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Supporting information: 2 supplemental tables, Supplemental Material and Methods and 1 

Supplemental review of AA ecology 2 

Table S1: Ancient asexual taxa 3 

List of explicitly and implicitly proposed ancient asexual taxa along with their AA status according to the actual state of knowledge. 4 

Evidence for and against ancient asexuality was evaluated in each group and only well supported AAs were included in our study. The 5 

two criteria for inclusion were (1) obligately asexual reproduction, i.e. the absence of common or rare/cryptic sexual events, or derived 6 

forms of genetic exchange, for (2) at least 1 million years.  7 

Taxon 
Ancient 

asexuality 

Explicitly 

proposed in 
Evidence against Evidence for 

Confirmed ancient asexuals 

Rotifera: Bdelloidea YES 
Maynard 

Smith, 1986 

Domesticated horizontally transferable 

transposons (Arkhipova & Meselson, 2005; 

Gladyshev & Arkhipova, 2007; Gladyshev, 

Meselson & Arkhipova, 2007); enigmatic 

mentions of observed males (Welch et al-, 2009); 

evidence of allele sharing (Signorovitch et al., 

2015) 

Large and diverse clade (Segers, 2007, 2008); 

monophyletic (Melone & Ricci, 1995; Wallace et al., 1996; 

Welch & Meselson, 2000); asexual radiation (Ricci, 1987; 

Birky et al., 2005; Pouchkina-Stantcheva et al., 2007); 

frequency of hypothetical males would be so low they 

would be effectively asexual (Birky, 2010); very old 

(Poinar & Ricci, 1992; Waggoner & Poinar, 1993; Welch & 

Meselson, 2000); apomixis (Hsu, 1956a, b); accumulation 

of moderately deleterious mutations (Barraclough et al., 

2007); Meselson effect (Welch & Meselson, 2000; Welch et 

al., 2004b); degenerated tetraploids (Welch et al., 2004a, 

2009; Welch et al., 2008; Hur et al., 2009); specialization of 

collinear genes (Pouchkina-Stantcheva et al., 2007; Welch et 

al., 2009); functional haploidization (Arkhipova & 

Meselson, 2000; Welch & Meselson, 2000; Gladyshev & 

Meselson, 2008); unidentifiable homological pairs of 

chromosomes (Welch & Meselson, 1998); genome 

structure incompatible with meiosis (Flot et al., 2013); 

absence of vertically transferable transposons (Arkhipova 
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& Meselson, 2000, 2005); allele sharing due to horizontal 

gene transfer (Debortoli et al., 2016) 

Arthropoda: 

Ostracoda: 

Darwinulidae 

YES 

Judson & 

Normark, 

1996 

Vertically transferable transposons (Schön & 

Arkhipova, 2006); rare males (Rossetti & 

Martens, 1996; Smith et al., 2006; Schön et al., 

2009); uncertain Meselson effect (Schön et al., 

1998); slow speed of molecular evolution 

(Gandolfi et al., 2001; Schön & Martens, 2003); 

high homozygosity (Martens, 1998); low 

morphological and genetic diversity (Rossetti & 

Martens, 1996, 1998; Schön et al., 1998) 

Large and diverse clade (Martens et al., 2008; Martens & 

Savatenalinton, 2011); monophyletic (Schön et al., 2003, 

2009; Yamaguchi & Endo, 2003; Wysocka et al., 2006; Yu et 

al., 2006; Yamada, 2007; Tinn & Oakley, 2008); rare males 

spanandric (Rossetti & Martens, 1996; Smith et al., 2006; 

Schön et al., 2009); frequency of hypothetical males would 

be so low they would be effectively asexual (Birky, 2010); 

probably apomixis (Butlin et al., 1998); absence of 

automixis (Schön et al., 1998); absence of polyploidy 

(Rossi et al., 1998); absence of fossil males since the end of 

Permian /Triassic?/ (Molostovskaya, 2000; Martens et al., 

2003); millions of years old fossils classifiable into recent 

species and genera (Straub, 1952; Abushik, 1990; Martens 

et al., 1997; Martens et al., 1998a; Martens et al., 2003; 

Smith et al., 2006); very old according to the molecular 

clock (Martens et al., 2005); domesticated transposons 

(Schön & Arkhipova, 2006); genetic homogeneity proven 

not to be the consequence of automixis or recombination 

(Schön & Martens, 2003); unidentifiable homological pairs 

of chromosomes (Tétart, 1978); absence of hybridization 

among lineages (Rossi et al., 1998) 

Arthropoda: Acari: 

Oribatidae: 

Nanhermanniidae, 

Malaconothridae, 

Trhypochthoniidae, 

Camisiidae and 

majority of 

Nothridae;  

Brachychthoniidae 

and Lohmanniidae 

 

YES 

Judson & 

Normark, 

1996 

Meselson effect not observed (Schaefer et al., 

2006); rare males (Palmer & Norton, 1990, 1991; 

Norton et al., 1993); possibly revolution of 

sexuality (Domes et al., 2007b) 

Large and diverse clades (Norton et al., 1993; Subías, 2004; 

Norton & Behan-Pelletier, 2009); asexual radiations 

(Palmer & Norton, 1991); rare males spanandric (Taberly, 

1988; Palmer & Norton, 1990, 1991, 1992; Norton et al., 

1993); Meselson effect not observed because of automixis 

with terminal fusion of gametes (Taberly, 1987; Wrensch, 

Kethley & Norton, 1994; Schaefer et al., 2006) and mostly 

inverted meiosis (Wrensch et al., 1994; Heethoff, 2004; 

Laumann et al., 2008); very old (Krivolutsky & Druk, 1986; 

Maraun et al., 2003, 2004; Heethoff et al., 2007; Laumann et 

al., 2007) + not very good colonizers (Skubala & Gulvik, 

2005; Domes et al., 2007c; Cianciolo, 2009) and 

biogeographic distribution corresponds to continental 

drift (Hammer & Wallwork, 1979; Heethoff, 2004; Heethoff 
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et al., 2007); absence of sexual clades closely related to 

asexual lineages (Norton et al., 1993; Maraun et al., 2004); 

absence of recombination (Palmer & Norton, 1992; 

Heethoff, 2004; Schaefer et al., 2006); reevolution of 

sexuality is exceptional and uncertain (Domes et al., 

2007b) 

Arthropoda: Acari: 

Endeostigmata: 

Nematalycidae, 

Proteonematalycidae

; Oehserchestidae, 

Granjeanicidae; 

Alicorhagia, 

Stigmalychus 

YES 

Judson & 

Normark, 

1996 

Poorly understood (Walter, 2009); rare males 

(Norton et al., 1993) 

Rare males are spanandric; analogies with asexual 

Oribatidae (frequency of males, their spanandric 

character, ecology, distribution, population genetics etc.) 

(Norton et al., 1993) 

Arthropoda: Acari: 

Trombidiformes: 

Lordalycidae; 

Pomerantziidae 

YES 

Judson & 

Normark, 

1996 

Poorly understood (Walter et al., 2009); rare 

males (Norton et al., 1993) 

Rare males are spanandric; analogies with asexual 

Oribatidae (frequency of males, their spanandric 

character, ecology, distribution, population genetics etc.) 

(Norton et al., 1993) 

Arthropoda: 

Phasmatodea: 

Timema: 

Timema tahoe, 

Timema monikensis, 

Timema genevieve  

 

YES 

Sandoval, 

Carmean & 

Crespi, 1998 

Rare males (Vickery & Sandoval, 2001; Law & 

Crespi, 2002a); no signs of haploidization 

(Schwander & Crespi, 2009a) 

Obligatory parthenogenesis (Sandoval & Vickery, 1996; 

Sandoval et al., 1998; Law & Crespi, 2002a, b; Schwander & 

Crespi, 2009a); apomixis (Crespi & Sandoval, 2000; Law & 

Crespi, 2002a; Schwander & Crespi, 2009a; Schwander, 

Henry & Crespi, 2011); asexual females do not mate with 

sexual males (Sandoval et al., 1998); rare males 

spanandric (Law & Crespi, 2002a; Schwander & Crespi, 

2009a); degeneration of sexual traits in females 

(Schwander et al., 2013); recombination, haploid gametes 

and meiosis never observed (Schwander et al., 2010, 2011); 

degradation of chromosome pairing in Timema genevieve 

(Schwander & Crespi, 2009a); very old (Law & Crespi, 

2002a, b; Schwander et al., 2011); extinct or undiscovered 

mother species improbable (Sandoval et al., 1998); 

Meselson effect (Schwander et al., 2011); slower mutation 

speed and more deleterious mutations in asexual lineages 

(Schwander et al., 2011; Henry, Schwander & Crespi, 2012) 

Mollusca: Bivalvia: 

Lasaea except Lasaea 

australis and Lasaea 

colmani 

YES 
Ó Foighil & 

Smith, 1995 

Polyphyletic asexual lineages probably 

originated in hybridizations (Thiriot-Quivreux, 

1992; Ó Foighil & Smith, 1995; Taylor & Ó 

Foighil, 2000; Li et al., 2013); sperm still able to 

bind to an egg and penetrate it (Ó Foighil, 

Pseudogamous self-fertilizing hermaphrodites 

/autogynogenesis/ (Ó Foighil & Eernisse, 1988; Ó Foighil & 

Thiriot-Quiévreux, 1991, 1999; Ó Foighil & Smith, 1995; 

Taylor & Ó Foighil, 2000); no outcrossing (Ó Foighil, 

1988); male genetic material from sperm never transmit 
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1987); the age estimated from biogeography 

could be an artefact if they are shown up to be 

good colonizers in ecological timescales (Taylor 

& Ó Foighil, 2000) 

to offspring (Ó Foighil & Thiriot-Quiévreux, 1991); 

minimal male reproductive allocation, sperm are few and 

degenerated (Ó Foighil, 1985; Beauchamp, 1986; McGrath 

& Ó Foighil, 1986); no specialized sexual structures (Ó 

Foighil & Eernisse, 1988); almost certainly apomixis (Ó 

Foighil & Thiriot-Quiévreux, 1991); meiosis and 

segregation of chromosomes never observed (Ó Foighil & 

Eernisse, 1988; Thiriot-Quivreux et al., 1988; Ó Foighil & 

Thiriot-Quiévreux, 1991); adaptation and differentiation in 

asexuality (Ó Foighil & Eernisse, 1988; Ó Foighil & Smith, 

1996; Taylor & Ó Foighil, 2000; Li et al., 2013) including 

ecological specializations (Crisp & Standen, 1988; Tyler-

Walters & Davenport, 1990); polyploidy (Ó Foighil & 

Smith, 1995); variable count of chromosomes, frequent 

non-pairing chromosomes, impossibility of meiosis 

(Thiriot-Quivreux et al., 1988; Ó Foighil & Thiriot-

Quiévreux, 1991, 1999); very old (Ó Foighil & Smith, 1995, 

1996; Ó Foighil & Jozefowicz, 1999; Li et al., 2013); 

absence of cosmopolitan lineages, no rapid colonization 

(Taylor & Ó Foighil, 2000); comparable substitution 

speeds of sexual and asexual lineages (Ó Foighil & Smith, 

1995; Li et al., 2013); colonization of large areas by rafting 

in direct-developing asexuals, long time ago when the 

ocean currents were different (Ó Foighil & Jozefowicz, 

1999); repeated transitions between sexuality and 

asexuality, transfer of male genetic material or parallel 

neutral evolution highly improbable (Ó Foighil & Smith, 

1995); undiscovered sexual lineages improbable (Ó Foighil 

& Smith, 1995; Taylor & Ó Foighil, 2000) 

