Entry	Solvent	Temperature (°C)	GC Yield (%)
-	1	toluene	130	32
	2	<i>p</i> -xylene	130	46
	3	<i>p</i> -xylene	150	58

Table S2. Ligand Screen for Pd-Catalyzed Decarbonylative C–S Coupling Using General Procedure A

~		10 mol %	s)2		
	(1a)	<i>p</i> -xylene Ar ball	<i>p</i> -xylene, 150 °C, 20 h Ar balloon, MS 5Å		
	Entry	Ligand (L)	L mol%	GC Yield (%)	
	1	JohnPhos	10	22	
	2	Xantphos	10	52	
	3	Xantphos	20	61	
	4	<i>t</i> Bu-Xantphos	20	15	
	5	rac-BINAP	20	59	
	6	dppf	20	61	
	7	dppb	20	64	
	8	dppe	20	19	
	9	PAd₂ <i>n</i> -Bu	20	67	
	10	PAd_2Bn	20	78	
	11	none	0	28	

Isolated Thioether Products from Pd and Ni-Catalyzed Decarbonylation

Diphenylsulfide (2a). General procedure B was followed using substrate **1a** (64.2 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the title compound as colorless oil:¹³ with [Pd] catalyst, 48 mg, 85% yield; with [Ni] catalyst, 52 mg, 92% yield. ¹H NMR (700 MHz, CDCl₃) δ 7.35–7.30 (multiple peaks, 5H), 7.28–7.19 (multiple peaks, 5H). ¹³C NMR (176 MHz, CDCl₃) δ 135.8, 131.0, 129.2, 127.0. HRMS EI calcd for C₁₂H₁₀S [M]⁺ *m/z* 186.0503, found 186.0502.

Phenyl(*p***-tolyl)sulfide (2b).** General procedure B was followed using substrate **1b** (68.5 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–15% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 45 mg, 68% yield; with [Ni] catalyst, 52 mg, 78% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2b**.¹³ **HRMS** EI calcd for $C_{13}H_{12}S$ [M]⁺ *m/z* 200.0660, found 200.0662

(4-Methoxyphenyl)(phenyl)sulfide (2c). General procedure B was followed using substrate 1c (73 mg, 0.3 mmol) and the crude mixture was purified via flash column

chromatography with elution using a gradient of 0–20% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 18 mg, 27% yield; with [Ni] catalyst, 50 mg, 75% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2c**.¹³ **HRMS** EI calcd for $C_{13}H_{12}OS$ [M]⁺ *m/z* 216.0609, found 216.0612.

Phenyl(4-(trifluoromethyl)phenyl)sulfide (2d). General procedure B was followed using substrate **1d** (85 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 60 mg, 79% yield; with [Ni] catalyst, 62 mg, 82% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2d**.¹³ **HRMS** EI calcd for $C_{13}H_9F_3S$ [M]⁺ *m/z* 254.0377, found 254.0369.

For a 1.0 mmol scale reaction: General procedure B and reaction Set-up A were followed using substrate 1d (283 mg, 1.0 mmol), Ni(cod)₂ (0.1 equiv), PCy₃ (0.2 equiv), and toluene (3 mL) as the solvent with heating at 130 °C. After 20 h, the reaction mixture was cooled to room temperature, diluted with Et₂O (5 mL), passed through a plug of silica and concentrated by rotavap. The resulting crude residue was purified by flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford compound 2d as a colorless oil: 219 mg, 87% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for 2d.¹³

Methyl 4-(phenylthio)benzoate (2e). General procedure B was followed using substrate **1e** (82 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the compound as a white solid: with [Pd] catalyst, 59 mg, 80% yield; with [Ni] catalyst, 63 mg, 85% yield. **Mp** 73–74 °C; ¹H **NMR** (700 MHz, CDCl₃) δ 7.90 (d, *J* = 8.6 Hz, 2H), 7.53–7.46 (multiple peaks, 2H), 7.41–7.35 (multiple peaks, 3H), 7.21 (d, *J* = 8.5 Hz, 2H), 3.89 (s, 3H); ¹³C **NMR** (176 MHz, CDCl₃) δ 166.9, 144.6, 133.9, 132.6, 130.3, 129.8, 128.9, 127.8, 127.7, 52.3; **HRMS** ESI calcd for C₁₄H₁₃O₂S [M+H]⁺ *m/z* 245.0636, found 245.0641.

