Subcellular quantitation for IncRNAs DANCR, Casc7, and TUG1

Supplementary Figure 1: qPCR quantitation of DANCR (a), CasC7, and TUG1 (b) in subcellular fractions from ECs, plotted as percentages in association with chromatin, nucleoplasm, and cytoplasm. Data are presented as mean±SEM. ANOVA followed by Bonferroni post-test is applied. n=5/group.

Transcription of LEENE neighboring genes

Supplementary Figure 2: (a) Time course of log_2FC (PS/OS) of LEENE and mRNAs encoding KTN1 and PELI2. (b-d) qPCR quantification of KTN1 in ECs with (b) KLF2 or KLF4 overexpression, (c) LEENE knock-down with two different gapmer-LNA (50 nM), or (d) CRISPR-cas9 gene editing targeting *LEENE* promoter/enhancer regions. Data are presented as mean±SEM. ANOVA followed by Bonferroni post-test is applied, n=5/group.

Heatmap of flow-regulated 81 genes in LEENE interactome

Log ₂ FC (PS/OS) +1 0 -1	eNOS
	NOS3 GRB14 F2RL3 PMP22
	C9orf3 SORBS2 PLAC8
	TDRD10 PTPN13 TENC1
	ABCB1 STOM DSTN SNTB2
	GCKR GSN CLIC2
	GALNT11 EXOC6B TRIOBP
	LRRC49 POC1B OGDH TMTC1
	SPTEN1 LMBRD1 ZDHHC3
	C5orf38 UNC13A KCTD10
	CMKLR1 NCKAP5 SPATA13 PREX1
	PRKCA RAP1A SEMA5A
	RXFP1 LPCAT2 HMCN1
	SNX29 UGGT2 UBE3B
	ME1 SPOCK1 LAPTM4B C3orf26
	SLC38A1 MS4A6A CD36 GTE3C5
	RANGAP1 SAE1 LANCL2
	MYO5B SMPD4 PDCD1LG2
	DNAJC11 RFC3 ALS2CR4 DNA2
	BID TFRC DTNB ITGA2
	SPHK1 NF2 RUNX1 CUNX1
	CDK17 BRIP1 CTPS
	BAMB

Supplementary Figure 3: Heatmap demonstrates the flow-regulated 81 genes in the *LEENE* interactome in Fig. 3d, with eNOS as one of the top correlated transcripts with LEENE.

Hi-C analysis of LEENE-eNOS interaction map in non-EC cell types

Supplementary Figure 4: *LEENE-eNOS* interaction map generated from Hi-C data from human mammary epithelial cells HMEC (a) or HeLa cells. Red pixels represent interactions between two regions respectively in chr 7 (X axis) and chr 14 (Y axis). The highlighted regions correspond to *eNOS* promoter and *LEENE* enhancer regions. Note that no red pixel was shown in the overlapped highlighted region. (c) A genome-wide contact matrix produced by Hi-C. Each pixel represents a chromosomal interaction using 5-kb windows; intensity corresponds to the total number of reads.

Histone ChIP-seq tracks of eNOS promoter/enhancer region from four different cell types

Hg19, Chr7:150,677,000-150,703,000

Supplementary Figure 5: ENCODE histone ChIP-seq signal from four different cell types surrounding *eNOS* promoter/enhancer region. Shaded area indicates *eNOS* promoter/enhancer regions. The red arrows indicate 4C library primers directions and locations. HMEC, human mammary epithelial cells; H1-hESC, human embryonic stem cells.

Quality control of CRISPR-Cas9 gene editing

Supplementary Figure 6: Quality control of CRISPR-Cas9 gene editing system targeting *LEENE* promoter/enhancer (ED) (a and b) and coding region (CD) (c). (a) Surveyor assay for ED sgRNA-guided cas9 cutting efficacy in HEK293 cells. Select sgRNAs targeting respectively 5' or 3' ends were used to test the cutting efficiency as compared to control vector. (b) PCR validation of ED region of Cas9 targeting position as illustrated in Fig. 4a. The spliced and ligated 10 kb region is amplified in CRISPR-targeted but not control ECs. (c) Surveyor assay for CD sgRNA-guided cas9 cutting efficacy in HEK293 cells. Select sgRNAs targeting respectively 5' or 3' ends were used to control vector.