Polypodiophyta: 

Vittariaceae: Vittaria 

appalachiana 

YES Farrar, 1978 

Retrotransposons (Docking et al., 2006); rarely 

observed sporophytes (Farrar, 1978; Caponetti et 

al., 1982) 

Exclusively asexual gametophyte (Farrar, 1967); asexual 

reproduction by gemmae and fission of thallus (Farrar, 

1974); monophyletic (Farrar, 1978, 1985, 1990); rare 

sporophytes always abortive (Farrar, 1978; Caponetti et al., 

1982); very old (Docking et al., 2006) + most probably 

sister to some central- or south-American species (Farrar, 

1985) + sporophytes do not tolerate freezing, very limited 

migration and colonization, geographical distribution is 

relict of that of its mother species (Farrar, 1978; Parks & 

Farrar, 1984; Farrar, 1990, 1998); internally genetically 

uniform but disparate populations (Farrar, 1978, 1985); 
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absence of gene flow (Farrar, 1990); adaptations in asexual 

state (Farrar, 1985, 1990); transposons probably 

domesticated (Schön & Arkhipova, 2006) 

Refused and contested ancient asexuals 

Polypodiophyta: 

Hymenophyllaceae: 

Trichomanes 

intricatum 

NO 

Judson & 

Normark, 

1996 

Overestimated age (Ebihara et al., 2008) Obligately asexual (Farrar, 1990, 1992) 

Chordata: 

Lissamphibia: 

Ambystoma 

NO 

Spolsky, 

Phillips & 

Uzzell, 1992 

Transfer of paternal genetic information from 

sperm in gynogenesis (Hedges et al., 1992; 

Spolsky et al., 1992; Bogart et al., 2007) 

Gynogenetic clade old up to 3.5 MY (Bi & Bogart, 2010; 

Bogart et al., 2007) 

Chordata: Teleostei: 

Poeciliopsis lineage 

MO/II 

NO 

Judson & 

Normark, 

1996 

Overestimated age (Mateos & Vrijenhoek, 2002) Old obligately asexual lineage (Quattro et al., 1992) 

Arthropoda: 

Hemiptera: Trama 
NO Moran, 1992 

Not obligately parthenogenetic – sexual 

populations (Verma, 1969; Blackman, De Boise 

& Czylok, 2001) 

Obligately parthenogenetic populations (Moran, 1992; 

Normark, 1999; Blackman, Spence & Normark, 2000) 

Arthropoda: 

Hemiptera: Neotrama 
NO Moran, 1992 

Not obligately parthenogenetic – sexual 

populations (Verma, 1969; Normark & Moran, 

2000) 

Obligately parthenogenetic populations (Moran, 1992; 

Normark, 1999; Blackman et al., 2000) 

Arthropoda: 

Hemiptera: Aspidiotus 

nerii 

NO 
Provencher et 

al., 2005 
Uncertain age (Provencher et al., 2005) Old obligately asexual lineage (Provencher et al., 2005) 

Arthropoda: 

Hemiptera: 

Rhopalosiphum padi 

NO 
Simon et al., 

1996 

Repeated generation of asexual lineages, 

hybridization, production of fertile males, gene 

flow, asexual lineages too young (Simon et al., 

1999; Delmotte et al., 2001; Delmotte et al., 2003) 

Old obligately asexual lineages (Simon et al., 1996; Simon 

et al., 1999; Delmotte et al., 2001); possibly Meselson effect 

(Halkett et al., 2005) 



6 

 

Arthropoda: 

Hemiptera: Adelgidae 
NO 

Schwander & 

Crespi, 2009b 
Insufficient information (Havill et al., 2007) Possibly old obligately asexual lineages (Havill et al., 2007) 

Arthropoda: 

Coleoptera: Aramigus 
NO 

Judson & 

Normark, 

1996 

Overestimated age (Normark & Lanteri, 1998) Old obligately asexual lineage (Normark, 1996) 

Arthropoda: 

Coleoptera: 

Calligrapha 

NO 
Gomez-Zurita 

et al., 2006 

Uncertain age (Gomez-Zurita et al., 2006), 

possible gene flow (Montelongo & Gomez-Zurita, 

2015) 

Old obligately asexual lineages (Gomez-Zurita et al., 2006) 

Arthropoda: 

Coleoptera: 

Otiorhynchus 

NO 
Schwander & 

Crespi, 2009b 

Insufficient information (Stenberg & Lundmark, 

2004) 

Possibly old obligately asexual lineages (Stenberg & 

Lundmark, 2004) 

Arthropoda: 

Coleoptera: 

Naupactus leucoloma 

NO Mayr, 1963 
Not obligately parthenogenetic – sexual 

populations (Lanteri & Marvaldi, 1995) 
Obligately parthenogenetic populations (Mayr, 1963) 

Arthropoda: 

Phasmatodea: 

Bacillus atticus 

NO 

Normark, 

Judson & 

Moran, 2003 

Uncertain age (Mantovani et al., 2001) Old obligately asexual lineage (Mantovani et al., 2001) 

Arthropoda: 

Lepidoptera: 

Naryciinae 

NO 
Schwander & 

Crespi, 2009b 

Numerous recent transfers to asexuality, 

overestimated age (Elzinga et al., 2013) 
Old obligately asexual lineages (Grapputo et al., 2005) 

Arthropoda: 

Ostracoda: 

Heterocypris 

incongruens 

NO 
Chaplin & 

Hebert, 1997 

Overestimated age (Tétart, 1978; Chaplin & 

Hebert, 1997; Martens et al., 1998b) 

Old obligately asexual lineage (Chaplin & Hebert, 1997; 

Butlin et al., 1998) 

Arthropoda: 

Ostracoda: Eucypris 

virens 

NO 
Butlin et al., 

1998 

Overestimated age (Tétart, 1978; Martens et al., 

1998b; Bode et al., 2010), possible gene flow 

(Schön et al., 2000) 

Old obligately asexual lineage (Butlin et al., 1998; Bode et 

al., 2010) 
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Arthropoda: 

Anostraca: “Artemia 

parthenogenetica” 

NO 

Judson & 

Normark, 

1996 

Overestimated age (Hebert et al., 2002), not 

monophyletic (Nascetti et al., 2003; Baxevanis et 

al., 2006; Muñoz et al., 2010) 

Old obligately asexual lineage (Perez et al., 1994) 

Arthropoda: Acari: 

Protogamasellus 
NO 

Norton et al., 

1993 
Arrhenotoky (Afifi et al., 1986) Obligately parthenogenetic (Norton et al., 1993) 

Arthropoda: Acari: 

Gamasellodes 
NO 

Norton et al., 

1993 
Arrhenotoky (Afifi et al., 1986) Obligately parthenogenetic (Norton et al., 1993) 

Arthropoda: Acari: 

Geholaspis 
NO 

Norton et al., 

1993 

Large proportion of males in some populations 

(Gwiazdowicz & Klemt, 2004) 
Obligately parthenogenetic (Norton et al., 1993) 

Arthropoda: Acari: 

Trachytes 
NO 

Norton et al., 

1993 

Sexual (Bloszyk & Szymkowiak, 1996; Bloszyk et 

al., 2004) 
Obligately parthenogenetic (Norton et al., 1993) 

Mollusca: Gastropoda: 

Thiaridae 
NO 

Morrison, 

1954 

No larger lineage is obligately parthenogenetic 

– sexual populations (Heller & Farstey, 1990) 
Obligately parthenogenetic populations (Morrison, 1954) 

Mollusca: Gastropoda: 

Campeloma 

parthenum 

NO 
Normark et 

al., 2003 

Repeated transfers to asexuality, uncertain age 

of asexual lineages, possibility of hybridization 

(Johnson & Bragg, 1999; Johnson, 2006) 

Old obligately asexual lineages (Johnson & Bragg, 1999); 

Meselson effect (Johnson, 2006) 

Mollusca: Gastropoda: 

Potamopyrgus 

antipodarum 

NO 

Neiman, 

Jokela & 

Lively, 2005 

Unreliable age estimation (Neiman et al., 2005); 

obligatory asexuality questioned (Neiman & 

Lively, 2005; Neiman et al., 2012) 

Old obligately asexual lineages (Neiman & Lively, 2004; 

Neiman et al., 2005) 

Gastrotricha: 

Chaetonida 
NO Stanley, 1979 

Facultative parthenogenesis (Thorp & Covich, 

1991; Ricci & Balsamo, 2000; Weiss, 2001) 
Obligately parthenogenetic (Pilato, 1979; Stanley, 1979) 
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Tardigrada: 

Echiniscus testudo 
NO - Overestimated age (Jorgensen, et al., 2007) Old obligately asexual lineage (Miller et al., 1999) 

Nematoda: 

Heteroderidae: 

Meloidogyne 

NO 

Judson & 

Normark, 

1996 

Overestimated age (Trudgill & Blok, 2001; Lunt, 

2008) 

Old obligately asexual lineage (Triantaphyllou, 1981; 

Castagnonesereno et al., 1993; Tigano et al., 2005) 

Platyhelmintes: 

Turbellaria: 

Schmidtea polychroa 

NO - Overestimated age (Pongratz et al., 2003) Old obligately asexual lineage (Pongratz et al., 2003) 

Cnidaria: Myxozoa NO - Evidence of sexual process (Morris, 2012) Sexual process never observed 

Placozoa NO 

Schurko, 

Neiman & 

Logsdon, 

2009 

Evidence of sexual process (Signorovitch et al., 

2005) 
Sexual process never observed 

Glomeromycota: 

Glomales 
NO 

Judson & 

Normark, 

1996 

The evidence of recombination and sexual 

process (Vandenkoornhuyse et al., 2001; Gandolfi 

et al., 2003; Croll & Sanders, 2009; Halary et al., 

2011); meiotic genes (Corradi & Lildhar, 2012; 

