1					
2	Supplementary Information				
3	for				
4	Characterization of a Novel Tectivirus Phage Toil and Its Potential as an Agent for Biolipid				
5	Extraction				
6 7 8					
9 10	Jason J. Gill ^{1,3} ; Baixin Wang ² ; Emily Sestak ² ; Ryland Young ^{3,4} ; and Kung-Hui Chu ^{1*}				
11 12 13 14 15 16 17 18	¹ Department of Animal Science, ² Zachry Department of Civil Engineering, ³ Center for Phage Technology, ⁴ Department of Biochemistry and Biophysics Texas A&M University, College Station, TX 77843				
19 20	*Corresponding author				
21 22	Mailing address: 402A DLEB, Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843, USA				
23	E-mail: kchu@civil.tamu.edu; Phone: +1- (979) 845-1403; Fax: +1- (979) 862-1542				
24					
25					
26	Supporting Information: 5 pages total, 3 figures and 1 table.				
27					

- 28 **Figure S1.** Minimal Inhibition Concentration (MIC) tests. *Rhodococcus opacus* PD631 were
- 29 grown in R2A broth with 5 mM CaCl₂ to exponential growth phase, and diluted to 10^4 CFU/ml,
- 30 5 ml aliquots were transferred to culture tubes. Phage Toil lysate was diluted in series, and
- 31 applied to each culture tube. The input multiplicity of infection (MOI) was 0, 0.01, 0.1, 1, 10 or
- 32 100. All tubes was incubated at 30 $^\circ C$ for 30 hrs.
- 33

35

- 36 37
- **Figure S2.** Optimization of Ca^{2+} or Mg^{2+} concentrations for phage Toil adsorption. P10 is the free phage titer at 10 min in the supernatant, P0 is the free phage titer at time zero.
- 38

41 **Figure S3**. Restriction digest of phage Toil genomic DNA with and without proteinase K

42 treatment. Lane 1, NEB 1 kb molecular weight standard; Line 2 Lambda HindIII fragments;

43 Lane 3, Untreated DNA; Lane 4, proteinase K treated DNA; Lane 5, HindIII digested DNA;

44 Lane 6, HindIII digested and proteinase treated; Line 7, HindIII cut and 60°C heated; Line 8,

45 HindIII cut, 60°C heated and proteinase treated.

46

51

Table S1. Predicted genes and protein functions of bacteriophage Toil, a novel Tectivirus infecting *Rhodococcus opacus* (GenBank accession KY817360). 52

53	in
54	
55	

Gene	CDS coordinates	Strand	Predicted product	Conserved domains	NCBI Protein ID
1	90359	-	hypothetical protein		ARK07684
2	356559	-	hypothetical protein		ARK07685
3	617892	-	hypothetical protein		ARK07686
4	10111247	-	hypothetical protein		ARK07687
5	12541679	-	hypothetical protein		ARK07688
6	17312018	-	hypothetical protein		ARK07689
7	20153805	-	DNA polymerase	IPR004868, IPR023211	ARK07690
8	37324181	-	hypothetical protein		ARK07691
9	42454781	-	hypothetical protein		ARK07692
10	48655299	+	hypothetical protein		ARK07693
11	52965793	+	hypothetical protein		ARK07694
12	57836499	+	DNA packaging ATPase	IPR027417	ARK07695
13	65036637	+	hypothetical protein		ARK07696
14	66547796	+	coat protein	HHpred: STIV coat 2bbd, 97.7%	ARK07697
15	78097925	+	hypothetical protein		ARK07698
16	79378059	+	hypothetical protein		ARK07699
17	80198381	+	hypothetical protein		ARK07700
18	83598508	+	hypothetical protein		ARK07701
19	85109184	+	hypothetical protein		ARK07702
20	918110167	+	LysM domain protein	IPR018392, IPR036779	ARK07703
21	1017710395	+	hypothetical protein		ARK07704
22	1041910586	+	hypothetical protein		ARK07705
23	1059511254	+	entry lysozyme	IPR023346	ARK07706
24	1125111715	+	hypothetical protein		ARK07707
25	1171212053	+	hypothetical protein		ARK07708
26	1205312712	+	CHAP-domain endopeptidase	IPR000064	ARK07709
27	1270512992	+	hypothetical protein		ARK07710
28	1299213621	+	hypothetical protein		ARK07711
29	1361814049	+	hypothetical protein		ARK07712
30	1404915284	+	receptor-binding protein	IPR008983	ARK07713
31	1529115974	+	LysA-like endolysin	IPR009045	ARK07714
32	1600116222	+	hypothetical protein		ARK07715
33	1632716605	+	hypothetical protein		ARK07716
34	1660216784	+	hypothetical protein		ARK07717
35	1687417161	+	hypothetical protein		ARK07718