4,4,5,5-Tetramethyl-2-(4-(phenylthio)phenyl)-1,3,2-dioxaborolane (2f). General procedure B was followed using substrate **1d** (102 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 67 mg, 72% yield; with [Ni] catalyst, 74 mg, 80% yield. ¹H NMR (700 MHz, CDCl₃) δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.39 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.34–7.31 (m, 2H), 7.30–7.26 (m, 3H), 1.33 (s, 12H); ¹³C NMR (176 MHz, CDCl₃) δ 140.6, 135.6, 134.8, 132.3, 129.5, 129.2, 127.8, 84.1, 25.1 (the carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation); HRMS ESI calcd for C₁₈H₂₂BO₂S [M+H]⁺ *m/z* 313.1434, found 313.1439.

Phenyl(o-tolyl)sulfide (2g). General procedure B was followed using substrate **1g** (68 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 60 mg, 79% yield; with [Ni] catalyst, 75 mg, 98% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2g**.¹³ **HRMS** El calcd for C₁₃H₁₂S [M]⁺ *m/z* 200.0660, found 200.0664.

Naphthalen-1-yl(phenyl)sulfide (2h). General procedure B was followed using substrate **1h** (79 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 48 mg, 68% yield; with [Ni] catalyst, 70 mg, 99% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2h**.¹³ **HRMS** El calcd for C₁₆H₁₂S [M]⁺ *m/z* 236.0660, found 236.0653.

(4-Methoxyphenyl)(phenyl)sulfide (2i). General procedure B was followed using substrate 1i (73 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–20% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 52 mg, 80% yield; with [Ni] catalyst, 53

mg, 82% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2i** (identical to compound **2c**).¹³

(4-Fluorophenyl)(phenyl)sulfide (2j). General procedure B is followed using substrate 1j (70 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–20% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 52 mg, 85% yield; with [Ni] catalyst, 54 mg, 88% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for 2j.¹⁴ HRMS EI calcd for $C_{12}H_9FS$ [M]⁺ *m/z* 204.0409, found 204.0410.

Phenyl(4-(trifluoromethyl)phenyl)sulfide (2k). General procedure B was followed using substrate **1k** (85 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–20% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 42 mg, 55% yield; with [Ni] catalyst, 55 mg, 72% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2k** (identical to compound **2d**).¹³

4-(PhenyIthio)pyridine (2I). General procedure B was followed using substrate **1k** (65 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography

with elution using a gradient of 5–40% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 29 mg, 52% yield; with [Ni] catalyst, 36 mg, 65% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2I**.¹⁵ **HRMS** EI calcd for $C_{11}H_9NS$ [M]⁺ *m/z* 187.0456, found 187.0458.

2-(PhenyIthio)thiophene (2m). General procedure B was followed using substrate **1m** (66 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 5–40% EtOAc/hexane to afford the compound as a colorless oil: with [Ni] catalyst, 41 mg, 72% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2m**.¹⁵ **HRMS** El calcd for $C_{10}H_8S_2$ [M]⁺ *m/z* 192.0067, found 192.0069.

3-(PhenyIthio)pyridine (2n). General procedure B was followed using substrate **1n** (65 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 5–50% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 30 mg, 54% yield; with [Ni] catalyst, 37 mg, 66% yield. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2n**.¹⁵ **HRMS** EI calcd for C₁₁H₉NS [M]⁺ *m/z* 187.0456, found 187.0456.