Tisserant et al., 2013) 

Very old obligately asexual lineage (Remy et al., 1994; 

Rosendahl & Taylor, 1997; Stukenbrock & Rosendahl, 2005; 

Croll & Sanders, 2009); vegetative incompatibility 

(Giovannetti et al., 2003) 

Basidiomycota: 

Lepiotaceae 
NO 

Judson & 

Normark, 

1996 

The evidence of recombination (Mueller, 2002; 

Doherty et al., 2003; Mueller et al., 2005; 

Mikheyev et al., 2006); formation of sexual 

structures (Mueller, 2002; Mueller et al., 2005); 

absence of Meselson effect (Mueller et al., 1998) 

Old obligately asexual lineages (Chapela et al., 1994; 

Hinkle et al., 1994; Mueller et al., 1998) 

Basidiomycota: 

Tricholomataceae 
NO 

Judson & 

Normark, 

1996 

Evidence of recombination (Mueller, 2002; 

Mueller et al., 2005; Mikheyev et al., 2006); 

formation of sexual structures (Mueller, 2002; 

Mueller et al., 2005); ants are able to change 

among related strains of fungus (Villesen et al., 

2004) 

Old obligately asexual lineages (Chapela et al., 1994; 

Hinkle et al., 1994; Mueller et al., 1998) 
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Ascomycota: 

Ophiostomatales 
NO 

Normark et 

al., 2003 

Uncertain age – horizontal transfer among 

bark beetles (Farrell et al., 2001) 
Old obligately asexual lineages (Farrell et al., 2001) 

Ascomycota: 

Aspergillus fumigatus 
NO - 

Evidence of sexual process (O'Gorman et al., 

2009) 
Sexual process never observed 

Ascomycota: Candida 

albicans 
NO 

Schurko et 

al., 2009 

Evidence of recombination, probably 

facultative sexual (Graser et al., 1996; Tibayrenc, 

1997; Hull & Johnson, 1999; Tzung et al., 2001; 

Odds et al., 2007); transposons (Goodwin & 

Poulter, 2000) 

Parasexual cycle (Bennett & Johnson, 2003; Forche et al., 

2008); clonal (Graser et al., 1996; Tibayrenc, 1997) 

Zygomycota: 

Microsporidia 

(Encephalitozoon 

cuniculi) 

NO 
Schwander & 

Crespi, 2009b 

Repeated recent loss of sexuality, overestimated 

age (Ironside, 2007; Haag et al., 2013); meiotic 

genes (Biderre et al., 1999; Ramesh et al., 2005; 

Cuomo et al., 2012) 

Old obligately asexual lineages (Tay et al., 2005) 

Excavata: 

Trichomonadida: 

Trichomonas 

vaginalis 

NO 
Schurko et 

al., 2009 

Meiotic genes, transposons (Carlton et al., 2007; 

Malik et al., 2008); evidence for recombination 

and sexual process (Drmota & Kral, 1997; Hampl 

et al., 2001) 

Clonal (Tibayrenc et al., 1990; Tibayrenc et al., 1991) 

Excavata: 

Diplomonadida 

(Giardia intestinalis)  

NO 
Normark et 

al., 2003 

Evidence of sexual process (Bernander et al., 

2001; Morrison et al., 2007); meiotic genes 

(Ramesh et al., 2005; Malik et al., 2008); 

population genetics signs of sex (Cooper et al., 

2007; Andersson, 2012) 

Obligately parthenogenetic (Dacks & Roger, 1999); 

domesticated transposons (Arkhipova & Morrison, 2001) 

Excavata: 

Kinetoplastea 

(Trypanosoma cruzi, 

Trypanosoma brucei) 

NO 
Schurko et 

al., 2009 

Meiotic genes, transposons (Berriman et al., 

2005; El-Sayed et al., 2005; Weedall & Hall, 

2015); evidence for recombination and sexual 

process (MacLeod et al., 2005); meiotic cycle and 

haploid gametes (Peacock et al., 2011, 2014) 

Clonal (Tibayrenc et al., 1990, 1991); parasexual process 

(Gaunt et al., 2003), few or no recombination (Oliveira et 

al., 1998) 

Excavata: 

Heterolobosea 

(Naegleria gruberi) 

NO - Meiotic genes (Fritz-Laylin et al., 2010) Sexual process never observed 
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Excavata: Jakobida NO - 
Genes for plasmogamy and karyogamy (Speijer 

et al., 2015) 
Sexual process never observed 

Excavata: 

Malawimonadida 
NO - 

Genes for plasmogamy and karyogamy (Speijer 

et al., 2015) 
Sexual process never observed 

Alveolata: 

Dinoflagellata: 

Symbiodinium 

NO - Meiotic genes (Chi et al., 2014) Sexual process never observed 

Alveolata: 

Apicomplexa 

(Toxoplasma gondii) 

NO 
Schurko et 

al., 2009 

Evidence for recombination and sexual process 

(Tibayrenc et al., 1990; Howe & Sibley, 1995; 

Grigg et al., 2001; Heitman, 2006; Khan et al., 

2007); meiotic genes (Weedall & Hall, 2015) 

  

Clonal (Tibayrenc et al., 1990, 1991; Howe & Sibley, 1995); 

old (Sibley & Boothroyd, 1992; Khan et al., 2007) 

Stramenopila: 

Eustigmatophyceae 

(Nannochloropsis 

oceanica) 

NO - Related species sexual (Radakovits et al., 2012) 
Haploid, sex process never observed, few mitotic genes 

(Pan et al., 2011) 

Stramenopila: 

Parmales - 

Bolidophyceae 

NO - 
Haploid and diploid stages of one group 

(Kessenich et al., 2014) 
Sexual process never observed 

Rhizaria: 

Foraminifera 

(Reticulomyxa filosa) 

NO - Meiotic genes (Glöckner et al., 2014) Sexual process never observed 

Chromista: 

Cryptophyta 

(Chroomonas acuta; 

Proteomonas sulcata) 

NO - 

Haploid gametes, syngamy (Kugrens & Lee, 

1988); haploid and diploid stages (Hill & 

Wetherbee, 1986) 

Sexual process never observed 

Chlorophyta: 

Glaucophyta 

(Cyanophora 

paradoxa) 

NO - 
Genes for plasmogamy and karyogamy (Speijer 

et al., 2015) 
Sexual process never observed 
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Chlorophyta: 

Prasinophyceae: 

Ostreococcus tauri 

NO - 
Evidence of sexual process (Grimsley et al., 

2010) 
Sexual process never observed 

Chlorophyta: 

Trebouxiophyceae 

(Chlorella variabilis) 

NO - 
Evidence of sexual process (Blanc et al., 2010); 

meiotic genes (Fucikova et al., 2015) 
Sexual process never observed 

Amoebozoa: 

Entamoebida 

(Entamoeba 

histolytica) 

NO 
Normark et 

al., 2003 

Evidence of sexual process (Blanc et al., 1989); 

meiotic genes (Ramesh et al., 2005) 
Obligately parthenogenetic (Dacks & Roger, 1999) 

Opisthokonta: 

Ichthyosporea: 

Pseudoperkinsus 

tapestis 

NO - 
Evidence of sexual process (Marshall & Berbee, 

2010) 
Sexual process never observed 

Opisthokonta: 

Choanoflagelata 

(Monosiga brevicolis; 

Salpingoeca rosetta) 

NO - 

Meiotic genes (Carr et al., 2010); 

retrotransposons (Carr et al., 2008); evidence of 

sexual process (Levin & King, 2013) 

Sexual process never observed 

Opisthokonta: 

Filasterea 

(Capsaspora 

owczarzaki) 

NO - Meiotic genes (Suga et al., 2013) Sexual process never observed 

Newly proposed ancient asexuals 

Ophistokonta: 

Cristidiscoidea 

(Fonticula alba) 

? 
Speijer et al., 

2015 
Poorly understood 

Sexual process never observed; genes for plasmogamy 

and karyogamy absent (Speijer et al., 2015) 

Ophistokonta: 

Ichthyosporea 

(Sphaeroforma 

arctica) 

? 
Speijer et al., 

2015 
Poorly understood 

Sexual process never observed; genes for plasmogamy 

and karyogamy absent (Speijer et al., 2015) 
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Apusomonadida 

(Thecamonas 

trahens) 

? 
Speijer et al., 

2015 
Poorly understood 

Sexual process never observed; genes for plasmogamy 

and karyogamy absent (Speijer et al., 2015) 

Alveolata: Ciliata: 

amicronucleate 

ciliates 

? 
Speijer et al., 

2015 
Poorly understood 

Clonal, unable to undergo meiosis, lineages very old /?/ 

(Doerder, 2014); “auto-recombination” of macronuclei 

(Nowacki et al., 2008, 2011) 

Breviatea, 

Ancyromonadida, 

Mantamonadida, 

Rigifilida, 

Collodictyonida, 

Telonemia, 

Centrohelida, 

Palpitomonadea, 

Katablepharida, 

Picozoa 

?? 
Speijer et al., 

2015 
Extremely poorly understood Sexual process never observed 

  8 
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Table S2: Sexual controls 9 

List of sister or closely related, ecologically comparable, sexual taxa of the ancient asexuals included in our study. In those individual 10 

cases in which the phylogenetic relations between the sexual and asexual lineages were not entirely clear, we used the closest possible 11 

comparable clades, i.e. clades proven to be closely related and broadly comparable in terms of their ecology—aquatic for aquatic AAs, 12 

benthic for benthic AAs, terrestrial for terrestrial AAs, parasitic for parasitic AAs etc. In polyphyletic AA groups, monophyletic AA 13 

lineages and their sexual controls are identified. 14 

Ancient asexual taxon Sexual control Reasoning 

Bdelloidea Monogononta 

Bdelloidea are monophyletic within Rotifera (Melone & Ricci, 1995; Wallace et al., 1996; Welch & 

Meselson, 2000). Phylogenetic relationships of the clades within Rotifera are unclear. Monogononta are 

ecologically comparable and closely related to Bdelloidea (Garey et al., 1996; Welch, 2000; Herlyn et al., 

2003; Garcia-Varela & Nadler, 2006; Sorensen & Giribet, 2006; Witek et al., 2008; Min & Park, 2009; 

Fontaneto & Jondelius, 2011; Lasek-Nesselquist, 2012). 

Darwinuloidea Cypridoidea 

Darwinuloidea consist of a single recent family Darwinulidae and are monophyletic within Ostracoda 

(Schön et al., 2003, 2009; Yamaguchi & Endo, 2003; Wysocka et al., 2006; Yu et al., 2006; Yamada, 2007; 

Tinn & Oakley, 2008). Phylogenetic relationships of the clades within Ostracoda are unclear. 

