Table S1 (Related to Figure 1). Overview of buried residues and hydrogen bonds at interaction interfaces

IL-23R:IL-23p19		IL-23R:IL-12p40		IL-12p40: IL-23p19		1	IL-12p40	:Nb22E11
IL-23R	IL-23p19	IL23R	IL-12p40	IL-12p40	IL-23p19		IL-12p40	Nb22E11
Gly24	Asp55	Arg62	Lys107	Lys124	Q34		Leu35	Arg27
lle25	Leu56	Pro106	Asp109	Tyr136	Q38		W37	Thr28
Thr26	Arg57	Lys107	Gly110	Ala198	Cys41		Pro39	Phe29
N27	Glu58	His108	lle111	Cys199	W45		Asp40	Ser30
lle28	Glu59	Phe109	W112	Ala201	Asp55		Leu62	W31
N29	Gly60	Q110	Thr114	Ala202	Pro69		Asp63	Glu44
Cys30	Asp67		Lys124	Glu203	His70		Glu67	Arg52
Ser31	Val68		Lys126	Glu204	lle71		Lys80	Gly56
lle56	His70		Phe128	Ser205	Q72		Glu81	Ser57
Lys57	Phe99		Tyr223	Phe228	Cys73		Phe82	Pro58
Tyr67	Tyr100		Thr224	Arg230	Gly74		Gly83	Tyr59
N69	Leu103			Pro265	Cys77		Ala85	Lys65
Gly70	lle108			Ser267	Asp78		Lys106	Ser100
Ser98	Pro113			Tyr268	Pro79		Glu108	Leu101
Met99	Q154			Phe269	Leu82		Asp115	Phe102
Tyr100	Pro155			Ser270	Tyr100		lle116	Pro103
Thr102	W156			Asp292	Arg167		Lys118	Thr104
His108	Q157			Asp312	Ser168		Thr147	Ser105
Phe109	Leu159			Arg313	Q170		lle148	Arg106
Q110	Leu160			Tyr314	Ala171		Ser149	His109
Glu111	Leu161			Tyr315	Phe172		N184	Asp111
Thr112	Lys164			Ser316	Ala174		His216	
Leu113	lle165				Val175		Lys217	
Cys115	Arg167				Ala177		Leu218	
Gly116	Ser168				Arg178		Lys219	
Lys117					Val179			
Asp118					Ala181			
					His182			
					Ala185			
					Thr186			

Buried residues in the IL-23:IL-23R:Nb22E11 structure listed per interface determined by PISA http://www.ebi.ac.uk/pdbe/pisa/

IL-23	R: IL	-23p19	IL-23R: IL-12p40			IL-12p40: IL-23p19		IL-12p40: IL-23p19		IL-12B:Nb22E11		22E11
IL-23R		IL-23p19	IL23R		IL-12p40		IL-12p40		IL-23p19	IL-12p40		Nb22E11
Gly24	-	Lys164	Arg62	-	Asp109		Glu203	-	His70	Asp40	-	Lys65
N27	-	Lys164	Arg62	-	Asp109		Glu203	-	lle71	Asp63	-	Arg106
N29	-	Glu58					Glu203	-	lle71	Phe82	-	Pro103
Glu111	-	Arg57					Ser267	-	His182	Gly83	-	Arg106
Thr112	-	Arg57					Tyr268	-	Cys77	Gly83	-	Arg106
Leu113	-	Arg57					Asp292	-	Q38	Ala85	-	Arg106
Asp118	-	W156					Asp312	-	Arg178	Glu108	-	Arg52
							Asp312	-	Arg178	Glu108	-	Arg52
										Glu108	-	Arg52
										N184	-	Thr28

Buried	residues	s in	the IL	-23:Bria	akinumal	b Fab
structur	e listed	per inte	erface	(only be	etween p	o40
and Fa	ab and	obser	ved a	t least	twice)	as
determined by PISA						

