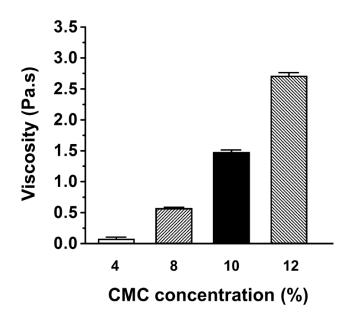
Exendin-4-encapsulated dissolving microneedle arrays for efficient treatment of type 2 diabetes


Shayan Fakhraei Lahiji^{1,+}, Yoojung Jang^{1,+}, Inyoung Huh¹, Huisuk Yang¹, Mingyu Jang^{1,2}, Hyungil Jung^{1,2,*}

¹ Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seoul 03722, Seodaemun-gu, Korea

² Juvic Inc., Building 102, Yonsei Engineering Research Park, 50 Yonsei-ro, Seoul 03722, Seodaemun-gu, Korea

^{*}Corresponding author: hijung@yonsei.ac.kr Phone: 82-2-2123-2884, Fax: 82-2-362-7265

⁺These authors contributed equally to this work.

Supplementary Figure 1: Viscosity of CMC at different concentrations. The viscosity of CMC at the concentrations of 4, 8, 10, and 12% (w/v) was measured at the intervals of 200/s. Viscosity is 0.08 Pa.s for 4% CMC, 0.67 Pa.s for 8% CMC, 1.73 Pa.s for 12% CMC, and 3.13 Pa.s for 12% CMC. Increase in the CMC concentration results in increased viscosity.