Cypridoidea are ecologically comparable and closely related to Darwinuloidea (Scott, 1961; Maddocks, 

1976; Martens et al., 1998a, b; Schön et al., 2003, 2009; Yamaguchi & Endo, 2003; Liebau, 2005; Wysocka et 

al., 2006; Yu et al., 2006; Tinn & Oakley, 2008). 

Oribatidae - 

Nanhermanniidae, 

Malaconothridae, 

Trhypochthoniidae, 

Camisiidae, larger part of 

Nothridae 

Brachypylina 

Nanhermanniidae, Malaconothridae, Trhypochthoniidae, Camisiidae and Nothridae are included into 

taxon Desmonomata, which is of unclear monophyly within Oribatidae. Phylogenetic relationships of 

the clades within Oribatidae are quite unclear. All clades within Oribatidae are ecologically 

comparable. Besides several isolated sexual species, Desmonomata are probably related to sexual crown 

group Brachypylina (Norton et al., 1993; Norton, 1994; Judson & Normark, 1996; Normark et al., 2003; 

Domes et al., 2007a, b; Heethoff et al., 2009; Norton & Behan-Pelletier, 2009; Dabert et al., 2010). 

Oribatidae - 

Brachychthoniidae 
Mesoplophoridae 

Brachychthoniidae are probably monophyletic within Enarthronota. Phylogenetic relationships within 

Oribatidae are quite unclear. All clades within Oribatidae are ecologically comparable. 

Mesoplophoridae are closely related to Brachychthoniidae (Norton et al., 1993; Norton, 1994; Judson & 

Normark, 1996; Normark et al., 2003; Domes et al., 2007a, b; Heethoff et al., 2009; Norton & Behan-Pelletier, 

2009; Dabert et al., 2010). 

Oribatidae - Lohmanniidae 
Remaining lineages of 

Enarthronota 

Lohmanniidae are probably monophyletic within Enarthronota. Phylogenetic relationships within 

Oribatidae are quite unclear. All clades within Oribatidae are ecologically comparable. Lohmanniidae 

are basal lineage of Enarthronota and thus they can be compared only with its remaining lineages 
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(Norton et al., 1993; Norton, 1994; Judson & Normark, 1996; Normark et al., 2003; Domes et al., 2007a, b; 

Heethoff et al., 2009; Norton & Behan-Pelletier, 2009; Dabert et al., 2010). 

Endeostigmata - 

Nematalycidae and 

Proteonematalycidae 

Micropsammidae 
The sister group of Nematalycidae and Proteonematalycidae is Micropsammidae, which is also 

ecologically comparable (Norton et al., 1993; Walter et al., 2009). 

Endeostigmata - 

Grandjeanicidae and 

Oehserchestidae 

Terpnacaridae 
The sister group of Grandjeanicidae and Oehserchestidae is Terpnacaridae, which is also ecologically 

comparable (Norton et al., 1993; Walter et al., 2009). 

Endeostigmata – genera 

Alicorhagia and Stigmalychus 

(crown group of 

Alicorhagiidae) 

Epistomalycus/ 

Oribatidae + 

Astigmata 

Genera Alicorhagia and Stigmalychus constitute the crown group of Alicorhagiidae. It is possible to 

compare them with the basal sexual genus of Alicorhagiidae (Epistomalycus). Alternatively, they can be 

compared with closely related groups Oribatidae + Astigmata (Norton et al., 1993; Walter et al., 2009). All 

mentioned clades are ecologically comparable. Both options were evaluated in the study. 

Trombidiformes - 

Lordalycidae 

Sphaerolichidae + 

Prostigmata 

Lordalycidae are closely related to Sphaerolichidae and Prostigmata, which are also ecologically 

comparable (Norton et al., 1993; Walter et al., 2009). 

Trombidiformes - 

Pomerantziidae 

Pterygosomatoidea, 

Raphignathoidea, 

Cheyletoidea and 

Tetranychoidea/ 

Stigmocheylidae, 

Pseudocheylidae, 

Heterostigmata and 

Paratydelidae 

Pomerantziidae are either basal in the clade including Pterygosomatoidea, Raphignathoidea, 

Cheyletoidea and Tetranychoidea or the clade including Stigmocheylidae, Pseudocheylidae, 

Heterostigmata and Paratydelidae (Norton et al., 1993; Walter et al., 2009). All mentioned clades are 

ecologically comparable. Both options were evaluated in the study. 

Vittaria appalachiana 
Vittaria linneata/ 

Vittaria graminifolia 

Vittaria appalachiana is a monophyletic clade (Farrar, 1978, 1985, 1990). Possible mother or sister 

lineages are Vittaria linneata (Gastony, 1977), Vittaria graminifolia (Crane, 1997) or (most probably) some 

yet unidentified neotropical species (Farrar, 1985, 1990); moreover, the origin of Vittaria appalachiana in 

interspecific hybridization cannot be ruled out (Ebihara et al., 2009). All mentioned clades are 

ecologically comparable. All options were evaluated in the study. 

Timema monikensis, Timema 

tahoe, Timema genevieve 

Timema cristinae, 

Timema bartmani, 

Timema podura 

Phylogenetic relationships within the genus Timema are clear. Sister sexual lineage of Timema 

monikensis is Timema cristinae, sister sexual lineage of Timema tahoe is Timema bartmani and sister 

sexual lineage of Timema genevieve is Timema podura. Timema monikensis could even be internal lineage 

of recent Timema cristinae (Law & Crespi, 2002a, b). All mentioned species are ecologically comparable. 
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The majority of lineages of 

genus Lasaea 

Lasaea australis, 

Lasaea colmani 

Only two diploid Australian lineages of genus Lasaea, Lasaea australis and Lasaea colmani, are sexual 

(Ó Foighil & Smith, 1995; Ó Foighil & Thiriot-Quievreux, 1999). But the asexual lineages of genus Lasaea 

almost certainly are not monophyletic and originated at least two times independently (Thiriot-Quivreux, 

1992; Ó Foighil & Smith, 1995; Taylor & Ó Foighil, 2000; Li et al., 2013). Some of them are closer to 

Lasaea australis, whereas others to Lasaea colmani. Moreover, both sexual species probably do not have 

basal position within respective clades (Taylor & Ó Foighil, 2000; Li et al., 2013). This leaves us only with 

the option to compare all sexual with all asexual lineages of the genus. All mentioned lineages are 

ecologically comparable. 

  15 
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Supplemental Materials and Methods: Details on determination of environmental heterogeneity 16 

Biotic heterogeneity 17 

We define biotically highly heterogeneous environments as those in which selective pressures affecting the offspring differ 18 

profoundly from those that previously affected their parents because of the coadaptation (or rather counter-adaptation) of interacting 19 

organisms. Thus, the most biotically heterogeneous environments are the habitats with a high degree of competition, predation, and 20 

parasitism. Biotic heterogeneity has both temporal (the coadaptation of interacting organisms) and spatial (e.g. the migration of the 21 

offspring to the areas with new competitors, predators, and parasites) dimensions. Changes in the biotic heterogeneity are essentially 22 

unpredictable, with the exception of some ecological cycles (e. g. host-predator or host-parasite cycles). In the latter case, 23 

environments with unpredictable changes were considered more biotically heterogeneous. 24 

For example, the environment of organisms that live in tight association with other organisms is biotically very heterogeneous. 25 

This applies especially to predators and parasites that are forced to respond to the evolutionary counter-moves of their prey and hosts 26 

(Dawkins & Krebs, 1979). The more specific relationship with prey and hosts they have, the stronger the selective pressures of 27 

counter-adapting prey and hosts affect them (Dawkins & Krebs, 1979). Therefore, it is expected that organisms that use non-specific 28 

predatory strategies, e.g., filtering (especially if they filter both living organisms and dead organic matter), are under relatively weak 29 

selective pressure from their prey. Their environment is consequently biotically relatively homogenenous in this regard. On the other 30 

hand, the environment of organisms that are themselves under strong selective pressure of predators and parasites is highly biotically 31 

heterogeneous (Dawkins & Krebs, 1979). The environemnt of organisms that are not under strong selective pressures of predators and 32 

parasites for various reasons is biotically more homognenous in this regard (e.g. the environment of Darwinulidae, see Schön et al., 33 

2009 or Bruvo et al., 2011). Another important component of environmental biotic heterogeneity is competition. The environments 34 

with complex ecosystems that are characterized by high a degree of competition, predation and parasitism among their inhabitants 35 

(e.g. ancient lakes, see Martens, 1998; Martens & Schön, 2000; Schön & Martens, 2004) are highly biotically heterogeneous for them. 36 

On the other hand, the environments with a low degree of competition, predation and parasitism (especially extreme habitats, e.g. the 37 
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environments of extremely high temperatures, see Tobler, 2007, or, for photosynthetic organisms, poorly lit environments, see Farrar, 38 

1978, 1998), are biotically very homogeneous for their inhabitants. The vast majority of environments on Earth are thus somewhat 39 

biotically heterogeneous. In spite of that, we can find important exceptions. This factor of environmental heterogeneity is considerably 40 

weakened especially in extreme, ephemeral and marginal habitats that cannot sustain complex ecosystems because of their extreme 41 

conditions, rapid unpredictable changes, low carrying capacity and/or insufficient energy sources (see e.g. Bell, 1982).  42 

An important factor that affects the biotic heterogeneity of environment the organisms experience is the way of life practiced 43 

by aquatic organisms. On the average, lesser biotic heterogeneity is experienced by benthic (or sedentary) organisms in comparison 44 

with planktonic aquatic organisms. The reason is that the latter are subject to fast and effective transmission of parasites and 45 

pathogens, especially viruses (see e.g. Suttle et al., 1990; Bratbak et al., 1993; Fuhrman, 1999; Wommack & Colwell, 2000; Suttle, 46 

2005, 2007), because of the character of their environment—mixing of water masses lead to frequent encounters of various individuals 47 

(Emiliani, 1993a, b). Crucial difference of the resulting risks for benthic and planktonic organisms was pointed out by Emiliani (1982; 48 

1993a). Emiliani (1993a) documented that benthic representatives of Foraminifera have lower risk of extinction in comparison with 49 

planktonic ones. The average length of existence of their benthic species was 20 million years, whereas planktonic species lasted only 50 

about 7 million years. The most probable explanation of this pattern is higher susceptibility of planktonic organisms to extinction 51 

caused by lethal parasitic, especially viral, infections. This finding gave rise to the viral theory of background extinctions (Emiliani 52 