IL-12p40):Heavy	1	IL-12p4	40:Light
IL-12p40	Heavy		IL-12p40	Light
Asp36	Q1		Asp36	N32
W37	Val2		Tyr38	Thr33
Tyr38	Gly26		Lys107	Lys35
Pro39	Phe27		Asp109	Tyr50
Asp40	Thr28		Gly110	Tyr51
Ala41	Ser31		lle111	Q90
Lys80	Tyr32		W112	Tyr92
Glu81	Gly33		Ser113	Arg94
Phe82	Arg52		Thr114	Tyr95
Lys106	Tyr53		Lys124	Thr96
Lys107	Ser56		N125	His97
Glu108	N57		Lys126	Pro98
Asp109	Tyr59			Leu100
Gly110	Thr98			
lle111	His99			
Ser113	Gly100			
Thr114	Ser101			
Asp115	His102			
Leu117	Asp103			
Lys118	N104			
Asp119				
Lys121				
Thr147				
lle148				
Lys219				

Hydrogen-bonds in the IL-23:Briakinumab^{Fab} structure listed per interface (only between IL-23 and Fab and observed at least twice) as determined by Chimera

IL-12	IL-12p40:Heavy					
IL-12p40		Heavy				
Asp36	-	Ser101				
W37	-	Ser31				
Asp109	-	Gly100				
Lys219	-	Tyr53				

IL-12	2p40:L	.ight
IL-12p40		Light
Asp36	-	Tyr51
Asp109	-	Lys35

Table S2 (Related to Figure 1). Mapping of missense SNP onto the IL-23:IL-23R structure.

SS=Signal sequence; CP=Cytoplasm; TM=transmembrane domain; EC=Extracellular; D1=Domain 1; D2=Domain 2; D3=Domain 3.

Most common missense mutations in hIL-23R according to the Exome Aggregation Consortium (ExAC) browser (<u>http://exac.broadinstitute.org</u>). Highlighted residues are present in the IL-23:IL-23R:Nb22E11 structure reported herein.

Mutation	Rs number	Location	References/pathophysiology
<mark>L310P</mark>	<mark>7530511</mark>	D3	Duer et al. 2006 →GWAS →no effect on IBD
			Cargill et al. 2007 \rightarrow SNP meta analysis \rightarrow protective against
			psoriasis
			Huber et al. 2008 \rightarrow targeted genotyping \rightarrow susceptibility to Graves'
			Opthalmopathy
Q3H	1884444	SS	Duer et al. 2006 →GWAS →not linked to IBD
			Cargill et al. 2007 \rightarrow SNP meta analysis \rightarrow not linked to psoriasis
			Li et al. 2016 \rightarrow targeted sequencing \rightarrow susceptibility to MS
R381Q	11209026	CP	Duer et al.2006 \rightarrow GWAS \rightarrow protection against IBD
			Cargill et al. 2007 \rightarrow SNP meta analysis \rightarrow protective against
			psoriasis
			Huber et al. 2008 \rightarrow targeted genotyping \rightarrow not linked to Graves'
			Opthalmopathy
			Silverberg et al. 2009 \rightarrow GWAS \rightarrow protection against UC
			Pidasheva et al. 2011 \rightarrow reduced surface expression and activation
			Momozawa et al. 2011 \rightarrow targeted sequencing \rightarrow protective against
			IBD Devendentiel 2014 Neelviele II 22D jeeferm
			Raymond et al. 2014 - Soluble ILZSR Isolomi
			Bong et al. 2017 - CWAS meta analysis - protective against UC
1/3621	11313262	тм	Peng et al. $2017 \rightarrow \text{GWAS}$ fileta analysis $\rightarrow \text{protective against UC}$
V 3021	41313202	1 171	Momorphic at al. 2011 \rightarrow targeted sequencing \rightarrow protective against IDD
			IBD
			Sivanessan et al. 2016 \rightarrow reduced surface expression \rightarrow protective
G149R	<mark>76418789</mark>	D2	Rivas et al. 2011 \rightarrow targeted sequencing \rightarrow protective against IBD
			Momozawa et al. 2011 \rightarrow targeted sequencing \rightarrow protective against
			IBD
			Onodera et al. 2015 \rightarrow targeted sequencing \rightarrow protective against CD
			Sivanessan et al. 2016→ reduced surface expression
<mark>R86Q</mark>	<mark>76575803</mark>	D1	Momozawa et al. 2011 \rightarrow targeted sequencing \rightarrow protective against
			IBD
<mark>A199V</mark>	<mark>143130647</mark>	D2	
<mark>L193F</mark>	<mark>146440064</mark>	D2	
S559R		CP	
P306S	<mark>147093105</mark>	D3	L193F
V160A		D2	
5221F			S221F
L3/2F			
1373G			
134 INI 1354T		FC	
		LO D2	5
		52	l