2-(PhenyIthio)-4*H***-chromen-4-one (2o).** General procedure B was followed using substrate **1o** (85 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 5–30% EtOAc/hexane to afford the compound as a white solid: with [Pd] catalyst, 30 mg, 40% yield; with [Ni] catalyts, 57 mg, 76% yield. **Mp** 107–108 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.12 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.67-7.57 (multiple peaks, 3H), 7.52–7.44 (multiple peaks, 3H), 7.36 (dd, *J* = 7.9, 6.7 Hz, 2H), 5.90 (s, 1H); ¹³C **NMR** (100 MHz, CDCl₃) δ 176.3, 170.5, 156.9, 135.9, 133.7, 130.9, 130.3, 126.6, 126.0, 125.5, 123.7, 117.6, 109.0; **HRMS** ESI calcd for C₁₅H₁₁O₂S [M+H]⁺ *m/z* 255.0480, found 255.0487.

(*E*)-Phenyl(styryl)sulfide (2p). General procedure B was followed using substrate 1p (72 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 32 mg, 50% yield (*E*/*Z* ratio = 9:1); with [Ni] catalyst, 52 mg, 82% yield (*E*/*Z* ratio = >20:1). The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for 2p.¹⁶ HRMS EI calcd for C₁₄H₁₂S [M]⁺ *m*/*z* 212.0660, found 212.0659.

Benzyl(phenyl)sulfide (2q). General procedure B was followed using substrate **1q** (76 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the compound as a white solid: with [Pd] catalyst, 32.9 mg, 49% yield. **Mp** 40–41 °C. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2q**.¹⁷ **HRMS** El calcd for $C_{13}H_{12}S[M]^+ m/z$ 200.0660, found 200.0665.

Cinnamyl(phenyl)sulfide (2r). General procedure B was followed using substrate **1r** (68 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the compound as a yellowish oil: with [Pd] catalyst, 48.6 mg, 81% yield. ¹H NMR (700 MHz, CDCl₃) δ 7.18–7.22 (multiple peaks, 10H), 6.64 (m, 1H), 6.45 (m, 1H), 3.92 (s, 2H); ¹³C NMR (176 MHz, CDCl₃) δ 136.9, 136.0, 132.9, 130.4, 129.0, 128.7, 127.7, 126.6, 126.5, 125.2, 37.3; HRMS El calcd for C₁₅H₁₄S [M]⁺ *m/z* 226.0816, found 226.0818.

Benzyl(phenyl)sulfide (2s). General procedure B was followed using substrate **1s** (76 mg, 0.3 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 0–10% EtOAc/hexane to afford the compound as a white solid: with [Pd] catalyst, 55 mg, 82% yield. **Mp** 40–41 °C. The ¹H and ¹³C NMR spectroscopic data were identical to those reported previously in the literature for **2s** (identical to compound **2q**).¹⁷ **HRMS** EI calcd for C₁₃H₁₂S [M]⁺ *m/z* 200.0660, found 200.0660.

4-(PhenyIthio)-*N*,*N*-dipropyIbenzenesulfonamide (2u). General procedure B was followed using substrate **1u** (76 mg, 0.2 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 5–30% EtOAc/hexane to afford the compound as a white solid: with [Pd] catalyst, 39 mg, 55% yield; with [Ni] catalyst, 64 mg, 92% yield. **Mp** 63–64 °C; ¹H **NMR** (700 MHz, CDCl₃) δ 7.64 (d, *J* = 8.5 Hz, 2H), 7.53–7.46 (multiple peaks, 2H), 7.43–7.40 (multiple peaks, 3H), 7.22 (d, *J* = 8.5 Hz, 2H), 3.04 (dd, *J* = 8.7, 6.7 Hz, 4H), 1.54 (multiple peaks, 4H), 0.86 (t, *J* = 7.4 Hz, 6H); ¹³C **NMR** (176 MHz, CDCl₃) δ 144.3, 137.4, 134.2, 131.9, 130.0, 129.2, 127.8, 127.8, 50.3, 22.3, 11.4; **HRMS** ESI calcd for C₁₈H₂₄NO₂S₂ [M+H]⁺ *m/z* 350.1248, found 350.1253.