1993a, b). Evidence for the lower risks arising for benthic organisms from parasites and pathogens was also supported by other 53 

ecological studies. For example, Filippini et al. (2006) observed lower prevalence of individuals infected by viruses and consequent 54 

mortality among benthic bacteria (~0.03 %) in comparison with bacteria from water column (~6 %). Moreover, this pattern held 55 

despite much larger abundance of viruses in the sediment of studied temperate lake. Fisher et al. (2003) and Bettarel et al. (2006) came 56 

to very similar conclusions on the basis of studies of temperate oxbow lake and freshwater habitats in tropical Africa, respectively (but 57 

see Danovaro et al., 2008 for somewhat contrasting results from marine benthic sediment). Putting aside the limitations of parasite and 58 

pathogen transmission among benthic organisms, the protection of benthic organisms against viruses might be further enhanced by the 59 
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adsorption of viruses into organic and inorganic particles of sediment and the aggregation of benthic organisms (Filippini et al. 2006; 60 

Fisher et al., 2003). Whereas the extinction of whole species due to viral infection (eventually infection by another parasite or 61 

pathogen, e.g. fungus) is possible only under very limited conditions (see e.g. Buckwold, 1994, or de Castro & Bolker, 2005), local 62 

extinctions caused by pathogen or parasitic infections are probably quite common (Emiliani, 1982, 1993a; de Castro & Bolker 2005). 63 

The planktonic way of life thus probably considerably increases the selective pressures of parasites and pathogens and consequently 64 

the biotic heterogeneity of the environment. 65 

The argument for lower biotic heterogeneity of benthic (or sedentary) organisms is possible to extend also to organisms that 66 

inhabit soil. From the viewpoint of the viral theory of background extinctions (Emiliani, 1993a, b), soil represents an environment that 67 

considerably impedes the spread of pathogens and parasites. Interactions with parasites and pathogens are very limited both in 68 

intensity and frequency due to the tortuous, i.e., multidimensional, character of soil matrix—it is best described as semi-discontinuous 69 

network of pores filled with air and/or water, or water films surrounding solid particles (Lavelle & Spain, 2003; for more information 70 

about the character of soil environment see also Wallwork, 1970; Coleman et al., 2004, or Paul, 2007). These features of soil matrix 71 

limit both the passive spread of parasites and pathogens and the frequency of encounters among their transmitters and organisms in 72 

general. The tortuous character of soil environments was stressed as a factor that limits the passive spread of viruses in benthic 73 

sediment by Fisher et al. (2003), whereas Murphy & Tate (1996) emphasized its limitations on the spread of bacteria. These 74 

observations are in agreement with Drake et al. (1998), who observed a negative correlation between the concentration of viral 75 

particles and sediment grain size. The sieving effect of the soil for organisms of various sizes is also commented by Paul (2007). 76 

Moreover, the tortuous character of soil impedes also active dispersion of organisms, e.g. when searching for prey (Elliott et al., 77 

1980). Only a few larger organisms are able to effectively move larger distances within soil or even create their own habitats; 78 

movements of most organisms are locally constrained (Lavelle & Spain, 2003). Direct encounters between organisms, even organisms 79 

of the same species, are thus relatively infrequent. This leads, together with the limited spread of pheromones (Karasawa & Hijii, 80 

2008), for example, to frequent transitions to indirect fertilisation with the help of deposited spermatophores (see e.g. Wallwork, 1970, 81 
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or Lavelle & Spain, 2003). The pattern of spatial autocorrelation of genetic lineages in soil communities, for example in rotifers 82 

(Robeson et al., 2011), further supports the limited dispersal abilities of soil organisms. The genetic diversity of various Bdelloidea 83 

lineages in soil is correlated only on small spatial scales (up to 54-133 m). Operational taxonomic units identified by Robeson et al. 84 

(2011) almost did not overlap above this distance. Habitats that distanced only tens to hundreds of meters were thus inhabited 85 

overwhelmingly by separate genetic lineages. Moreover, rotifer communities differed to a certain degree even in the smallest 86 

investigated distance of 16 cm (Robeson et al., 2011)1. 87 

Taken together, the tortuous character of the soil affects all soil organisms at various scales not only in terms of the reduced 88 

spread of parasites and pathogens, but also lower frequencies of encounters with predators and competitors. This leads to an overall 89 

reduction of biotic pressures in soil, which is further supported by the striking evolutionary stasis of many lineages of soil inhabiting 90 

organisms (Pilato, 1979). Moreover, species richness and population sizes, including parasites, predators and competitors, markedly 91 

decreases with the depth of soil horizon (Lavelle & Spain, 2003; Paul, 2007). Deep soil horizons are therefore even more abiotically 92 

homogeneous. The specific character of soil environment does not imply its general spatial homogeneity. On the contrary, soil is often 93 

spatially heterogeneous, especially on a larger scale (see e.g. Lavelle & Spain, 2003; Coleman et al., 2004, or Paul, 2007). It is the 94 

tortuous and multidimensional character of soil matrix that reduces biotic pressures affecting its inhabitants and makes this 95 

environment biotically very homogeneous. 96 

The biotic heterogeneity of the environment the organisms experience might be reduced by the presence of durable resting 97 

stages. Organisms may get rid of parasites and pathogens, survive unfavourable environmental conditions, or colonize new habitats 98 

with naïve parasites, predators, pathogens and competitors in these stages (as do, for example, Bdelloidea—see Wilson, 2011). The 99 

geographical trend of decreasing biotic heterogeneity with increasing latitude might be expected on a global scale. Species diversity 100 

and ecosystem complexity decrease with distance from equator (Tokeshi, 1999). These events are coupled with a decreasing intensity 101 

                                                           
1 High genetic diversity of Bdelloidea in gene cox1 is not very surprising in the light of severe DNA breaks that originate during anhydrobiosis, following repairs 
of these breaks and consequent intensive horizontal gene transfer (see e.g. Gladyshev et al., 2008). 
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of parasitization, abundance, prevalence and a relative diversity of parasites (Rohde, 1986; Rohde & Heap, 1998). An analogous trend 102 

of decreasing biotic heterogeneity with increasing depth might be expected in deeper parts of the water column for the same reasons 103 

(see e.g. Etter et al., 2005).  104 

Abiotic heterogeneity 105 

Abiotically highly heterogeneous environments are defined as those that are highly variable regarding changes of abiotic 106 

factors. They are diverse, unstable, and have unequally distributed resources. Again, the abiotic heterogeneity of the environment has 107 

both spatial (in the sense of variability) and temporal (in the sense of instability) dimensions. The offspring thus usually inhabit an 108 

environment different from that of their parents due to their dispersal in time and/or space. Changes in the abiotic environment could 109 

be predictable (e.g. cyclical) or unpredictable, and their intensity and frequency vary on different timescales. We are interested in 110 

ecological timescales in this study so we consider short-term unpredictably changing environments as the most abiotically 111 

heterogeneous. 112 

Temporally and spatially highly changeable ephemeral and marginal habitats are especially abiotically heterogeneous 113 

environments (see e.g. Pejler, 1995). However, most of the surface terrestrial habitats are considerably abiotically heterogeneous. On 114 

the contrary, sheltered habitats such as caves, ground water reservoirs or soil environment are greatly abiotically homogenenous. Such 115 

environments protect their inhabitants from solar radiation and buffer short-term fluctuations in outer environment (e.g. changes of 116 

temperature and humidity), protecting their inhabitants from the direct impacts of such changes (Wallwork, 1970; Farrar, 1978, 1990, 117 

1998; Krivolutsky & Druk, 1986; Lavelle & Spain, 2003; Devetter & Scholl, 2014). Most changes in soil matrix are much slower in 118 

comparison with surface habitats (Lavelle & Spain, 2003). The abiotic homogeneity of soil environment further increases with the 119 

depth of the soil horizon. For example, there is a specific depth of soil horizon in each geographical region under which the 120 

temperature is perienally stable, depending on its latitude, altitude and other climatic factors (Wallwork, 1970; Lavelle & Spain, 2003; 121 

Coleman et al., 2004; Paul, 2007). The buffering effect of soil on moisture fluctuations also increases with depth (see e.g. Quesada et 122 
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al., 2004). Moreover, soils of certain biomes (especially forest soils) are temporally abiotically more homogeneous than soils of other 123 

biomes (see e.g. Siepel, 1994, 1996). 124 

Regarding aquatic environments, freshwater habitats and coastal areas are the most abiotically heterogeneous (Sheldon, 1996). 125 

The decrease of abiotic heterogeneity with increasing depth is also expected—water masses buffer surface environmental changes in a 126 

similar way to soil (see e.g. Etter et al., 2005). Certain extreme environments that are temporally stable (e.g. hot springs or subsurface 127 

cavities) are also very abiotically homogeneous (Bell, 1982), but this does not apply to all environments referred to as extreme. 128 

In a similar way to the biotic heterogeneity of the environment, also the abiotic one might be reduced in the populations of 129 

organisms producing durable resting stages. Such an adaptation enables them to survive unfavourable fluctuations of an abiotic 130 

environment and promotes colonization of new habitats (see e.g. Wilson, 2011). On the other hand, mobility probably does not 131 

strongly affect the abiotic environmental heterogeneity that the organisms experience. Mobile organisms might hypothetically 132 

experience more different abiotic conditions in their life, but they can also easily stick with those most suitable for them. The 133 

geographical trend of increasing abiotic heterogeneity with increasing latitude and altitude might be expected to occur on global scale 134 

(Hörandl, 2006, 2009; Vrijenhoek & Parker, 2009). However, it is noteworthy that such a trend might be countered by an opposite 135 

trend of the decreasing biotic heterogeneity mentioned above in its effects on sexual and asexual species (and vice versa). All the 136 

expectations mentioned above need not apply absolutely, but may serve as useful leads in judging the environmental heterogeneity of 137 

various organisms if their peculiarities are taken into account.  138 

  139 
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Supplemental review of AA ecology 140 

Bdelloidea 141 

Bdelloidea is clade of hundreds of µm sized rotifers associated with semi-terrestrial, freshwater and soil environments (Ricci & 142 

Balsamo, 2000; Welch et al., 2009). Members of the ancient asexual group Bdelloidea inhabit most freshwater surface habitats, but are 143 

sometimes found also in brackish water and marginally in seawater (De Smet, 2002). Among freshwater environments, Bdelloidea 144 

dominate in biotically homogeneous marginal habitats with a reduced number of parasites, predators and competitors in contrast to its 145 

sexual control Monogononta (Ricci, 1987; Pejler, 1995; Ricci & Balsamo, 2000; Welch et al., 2009). They are exclusively benthic or 146 

sedentary (Koste & Shiel, 1986; Ricci & Balsamo, 2000), which indicates reduced biotic heterogeneity in contrast with sexual control. 147 

Monogononta are not only sedentary, but also obligately or facultatively planktonic and several of their species are clearly marine 148 