Mutation	Rs number	Location	References/pathophysiology
V298F	3213119	D3	Cargill et al. 2007 \rightarrow no significant genetic association with
			Prescott et al. 2015 \rightarrow targeted sequencing \rightarrow protective for IBD
			Fang et al. 2015 → SNP meta analysis → melanoma susceptibility
V33I	3213096	D1	Cargill et al. 2007 \rightarrow no significant genetic association with psoriasis
			Fang et al. 2015 \rightarrow SNP meta analysis \rightarrow no effect on
			melanoma susceptibility
S226N	55661460	D2	Ro
R288T	370904274	D3	E95K
R250Q	74644143	D3	
G182R	10045130	D2	Val
E95K	562877471	D1	
T169M		D2	IL-12p40
V275I	189324104	D3	T169M
T291M		D3	G182P
R179T	375159171	D2	S226N S226N
S100L	144694601	D1	Factor Factor
E321K		D3	RZ881
V325M	56064925	D3	V275I
L101F		D1	IL-23p19
V96F		D1	T291M
E81G		D1	V298F R250Q
G171R	189313574	D2	

Most common missense mutations in human IL-12p40 according to the ExAC browser.

Most common missense mutations in human IL-23p19 according to the ExAC browser.

MutationRs numberLocationReferences/pathophysiologyP14I145233794SS

P14L	145233794	33	
R178Q		αD	IL_23R
M8I		SS	K164R E58Q
L2P		SS	
S106L		αВ	
P117L		BC loop	R158C/H
A177T		αD	P113A/L-P113A/L-12P40
R158C		αD	P117L
P14T		SS	
R158H	146998334	αD	STUDL
P113A		BC loop	
P113L		BC loop	
T144S		CD loop	IL-23p19
K164R		αD	A177T R178Q
E58Q		AB loop	

Figure S1 (Related to Figure 1). Phylogenetic analysis of IL-23R and sequence alignments.

Phylogenetic analysis of IL-12Rβ1 (**A**) and IL-23R (**B**). The mammalian IL-23R orthologues cluster distinctly from those in lower-jawed vertebrates, which have additional FnIII domains. Asterisks indicate sequences manually assembled from available genomic data. Multiple sequence alignments were performed with MAFFT 7 using the E-INS-I algorithm for refinement. The phylogenetic analysis was performed on the http://mafft.cbrc.jp/alignment/ server. (**C**) Structurally annotated multiple sequence alignments of the extracellular domains of IL-23R using the ESPripT server (http://espript.ibcp.fr/ESPript/ESPript/). Stars indicate N-linked glycosylation sites, full blue spheres residues interacting with IL-23p19, and hollow blue spheres residues interacting with IL12p40. The characteristic WSXW motif in the CHR region is indicated by a black box. (**D**) Structure-based sequence alignment of cytokine and receptor regions in IL-23:IL-23R and IL-6:gp130 complexes, IL-12p35, and IL-12Rβ2.

Figure S2 (Related to Figure 1). Assembly and characterization of the IL-23:IL23R complex.