4-((4-Methoxyphenyl)thio)-*N*,*N*-dipropylbenzenesulfonamide (2v). General procedure B was followed using substrate **1v** (82 mg, 0.2 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 5–30% EtOAc/hexane to afford the compound as a colorless oil: with [Ni] catalyst, 42 mg, 55% yield. ¹H NMR (700 MHz, CDCl₃) δ 7.60 (d, *J* = 8.6 Hz, 2H), 7.47 (d, *J* = 8.7 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 2H), 3.85 (s, 3H), 3.06–2.96 (multiple peaks, 4H), 1.57–1.48 (multiple peaks, 4H), 0.85 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 161.0, 146.2, 137.1, 136.5, 127.6, 126.2, 121.1, 115.6, 55.6, 50.3, 22.3, 11.4; HRMS ESI calcd for C₁₉H₂₆NO₃S₂ [M+H]⁺ *m*/*z* 380.1354, found 380.1357.

4-((4-Fluorophenyl)thio)-*N*,*N*-dipropylbenzenesulfonamide (2w). General procedure B was followed using substrate **1w** (79 mg, 0.2 mmol), and the crude mixture was purified via flash column chromatography with elution using a gradient of 5–30% EtOAc/hexane to afford the compound as a colorless oil: with [Pd] catalyst, 50 mg, 67% yield; with [Ni] catalyst, 62 mg, 84% yield. ¹H NMR (700 MHz, CDCl₃) δ 7.63 (d, *J* = 8.5 Hz, 2H), 7.50 (dd, *J* = 8.6, 5.3 Hz, 2H), 7.17–7.14 (multiple peaks, 2H), 7.13–7.10 (multiple peaks, 2H), 3.09–2.79 (multiple peaks, 4H), 1.54 (multiple peaks, 4H), 0.85 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 163.5 (d, *J* = 250.5 Hz), 144.5, 137.3, 136.9 (d, *J* = 8.5 Hz), 127.8, 127.2, 126.7 (d, *J* = 3.3 Hz), 117.3 (d, *J* = 22.1 Hz), 50.3, 22.3, 11.4; HRMS ESI calcd for C₁₈H₂₃FNO₂S₂ [M+H]⁺ *m*/z 368.1154, found 368.1156.

V. Competition Experiments

A. Effect of electronics on thioester substrates

Using the general procedure for Pd and Ni catalysis (2 mol % catalyst and 4 mol % ligand, Figure S1, **Set-up A**), the thioester substrates **1c** (0.05 mmol, 0.5 equiv), and **1d** (0.05 mmol, 0.5 equiv) were allowed to react in deuterated toluene at 130 °C. Reactions mixtures were assayed after 0.5 and 2 h by ¹H and ¹⁹F NMR spectroscopy using trimethoxybenzene and trifluoromethoxybenzene as internal standards. Results are summarized in **Table S3(a)**.

B. Reactivity of thioester 1g under Pd and Ni catalysis

Using the general procedure for Pd and Ni catalysis (2 mol % catalyst and 4 mol % ligand, Figure S1, **Set-up A**), the thioester substrate **1g** (0.1 mmol, 1 equiv) was allowed to react in deuterated toluene at 130 °C. Reactions mixtures were assayed after 0.5 and 2 h by ¹H NMR spectroscopy using trimethoxybenzene as internal standard. Results are summarized in **Table S3(b)**.

Table	S3.	Competition	experiments	of	various	thioesters	under	Pd	and	Ni
metho	ds ^a									

(a) Effect of electronics on thioester substrates					
Ν	AeO SPh	+ F ₃ C	cat. [Pd] or [Ni] 130 °C, toluene-d ₈	2c + 2d	
	1c (0.5 equiv)	1d (0.5 equiv)			
		[Pd]: 2 mol % Pd[P(o-to [Ni]: 2 mol % Ni(cod) ₂ ,	ol) ₃] ₂ , 4 mol % PAd ₂ Bn 4 mol % PCy ₃		
entry	[M]; <i>t</i> (h)	2c+2d (% yield) (ratio 2c:2d) ^b	unreacted 1c (%) ^b	unreacted 1d (%) ^b	
1	[Pd]; 0.5	18 (1:99)	>49	32	
2 ^{<i>c</i>}	[Pd]; 2	35 (4:96)	48	12	
3	[Ni]; 0.5	31 (6:94)	48	21	
4	[Ni]; 2	49 (9:91)	46	5	