(Pejler, 1995). Concerning the biotically and abiotically homogeneous soil environment, Bdelloidea far outnumbers their sexual 149 

control there (Pejler, 1995). Bdelloidea overwhelmingly dominate among soil rotifers and rotifers associated with mosses (Bryophyta) 150 

and lichens (Pejler, 1995; Scholl & Devetter, 2013; Devetter & Scholl, 2014), reaching up to 95 % prevalence (Donner, 1975). 151 

Moreover, Bdelloidea are almost exclusive among rotifers in high mountain soil (at least in Himalayas—Devetter M., pers. comm. 152 

2015). Abiotically homogeneous groundwater reservoirs are inhabited both by Monogononta and Bdelloidea. However, these habitats 153 

are poorly explored and observed species were probably transported there recently (Pejler, 1995). Bdelloidea are almost completely 154 

absent from biotically heterogeneous ancient lakes (e.g. Baikal) with complex ecosystems and intensive biotic interactions (predators, 155 

parasites and competitors). Sexual Monogononta overwhelmingly dominates here (Martens & Schön, 2000; Schön & Martens, 2004). 156 

Anhydrobiosis, i.e. drying into the state of durable resting stages, is the key ability of Bdelloidea from the ecological 157 

viewpoint. It enables Bdelloidea to avoid unpredictable and unfavourable conditions in its surrounding environment. Bdelloidea often 158 

inhabit objectively abiotically very heterogeneous environments, but activate only under the most suitable conditions (Pilato, 1979; 159 

Ricci, 2001). Anhydrobiosis thus makes them experience only favourable conditions and makes their environment subjectively highly 160 

abiotically homogeneous. Moreover, anhydrobiosis enables them to get rid of parasites (Wilson & Sherman, 2010; Wilson, 2011) and 161 
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effectively disperse in space and time (Caceres & Soluk, 2002), which may also reduce the biotic heterogeneity of environment they 162 

experience. Anhydrobiosis is also tightly connected to other specific characteristics of Bdelloidea—exceptionally intensive horizontal 163 

gene transfer (Gladyshev, Meselson & Arkhipova, 2008; Debortoli et al., 2016), frequent repairs of DNA double-strand breaks and 164 

exceptional resistance to radiation (Gladyshev & Meselson, 2008) and starving (Ricci & Perletti, 2006). Intensive horizontal gene 165 

transfer is probably the reason for the relatively large genetic differences among clades of soil Bdelloidea that inhabit environments 166 

that distance from tens to hundreds of meters, as observed by Robeson et al. (2011). This alternative mode of genetic exchange was 167 

also proposed as an explanation for their ancient asexuality, substituting for their ability of genetic exchange during sexual processes 168 

(Boschetti et al., 2011; Gladyshev et al., 2008; Debortoli et al., 2016; Schwander, 2016)2. However, Bdelloidea are extremely 169 

phenotypically conservative (Pilato, 1979) despite their intensive horizontal gene transfers, which supports the primacy of 170 

homogeneous environment in the long-term maintenance of their asexuality. Sexual Monogononta does not have the ability of 171 

anhydrobiosis. They only produce mictic eggs at the end of the season, durable resting stages that serve for the survival of predictable 172 

periods of unfavourable conditions (Ricci, 2001). The character of the environment that they subjectively experience is thus much 173 

more biotically and abiotically heterogeneous. 174 

It is noteworthy that Bdelloidea are ecologically more successful in thermally extreme environments. Both Monogononta and 175 

Bdelloidea are found in polar regions (Dartnall, 1983; Pejler, 1995; Sohlenius & Bostrom, 2005; Jungblut et al., 2012). However, 176 

Bdelloidea—especially Philodina gregaria—reaches much higher population densities and form growths sized up to several m2 in 177 

these habitats (Dartnall, 1983; Pejler, 1995). Bdelloidea also reach much larger abundances than Monogononta in polar habitats 178 

(Janiec, 1996). These habitats are biotically very homogeneous because of reduced biotic interactions. They are also experienced as 179 

                                                           
2 The role of horizontal gene transfer in bdelloid rotifers as a substitution for sexual processes remains intensively discussed. On the one hand, it was proposed 
that bdelloids in fact experience rare sex (Signorovitch et al., 2015; 2016), but on the other that the observed genetic exchange is best explained by intensive 
horizontal gene transfer (Debortoli et al., 2016; Flot et al., 2016). Due to the strong evidence supporting the absence of amfimixis in Bdelloidea (see table S1), 
we incline to think that Bdelloidea do not experience standard sexual processes (nevertheless, see Signorovitch et al., 2015; 2016; Debortoli et al., 2016; Flot et 
al., 2016). In either case, the rate of horizontal gene transfer in bdelloid rotifers is extraordinary high and probably tightly connected to their long-term survival 
in asexual state (Schwander, 2016).  
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very abiotically homogeneous by Bdelloidea because of their ability to survive adverse conditions in anhydrobiotic state. Bdelloidea 180 

are also more successful in comparison with their sexual control at high temperatures. Issel (1900, 1901) observed Philodina roseola 181 

in Italian hot springs at temperatures up to 46 °C. He concluded that Philodina roseola is specialized to high temperatures and 182 

dominates over sparse members of Monogononta above 40 °C. Pax and Wulfert (1941) reached similar conclusions in their research 183 

of central European hot springs. This pattern is further supported by environmental sequencing of hot springs in Alaska (McDermott 184 

& Skorupa, 2011). Despite the limitations of this study—for example, the authors could not distinguish the sequences of active living 185 

individuals from sequences of inactive individuals, dead specimens or contamination—the sequences of Bdelloidea, specifically 186 

Philodinidae, overwhelmingly dominated in springs with temperatures above 40 °C. The habitats of hot springs are abiotically stable 187 

and thus abiotically very homogeneous. Moreover, the number of competitors, predators and parasites decreases at high temperatures, 188 

which makes these environments biotically very homogeneous. 189 

Bdelloidea and Monogononta predominantly feed by filtering surrounding water for small organic particles. Rarely, some 190 

sedentary representatives graze nutrients from nearby surfaces or drill through algal cell walls and suck its cytoplasm. However, there 191 

are no active predators among Bdelloidea in contrast to Monogononta (Ricci & Balsamo, 2000). The only single exception seems to 192 

be Abrotrocha carnivora (Ricci et al., 2001). None of two compared groups comprise parasites. 193 

Taken together, Bdelloidea dominate over their sexual control in marginal habitats with reduced biotic heterogeneity. 194 

Anhydrobiosis shields its representatives from unfavourable conditions of their abiotic environment and consequent selection. 195 

Bdelloidea thus experience even abiotically homogeneous environment. Moreover, anhydrobiosis protects them to a certain degree 196 

even from the unfavourable consequences of intensive biotic pressures—it enables Bdelloidea to get rid of parasites and escape 197 

parasites, predators and competitors in time and space. Anhydrobiosis thus reduces even the experienced biotic heterogeneity of their 198 

environment. Bdelloidea dominate over their sexual control among rotifers inhabiting biotically and abiotically homogeneous soil 199 

environment. Bdelloidea are also ecologically very successful in biotically homogeneous polar regions with a low amount of biotic 200 

interactions (an environment which is for them also abiotically homogeneous due to anhydrobiosis) and abiotically stable hot springs 201 
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with reduced biotic pressures (abiotically and biotically homogeneous environments). Bdelloidea thus predominate over their sexual 202 

control even in objectively homogeneous environments. Cyclically sexual Monogononta dominate over Bdelloidea in water column 203 

and have numerous planktonic and sea representatives. Some of their species are predatory and thus experience stronger biotic 204 

pressures. They do not have the ability to undergo anhydrobiosis and thus live in subjectively much more heterogeneous environment 205 

than Bdelloidea. Monogononta also overwhelmingly prevail over Bdelloidea in ancient lakes with intensive biotic interactions. In 206 

conclusion, Bdelloidea are associated with biotically and abiotically more homogeneous environments than their sexual control 207 

Monogononta. 208 

Darwinuloidea 209 

Darwinulidae is the only extant member of superfamily Darwinuloidea. It is a group of hundreds of µm sized ostracods (Schön 210 

et al., 2009). Darwinulidae are present in most aquatic habitats including marine (see e.g. Martens et al., 1998a). In a similar way to 211 

Bdelloidea, Darwinulidae are also predominantly associated with biotically homogeneous marginal and semi-terrestrial habitats or 212 

springs and biotically and abiotically homogeneous interstitial and soil (Schön et al., 1998; Pinto et al., 2005; Pieri et al. 2009; Schön 213 

et al., 2009). However, the sexual control of Darwinulidae, Cypridoidea, is also present in the same environments and Darwinulidae 214 

does not seem to prevail there over its sexual control. Some representatives of Cypridoidea are planktonic (Pokorný, 1965), whereas 215 

all representatives of Bdelloidea are exclusively benthic or sedentary (Schön et al. 1998, 2009; Pinto et al. 2005; Pieri et al. 2009). 216 

This indicates a reduced abiotic heterogeneity of their environment. 217 

Darwinulidae are able to survive unfavourable conditions (drought, low temperatures etc.) in an inactive state of torpor 218 

(Carbonel et al., 1988). This ability may be superficially analogical to anhydrobiosis of Bdelloidea in its ecological consequences, but 219 

does not enable Darwinulidae to survive such severe conditions. In any case, the environment is also experienced as subjectively 220 

abiotically homogeneous by Darwinulidae at least to some degree. The ability to undergo torpor may also outweigh the absence of 221 

durable eggs that are present in the sexual control (Horne, 1993). However, numerous representatives of Cypridoidea are also capable 222 

of torpor and this ability is thus not exclusive to AA Darwinulidae in contrast to Bdelloidea-Monogononta (Delorme & Donald, 1969; 223 
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Carbonel et al., 1988; Retrum et al., 2011). Moreover, even representatives unable to enter a state of torpor are able to survive short 224 

periods of drought (Retrum et al., 2011). A Darwinulidae-specific brooding pouch is also an important part of resistance to 225 

unfavourable conditions of biotic and abiotic environments. It protects offspring from fluctuations of abiotic environmental factors 226 

and predators and also facilitates the dispersal abilities of Darwinulidae (Martens, 1998). Its presence may decrease the experienced 227 

biotic and abiotic heterogeneity of the environment. 228 

Darwinulidae are not predominantly associated with permanent bodies of water. However, the individuals that inhabit them 229 

prefer hypoxic depths with lower biotic pressures (Rossi et al., 2002; Smith et al., 2006; Schön et al., 2009). Such depths are also 230 

optimal for dispersion with the help of water birds, but the depth preference of Darwinulidae does not seem to be selected primarily 231 

for this reason. Despite the fact that Darwinulidae have numerous preadaptations hypothetically promoting its dispersal (see e.g. 232 