(A) Characterization of the IL-23 complex by SEC-MALLS. Elution profile recorded by the right-angle laser light scattering detector (left axis) plotted against determined molecular weight (right axis). IL-23 forms a binary complex with IL-23R. (B) The preformed IL-23:IL-23R can be further complemented with IL-12RB1 leading to a ternary complex. Molecular weights determined by MALLS are summarized in panel (C) Data are presented as average molecular weights ± standard deviations calculated in Excel over the selected region of the peaks. (D) Schematic representation of the N-linked glycans present in the IL-23:IL23R:Nb22E11 structure (Mannoses in green and GlcNAc in blue). Dashed orange lines represent bonds that could be hydrolyzed by Jack bean α -mannosidase. The α 1-2 linked mannoses present at the non-reducing end of the oligosaccharide are normally removed by mannosidases in the Golgi during oligosaccharide maturation leading to a Man5GlcNAc2 oligosaccharides normally expected in HEK293S MGAT1^{-/-} cells. (E) Trimming of the N-linked glycans on the IL-23:IL23R:Nb22E11 complex by Jack bean α -mannosidase leads to a clear increase in retention volume on a SD200 16/600 column. (F) Coomassiestained SDS-PAGE analysis under reducing conditions of the IL-23:IL23R:Nb22E11 complex used for protein crystallization. IL-23R migrates as a fuzzy band just above IL-12p40 around 40 kDa. (G) Crystal of the IL-23:IL23R:Nb22E11 complex as mounted in a Dual thickness Microloop (MiTeGen, Ithaca, USA) for data collection at Petra III beamline P14 (EMBL-Hamburg, Germany) (H) Silver-stained reduced SDS-PAGE analysis of IL-23:IL23R:Nb22E11 crystals to characterize the molecular contents of the crystal. Starting from a crystallization drop, crystals were washed by serially transferring them to drops containing mother liquor (3 times). The first two wash drops were loaded in lanes Wash1 and Wash2. The final drop containing the crystals was loaded in the lane labelled Crystal. A crystallization droplet of the same protein complex that did not yield any crystals was loaded in the Control lane. IL-23R and IL-12p40 have similar electrophoretic patterns. Contaminants present in the original sample running around 65 kDa and 200 kDa are not present in the crystals. (I) Phasing of the IL-23:IL23R:Nb22E11 crystals by molecular replacement in Phaser using IL-23 and Nb22E11 as search models resulted in clearly interpretable difference density for IL-23R. Shown are mFo-DFc difference electron density maps calculated at +3 r.m.s.d. (green map) and -3 r.m.s.d. (red map). 2mFo-DFc map (blue map) calculated at +1.5 r.m.s.d.

Figure S3 (Related to Results, Crystal structure of the human IL-23:IL-23R complex, Figure 1). Close-up views of regions of special interest in the IL-23:IL-23R complex

Electron density maps carved 5Å around the region of interest in Pymol. mFo-DFc map calculated at +3 r.m.s.d. (green map) and -3 r.m.s.d. (red map), 2mFo-DFc map (blue map) calculated at +1.5 r.m.s.d. The WSXWS motif on IL-23R domain 3 is part of an elaborate sidechain stacking arrangement running all along the side of the domain (A). The W residues part of the WSXWS motif are underlined and shown in bold. Electron density maps carved around the N-terminal part of IL-23p19 helix D in the IL-23:IL-23R:Nb22E11 (B) and unbound IL-23 (C) structures. The quality of the electron density around W156 is of remarkably better quality in the bound versus the unbound structure. There is no interpretable electron density present at the Nterminal part of helix D in support of a specific W156 sidechain rotamer. Which is indicative of inherent flexibility in this region.

Figure S4 (Related to Figure 3). IL-23 dose validation and comparison with IMQ in induction of epidermal hyperplasia and markers of epidermal hyperplasia.