(b) Reactivity of thioester 1g under Pd and Ni catalysis

entry	[M]; <i>t</i> (h)	2g (% yield) ^b	unreacted 1g (%) ^b
1	[Pd]; 0.5	>99	<1
2 ^c	[Pd]; 2	>99	<1
3	[Ni]; 0.5	40	60
4	[Ni]; 2	70	30

^aConditions: (a) **1c** (0.05 mmol), **1d** (0.05 mmol), [M] (0.002 mmol), ligand (0.004 mmol), toluene- d_8 , 130 °C, 0.5 and 2 h. (b) **1g** (0.1 mmol), [M] (0.002 mmol), ligand (0.004 mmol), toluene- d_8 , 130 °C, 0.5 and 2 h. ^{*b*}Ratio and yield analyses were obtained by ¹H and ¹⁹F NMR. ^{*c*}Unwanted biarylsulfide byproducts (~5%) were observed.

VI. References

- (1) Crabb, T.; Soilleux, S. L. J. Chem. Soc., Perkin Trans. 1 1985, 1381.
- (2) Cera, G.; Haven, T.; Ackermann, L. Angew. Chem. Int. Ed. 2016, 55, 1484.
- (3) Burhardt, M. N.; Taaning, R. H.; Skrydstrup, T. Org. Lett. 2013, 15, 948.
- (4) Cao, H.; McNamee, L.; Alper, H. J. Org. Chem. 2008, 73, 3530.
- (5) Qiao, Z.; Jiang, X. Org. Lett. 2016, 18, 1550.
- (6) Ho, D. K. H.; Chan, L.; Hooper, A.; Brennan, P. E. Tetrahedron Lett. 2011, 52, 820.
- (7) Bandgar, S. B.; Bandgar, B. P.; Korbad, B. L.; Sawant, S. S. *Tetrahedron Lett.* **2007**, 48, 1287.
- (8) Yan, Y.; Chen, J.; Zhang, L.; Zheng, Q.; Han, Y.; Zhang, H.; Zhang, D.; Awakawa,
- T.; Abe, I.; Liu, W. Angew. Chem. Int. Ed. 2013, 52, 12308.
- (9) Bordwell, F.G.; Fried, H. E. J. Org. Chem. 1991, 56, 4218.
- (10) Ranu, B. C.; Jana, R. Adv. Synth. Catal. 2005, 347, 1811.
- (11) Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2009, 351, 246.
- (12) Xiao, W.-J.; Alper, H. J. Org. Chem. 1997, 62, 3422.
- (13) Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. *Chem. Eur. J.* **2006**, *12*, 7782.
- (14) Zhang, Y.; Ngeow, K, C.; Ying, J. Y. Org. Lett. 2007, 9, 3495.
- (15) Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 9548.
- (16) Tidei, C.; Sancineto, L.; Bagnoli, L.; Battistelli, B.; Marini, F.; Santi, C. *Eur. J. Org. Chem.* **2014**, 5968.
- (17) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587.

VII. ¹H and ¹³C NMR Data of Compounds

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm) 40 30

	· · · ·	- I		· · · · ·	· · · ·	· · ·	· · ·	<u>г 1</u>	· · ·	· · · ·	· · ·	· · ·	· · ·	· · · ·		· · · ·	· · · ·	· · · ·	· · ·	· · · ·		1	
220	210	200	190	180	170	160	150	140	130	120	110 f1 (pp	100 m)	90	80	70	60	50	40	30	20	10	0	-10

30 -80 -90 f1 (ppm) 20 10 0 -10 -20 -30 -40 -50 -60 -70 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

0 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(f1 (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