Delorme & Donald, 1969; Martens, 1998; Frisch et al., 2007; Retrum et al., 2011), they are probably not good colonizers (Malmqvist 233 

et al., 1997; Martens et al., 2008b). Another explanation, for example, the absence of predators, predators and competitors in hypoxic 234 

areas and consequently reduced biotic heterogeneity, seems more plausible. Darwinulidae are also nearly absent from ancient lakes 235 

with strong biotic pressures, which are dominated by sexual ostracods (Schön & Martens, 2004). A similar pattern also applies to 236 

groundwater (Schön & Martens, 2004; Martens et al., 2008a). These environments are highly biotically heterogeneous. 237 

Darwinulidae are not more prevalent or ecologically successful in thermally extreme environments in comparison with their 238 

sexual control. The lower limits of their activity lie around 0 °C, which is similar to Cypridoidea (McLay, 1978; Tudorancea et al., 239 

1979; Külköylüoğlu & Vinyard, 2000; Bunbury & Gajewski, 2009). The upper limits of their activity are inferior to those of 240 

Cypridoidea. Some species of Cypridoidea are specialized to high temperatures and activate even at 54 °C (Külköylüoğlu et al., 2003). 241 

Other Cypridoidea representatives were observed as ecologically successful at temperatures around 50 °C (Moniez, 1893; Brues, 242 

1932; Klie, 1939; Jana & Sarkar, 1971; Wickstrom & Castenholz, 1985). Darwinulidae only rarely activate at temperatures above 35 243 

°C (Brues, 1932; Reeves et al., 2007) and their upper thermal limit of activity lies around 40-50 °C (Menzel, 1923; Ponyi, 1992). They 244 



27 

 

are thus not associated with thermally more extreme biotically or abiotically homogeneous environments in comparison with their 245 

sexual control. 246 

Another characteristic of Darwinulidae is that they are highly resilient to starvation (Rossi et al., 2002) and only rarely 247 

predated (Ranta, 1979). Moreover, ostracods in general are rarely and weakly parasitized (Schön et al., 2009; Bruvo et al., 2011), 248 

which may be an effective preadaptation to their frequent transitions to asexuality—young asexual lineages are common also in 249 

Cypridoidea. All of this indicates that they experience reduced biotic heterogeneity of their environment. The pattern of geographical 250 

parthenogenesis, i.e. increasing number of asexual lineages with latitude and altitude, is also often commented in ostracods. The 251 

distribution in higher latitudes and altitudes is associated with increased abiotic heterogeneity and decreased biotic heterogeneity. 252 

However, this pattern does not have general applicability in the compared taxa (Bell, 1982: 265-266; Schwander & Crespi, 2009). It 253 

applies only to certain species of Cyprididae that consist of sexual and asexual lineages (Horne et al., 1998). 254 

Environmental correlates of AA Darwinulidae and its sexual control Cypridoidea are similar to Bdelloidea-Monogononta, but 255 

their differences are not nearly as distinct. Biotically and abiotically very homogeneous environments are inhabited both by the AA 256 

group and its sexual control in many ways. There are only few absolute differences between the compared groups. One reason for this 257 

“fogginess” might be the large disproportion in the number of species in the two compared clades. Sexual Cypridoidea comprise more 258 

than 1500 described species, whereas Darwinulidae are comprised by only about 40 (Martens et al., 1998a, b; Rossetti et al., 2011). 259 

Another possible reason is frequent transition to asexuality in certain species of Cypridoidea and consequent presence of many young 260 

asexual lineages (Martens, 1998). Such young asexual lineages may have transient advantage over sexual species in numerous 261 

environments that are also associated with the AA lineage (Martens, 1998). 262 

Taken together, Darwinulidae tend to be associated with biotically homogeneous marginal habitats in a similar way to 263 

Bdelloidea-Monogononta. Moreover, they also experience such habitats as subjectively abiotically homogeneous because of their 264 

ability to undergo torpor. However, the same environments are equally inhabited by the sexual control Cypridoidea that is also capable 265 

of torpor. Darwinulidae thus does not seem to be associated with abiotically more homogeneous environments than their sexual 266 
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control. The same pattern applies to the association with abiotically and biotically homogeneous soil habitats or the absence of 267 

predatory and parasitic lifestyle and lower overall parasitization that mark more biotically homogeneous environment—it is 268 

characteristic for both compared groups. However, Darwinulidae are exclusively benthic or sessile in contrast to their sexual control, 269 

which is associated with a reduction of biotic heterogeneity. They are also nearly absent from the biotically complex environments of 270 

ancient lakes and are sparse in groundwater reservoirs that are both biotically heterogeneous. Species of Darwinulidae that inhabit 271 

stable water bodies such as lakes and rivers prefer hypoxic depths with reduced biotic stresses. Moreover, Darwinulidae are only 272 

under a weak pressure of predators and are resilient to starvation. All of that is associated with reduced biotic heterogeneity. In 273 

conclusion, ostracods are associated with markedly homogeneous environments in general. Darwinulidae in particular are associated 274 

with biotically more homogeneous environments in comparison with their sexual control. However, there is no clear difference in the 275 

abiotic heterogeneity of the environments Darwinulidae and their sexual control are associated with.  276 

Oribatidae 277 

Oribatidae is a diverse group of hundreds of µm sized mites (Norton & Behan-Pelletier, 2009). AA representatives of mites 278 

from the clade Oribatidae are predominantly associated with soil in contrast to their sexual controls. Moreover, their proportion 279 

increases with the depth of the soil horizon (Krivolutsky & Druk, 1986; Norton & Palmer, 1991; Karasawa & Hijii, 2008; Maraun et 280 

al., 2009; Devetter & Scholl, 2014). Soil is a biotically and abiotically more homogeneous environment in comparison with surface 281 

habitats. The upper layers of soil are abiotically relatively more changeable and characterized by more complex biotic interactions; 282 

biotic and abiotic heterogeneity further decreases with the depth of the soil horizon. This indicates an association of AA Oribatidae 283 

with biotically and abiotically homogeneous environments. On the other hand, sexual lineages of Oribatidae predominate in biotically 284 

and abiotically more heterogeneous arboreal habitats (Karasawa & Hijii, 2008; Maraun et al., 2009). Beyond that, AA representatives 285 

of Oribatidae are preferentially associated with abiotically more stable forest soils rather than changeable grassland soils (Krivolutsky 286 

& Druk, 1986; Siepel, 1994; but see also Devetter & Scholl, 2014 that proved stronger effect of seasonality in contrast to substrate and 287 

vegetation cover). There are almost no typical parasites and predators among AA Oribatidae, which may indicate a lower biotic 288 
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heterogeneity of their environment. They are saprophages, fungivores, or feed on algae and microorganisms. However, the same 289 

applies also to their sexual controls (Norton & Behan-Pelletier, 2009).  290 

In the context of abovementioned characteristics, it is rather surprising that AA Oribatidae were not proven to be 291 

predominantly associated with biotically more homogeneous environments characterized by a reduced number of competitors and 292 

predators (Cianciolo & Norton, 2006). However, the study of Cianciolo and Norton (2006) might examine too narrow spectrum of 293 

their predators and parasites. Other experiments proved that AA representatives of Oribatidae are superior to sexual ones in abiotically 294 

homogenenous environment with unlimited unstructured resources. Sexual Oribatidae were more succesfull in the presence of 295 

structured resources (Domes et al., 2007c; Maraun et al., 2012). 296 

The possible geographical parthenogenesis of Oribatidae, i.e. a higher proportion of asexual lineages in higher latitudes and altitudes 297 

characterized by higher abiotic heterogeneity and lesser biotic heterogeneity, remains questionable. Some studies supported this 298 

pattern (Behan-Pelletier, 1997), but other evidence is very unclear (Norton & Palmer, 1991; Cianciolo & Norton, 2006). 299 

Taken together, AA lineages of Oribatidae are predominantly associated with biotically and abiotically homogeneous soil 300 

environment in contrast to their sexual controls. Moreover, the proportion of AA lineages increases with the depth of the soil horizon 301 

that is associated with further reduction of biotic and abiotic heterogeneity. They are less prevalent in arboreal environments that are 302 

more abiotically changeable and characterized by stronger biotic pressures, i.e. abiotically and biotically more heterogeneous. AA 303 

Oribatidae are also preferentially associated with abiotically stable forest soils in contrast to more changeable grassland soils. There 304 

are no typical predators and parasites among AA Oribatidae, but the same also applies to their sexual controls. A direct association 305 

with more biotically homogeneous environments in soil remains questionable. However, they are more successful in environments 306 

with unstructured resources in contrast to sexual representatives. The geographical parthenogenesis of Oribatidae, potentially 307 

associated with increase of abiotic heterogeneity and decrease of biotic heterogeneity with latitude and altitude, remains an open 308 

question. In conclusion, AA Oribatidae seems to be affected mainly by abiotic conditions of environment, but generally inhabit both 309 

biotically and abiotically more homogeneous environments in comparison with their sexual controls. 310 
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Other ancient asexual mites 311 

Endeostigmata is a group of hundreds of µm sized mites predominantly associated with soil and especially extreme soil 312 

habitats—deep soil or sand horizons, microbial crusts, extremely salty habitats, seashores and desert soils (Walter, 2009). Such 313 

habitats are expected to be biotically more homogeneous. AA Endeostigmata tend to be associated with deep soil horizons in contrast 314 

to their sexual controls. All of their sexual controls are associated with abiotically and biotically more heterogenenous environments, 315 

especially abiotically relatively changeable upper parts of the soil with more biotic interactions. The only exception from this rule is 316 

the clade comprising of Grandjeanicidae and Oechserchestidae that do not exhibit any differences in heterogeneity of their 317 

environment in comparison with their sexual control (Norton et al., 1993; Walter, 2001, 2009; Neher et al., 2009; Norton & Behan-318 

Pelletier, 2009; Oconnor, 2009; Darby et al., 2011). A predatory lifestyle is very rare among AA Endeostigmata and they are never 319 

parasitic. They are mostly saprotrophs, or feed on fungi and microorganisms, which makes their environment less biotically 320 

heterogeneous. However, this is also true for their sexual controls among Endeostigmata (Walter, 2001, 2009; Neher et al., 2009). A 321 

group consisting of genera Alicorhagia and Stigmalychus is an exception from this pattern, because it is much less phenotypically 322 

variable than any possible sexual control. Some of these controls are large lineages outside of Endeostigmata that comprise even 323 

typical predators and parasites (Norton et al., 1993; Walter, 2001, 2009; Neher et al., 2009; Norton & Behan-Pelletier, 2009; Oconnor, 324 