A-C. Representative H&E staining of cutaneous biopsies showing diffuse epidermal hyperplasia (acanthosis) (asterisk) with associated compact hyperkeratotic and parakeratosis of the stratum corneum and the formation of Munro's microabsecces (arrow), (scale bar 100 μ m). **D.** Quantification of epidermal thickness by microscopy in the indicated mice treatments. Fold change in mRNA expression levels of *Krt16* (**E**) and *S100a8* (**F**) in IMQ and IL-23 WT treated skin compared with PBS injected skin assessed by qPCR at day 4. Data are presented as ± s.e.m, and p-values were determined using one-way ANOVA followed by Holm-Sidak's multiple comparisons test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (*n*= 4 for each group).

Figure S5 (Related to Figure 1, Figure 3 and Figure 4). Kinetic and thermodynamic characterization of interactions between various constructs/modules of IL-23, IL-23R, and IL-12Rβ1.

A) Representative BLI sensorgrams (black), fitted 1:1 model (red) and residual (black, bottom graph) used to characterize the binding kinetics (k_a , k_d) and affinity (K_D) of human IL-23 towards mouse IL-23R. Antihuman IgG Fc capture biosensors were coated with mIL-23R_Fc and dipped into a threefold dilution series of human cytokine (517 nM, 172 nm, 57 nM, 19 nM, 6 nM and 2 nM). (**C**, **D**, **F**) Representative ITC experiments performed on a VP-ITC machine or a PEAQ-ITC instrument (**B**, **E**). **B**) Titration of 102 μ M IL-12R β 1 in 10.2 μ M IL-23R at 309.95 K. **C**) Titration of 70.2 μ M IL-23R in 4.97 μ M IL-23 at 310.15 K. **D**) Titration of 70.2 μ M IL-23R in 4.0 μ M IL-23 at 310.15 K. **E**) Titration of 60.0 μ M IL-23R_{CHR} in 6 μ M IL-23 at 310.05 K **F**) Titration of 93.2 μ M IL-12Bp40 in 8.8 μ M IL-12R β 1 at 310.15 K. The stoichiometry of experiments **C** and **D** were set to 1 and the concentration in the syringe was allowed to be fitted to account for binding incompetent IL-23R. The stoichiometry of the experiment before correction is reported between parenthesis. Fitted values are reported with their fitting errors as reported by the MicroCal PEAQ-ITC Analysis software version 1.1.0.1262.

Figure S6 (Related to Figure 5 and Figure 6). Overview and structural mapping of IL-23 antagonists, and characterization by SEC-MALLS of IL-23:antibody complexes.

(A) Several IL-23 antagonists have been described in peer-reviewed literature as well as in patent literature. The structure of IL-23:IL-23R (in grey and orange respectively) is combined into a hybrid model with the structures of the IL-23 bound (IL-12 in case of ustekinumab) antagonist (in blue surface representation) when publically available. When no structure was publicly available the epitope described in the patents was mapped on the IL-23 structure and colored blue. The binding of most antagonists to IL-23 is incompatible with the binding of IL-23R. (**B**,**C**) Characterization of the binding of antibody Fabs to the preformed IL-23:IL23R complex in solution by SEC-MALLS. Elution profile recorded by the right-angle laser light scattering detector (left axis) plotted against determined molecular weight (right axis). Blue trace = Fab alone, green trace = IL-23:Fab complex, vermillion trace IL-23:IL-23R complex after addition of Fab (**B**) Briakinumab Fab competes with IL-23R for IL-23 leading to IL-23:Fab and unbound IL-23R (vermillion trace). (**C**) Ustekinumab Fab binds distally of the IL-23:IL-23R interaction site thereby forming a ternary IL-23:IL23R:Fab complex. Molecular weights determined by MALLS are summarized in panel (**D**) Values with an asterisc are calculated from the experiment where briakinumab Fab was added to the IL-23:IL-23R complex. Data are presented as average molecular weights ± standard deviations calculated in Microsoft Excel over the selected region of the peaks.