2009; Darby et al., 2011). Taken together, their ecological patterns are similar to those of Oribatidae. They are just even less explored. 325 

Trombidiformes is another diverse clade of hundreds of µm sized mites (Walter et al., 2009). Ecological patterns of AA 326 

lineages among Trombidiformes are analogical to those of Oribatidae and Endeostigmata (Kethley, 1989; Bochkov & Walter, 2007; 327 

Neher et al., 2009; Walter et al., 2009; Darby et al., 2011). However, they are also poorly explored. These AA mites are also 328 

predominately associated with biotically and abiotically homogeneous deep soil horizons and are not typically predators and parasites, 329 

which reduces the biotic heterogeneity of their environment (Norton et al., 1993; Neher et al., 2009; Walter et al., 2009; Darby et al., 330 

2011). Their sexual controls from clade Prostigmata (and Sphaerolychidae in case of Lordalycidae), both alone and in any 331 
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combination (their phylogenetic position is unclear), are much more phenotypically disparate and comprise even typical predators and 332 

parasites (Neher et al., 2009; Norton et al., 1993; Walter et al., 2009; Darby et al., 2011). 333 

Taken together, all abovementioned mite groups are poorly explored. However, if we can judge anything from the current 334 

knowledge of their ecology, it is that their AA lineages seem to be associated with biotically and abiotically more homogeneous 335 

environments. They are associated with soil and, in contrast to their sexual controls, especially deep soil horizons. Moreover, 336 

Trombidiformes, as well as Alicorhagia and Stigmalychus, are much less phenotypically variable than any of their sexual controls that 337 

comprise even predators and parasites and inhabit more biotically and abiotically heterogeneous environments. With the exception of 338 

Oehserchestidae that doesn’t inhabit environments of different heterogeneity than their sexual control, we can conclude that AA mite 339 

lineages are always associated with more biotically and abiotically homogeneous environments than their sexual controls. 340 

Vittaria 341 

Vittaria appalachiana is an mm sized fern (Polypodiophyta) from the family Vittariaceae that forms growths up to several m2 342 

large (Farrar, 1978; Farrar & Mickel, 1991). It is unique among ferns by abandoning the stage of sexual gametophyte and surviving as 343 

purely an asexual sporophyte. Vittaria appalachiana is rather a group of related asexual lineages as opposed to a single species—344 

individual populations are genetically and phenotypically variable (Farrar, 1978, 1985, 1990). Vittaria appalachiana is associated 345 

almost exclusively with caves, crevices and rock excesses that buffer fluctuations of outer temperature and humidity (Farrar, 1978, 346 

1985, 1990). Populations of Vittaria appalachiana thus inhabit geologically and ecologically stable habitats (Farrar, 1998) that are 347 

characterized by low abiotic heterogeneity. Moreover, extremely low levels of light in its habitats lead to a strong reduction of 348 

interspecific competition (Farrar, 1978, 1998) and lower biotic heterogeneity. Vittaria appalachiana also inhabit higher latitudes in 349 

comparison with any proposed sexual control (Farrar, 1998, 1978; Farrar & Mickel, 1991), which could lead to a reduction of biotic 350 

heterogeneity. A possible co-occurring increase of abiotic heterogeneity with latitude probably does not affect Vittaria appalachiana 351 

strongly because of its buffering habitats. The association of Vittaria appalachiana with biotically homogeneous environments is 352 

further supported by the fact that individual plants are highly susceptible to parasitization and competition (as well as antibiotics and 353 
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sterilisation), as was observed during attempts to grow them in a laboratory (Caponetti et al., 1982). Its sexual controls do not exhibit 354 

these characteristics. Sporophytes of all proposed sexual controls grow epiphytically on decaying wood or trees in lower latitudes. 355 

Their habitats are thus more exposed to abiotic conditions of environment, biotically and abiotically more heterogeneous (Farrar, 356 

1978, 1990; Farrar & Mickel, 1991). 357 

Taken together, caves and rock overhangs inhabited by Vittaria appalachiana in contrast to all proposed sexual controls are 358 

geologically and ecologically stable, maintain stable level of humidity and protect their inhabitants from fluctuations of temperature. 359 

These habitats are thus abiotically very homogeneous. Extremely low levels of light in these habitats also strongly reduce any 360 

interspecific competition. This leads, as well as higher latitudes inhabited by Vittaria appalachiana, to lower biotic heterogeneity of 361 

its environment in comparison with any sexual control. Moreover, the individuals of Vittaria appalachiana are highly susceptible to 362 

infections and are not good competitors. This also points to their association with biotically homogeneous environments. In 363 

conclusion, Vittaria appalachiana is associated with more biotically and abiotically homogeneous environment than any of its 364 

proposed sexual controls. 365 

Timema 366 

Timema is a genus of cm sized herbivorous phasmatodean (Phasmatodea) insects that inhabit chaparral vegetation of western 367 

pars of North America (Vickery, 1993; Sandoval et al., 1998). Sexual, young sexual and AA lineages of the phasmatodean 368 

(Phasmatodea) genus Timema do not differ much in their ecology. Two of three AA species have narrower food spectra in comparison 369 

with their sexual controls. This could hypothetically lead to decreased competition and consequently a biotically more homogeneous 370 

environment. However, a third AA species, Timema tahoe, share the same host plant as its sexual control Timema bartmani (Law & 371 

Crespi, 2002b). None of the AA species are more specialized in comparison with their sexual control. In fact, they are markedly 372 

similar in terms of their phenotype (Sandoval et al., 1998). The areas of AA Timema species are usually geographically separated from 373 

areas of other members of the genera, mostly by a great distance (Sandoval et al., 1998; Law & Crespi, 2002b). This may lead to 374 

decreased interspecific competition with other members of the genera (especially species with the same or overlapping food niche) 375 



33 

 

and consequentially a decrease of the biotic heterogeneity of their environment. However, the areas of AA Timema monikensis and its 376 

sexual control Timema chumash overlap (Law & Crespi, 2002a), casting doubt on this possibility. On the other hand, young asexual 377 

species of the genera usually border and partially overlap their areas with sexual species of Timema, including their sister species 378 

(Law & Crespi, 2002b). Young asexual species of Timema also inhabit higher latitudes in comparison with their sexual relatives, 379 

which may indicate abiotically more heterogeneous but biotically more homogeneous environment. However, this pattern does not 380 

apply to AA species of Timema (Law & Crespi 2002a, b). Two of three AA species have markedly northern areas in comparison with 381 

their sexual controls. However, other species of Timema, including sexual ones, are distributed into even higher latitudes (Law & 382 

Crespi, 2002b). 383 

Taken together, it doesn’t seem that the environment inhabited by AA members of Timema is biotically or abiotically more 384 

homogeneous or heterogeneous in comparison with their sexual controls. Some indices, e.g. the separation of areas populated by AA 385 

members of the genera from areas populated by other members, point to reduced interspecific competition and possibly a reduced 386 

biotic heterogeneity of their environment. The distribution of AA timemas in higher latitudes in comparison with sexual controls may 387 

have similar consequences. However, possible indices of differences among the environmental heterogeneity of AA members of 388 

Timema and their sexual controls are highly unclear. In conclusion, available evidence is insufficient to identify any consistent 389 

differences in biotic and abiotic heterogeneity of the environment of AA members of Timema and their sexual controls. 390 

Lasaea 391 

Lasaea is a genus of mm sized intertidal bivalves (Bivalvia) (Morton et al., 1957). Its AA representatives have global 392 

distribution, whereas sexual controls are limited only to the shores of Australia and Tasmania (Ó Foighil & Smith, 1995; Ó Foighil & 393 

Thiriot-Quievreux, 1999; Taylor & Foighil, 2000). AA representatives of Lasaea are thus distributed to higher latitudes with 394 

hypothetically a reduced biotic heterogeneity and an increased abiotic heterogeneity. However, they are present also in lower latitudes. 395 

The main reason for this geographical pattern is thus probably not the hypothetical difference in environmental heterogeneity, but the 396 

excellent dispersal ability of directly developing AA members of Lasaea (Ó Foighil, 1989). However, one of two sexual lineages of 397 
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this genus, Lasaea colmani, also has direct development (Ó Foighil & Smith, 1995). It is thus difficult to make any conclusions on the 398 

basis of the association between their ancient asexuality with their direct development.  399 

Lasaea is not associated with environments of a distinctly homogeneous character. It is associated with areas of tidal zone 400 

between the mean high water spring and low water spring tides. Its individuals are associated especially with shallow crevices and 401 

shaded stone recesses, empty barnacles and tufts of tidal vegetation (Morton et al., 1957). This boundary ecosystem is abiotically 402 

rather changeable, which may lead to decreased competition, predation and parasitization. However, Lasaea do not greatly experience 403 

reduced biotic pressures. Its individuals are associated with numerous marine plants, isopods (Isopoda), springtails (Collembola), 404 

mites (Acari), beetles (Coleoptera), pseudoscorpions (Pseudoscorpiones) and gastropods (Gastropoda). They are also accompanied by 405 

other bivalves in the lower parts of tidal zone (Morton et al., 1957). Amenzalous filamentous cyanobacteria and green filamentous 406 

algae (e.g. Entocladia) often grow on their shells and erode them (Morton et al., 1957). Species of genus Lasaea feed by filtering 407 

detritus and are not typical predators and parasites. However, these characteristics applies both to their AA and sexual lineages 408 

(Morton et al., 1957). 409 

It is noteworthy that both AA and sexual lineages of Lasaea are not able to breath atmospheric oxygen in contrast to numerous 410 

tidal invertebrates. They tightly close their shells in unfavourable conditions (e.g. drought) and become inactive. Individuals of Lasaea 411 

are able to survive up to several days in this inactive state (according to Morton et al., 1957, up to 12 days). This ability primarily 412 

serves for their survival in the changeable conditions of tidal zone. However, it may also enable Lasaea to activate only under 413 

favourable conditions and consequently make its environment subjectively more homogeneous. Thus, it may be a preadaptation 414 

analogical to the anhydrobiosis of Bdelloidea or the torpor of Darwinulidae. However, thorough exploration of the hypothetical 415 

differences between AA and sexual lineages of Darwinulidae is needed to verify this hypothesis. 416 

Taken together, the situation in genus Lasaea is the most complicated of all the studied AA groups from the viewpoint of 417 

present comparative study. Lasaea is highly understudied in this regard. Published literature does not offer enough information to 418 

investigate possible ecological differences among its AA lineages and sexual controls. In conclusion, available evidence is insufficient 419 
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to identify any consistent differences in the biotic and abiotic heterogeneity of the environment of AA members of Lasaea and their 420 

sexual controls. 421 

  422 
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