Effect of LEENE knock-down on eNOS mRNA level in HAoECs

Supplementary Figure 7: Knock down of LEENE with LNA decreased mRNA expression of eNOS in HAoECs. Error bars represent mean \pm SEM, n=5/group. Student's *t*-test is applied, **p*<0.05.

Effect of LEENE knock-down on pro-inflammatory gene expression

Supplementary Figure 8: Knockdown of LEENE with LNAs induced ICAM1 and VCAM1 mRNA levels in HUVECs. Error bars represent mean \pm SEM, n=5/group. ANOVA followed by Bonferroni post-test is applied, **p*<0.05.

Densitometry quantification of Western Blot experiments

Supplementary Figure 9: a: Fig. 5b, under statin treatment; b: Fig. 5b, under PS condition; c: Fig. 5f. Error bars represent mean±SEM, n=5/group. Student's *t*-test is applied, **p*<0.05.

Overexpression of LEENE using adenovirus

Supplementary Figure 10: (a) GFP images from HUVECs infected with Ad-GFP or Ad-LEENE adenovirus. (b) LEENE and eNOS RNA/mRNA in HAoEC infected with Ad-GFP or Ad-LEENE. Error bars represent mean \pm SEM, n=5/group. Student's *t*-test is applied, **p*<0.05.

IgG isotype control for the RIP assay

Supplementary Figure 11: Error bars represent mean±SEM, n=5/group. Student's *t*-test is applied.

Quality and negative controls of LEENE ChIRP assay.

Supplementary Figure 12: (a) RNA retrieval rate using LEENE probe under DMSO or atorvastatin (ATV) treatment, quantified by qPCR. (b) RNA retrieval rate using LEENE or LacZ probe to pull-down LEENE RNA or β -actin under basal condition (DMSO). (c) LEENE ChIRP assay detecting LEENE RNA and *LEENE* enhancer/*eNOS* promoter region interactions using HUVECs or HEK293 cells. Error bars represent mean±SEM, n=5/group. (d) LEENE ChIRP qPCR detection of 150 kb up- an downstream regions respectively encoding PELI2 and KTN1. Error bars represent mean±SEM, n=5/group. ANOVA followed by Bonferroni post-test is applied.

Effect of LEENE depletion on KLF4/Med1 binding to eNOS promoter

Supplementary Figure 13: KLF4 and Med1 were immunoprecipitated from ECs transfected with scramble LNA or LEENE LNA and their bindings to *eNOS* promoter region were detected by qPCR. Error bars represent mean \pm SEM, n=5/group. Student's *t*-test is applied.

LEENE enhancer is prerequisite to LEENE RNA-*eNOS* locus association and LEENE RNA is not sufficient to enhance eNOS level

Supplementary Figure 14: (a) HUVECs were transfected with control (Ctrl) cas9 plasmid or Cas9-sgRNA targeting *LEENE* enhancer region (CRISPR-ED) 24 hr before infection with Ad-GFP or Ad-LEENE for another 48 hr. eNOS mRNA level was quantified by qPCR.(b) ChIRP detection of *eNOS* genomic locus binding with LEENE RNA in ECs transfected with Cas9 and sgRNA targeting the enhancer of *LEENE* and treated with DMSO or ATV. Error bars represent mean±SEM, n=5/group. ANOVA followed by Bonferroni post-test is applied, *,[#]p<0.05.

Pathway enrichment analysis of LEENE interactome

Supplementary Figure 15: Pathway enrichment analysis from 1177 genes that are differentially regulated by PS/OS and interact with *LEENE* genomic loci.

Effect of LEENE knock-down or overexpression on Tm mRNA level

Supplementary Figure 16: Inhibition of LEENE by LNA decreased (a), while LEENE overexpression increased thrombomodulin mRNA level (b). Error bars represent mean \pm SEM, n=5/group. Student's *t*-test is applied, **p*<0.05.

Hi-C analysis of LEENE-Tm interaction map in HUVECs

Supplementary Figure 17: *LEENE-Tm* interaction map generated from Hi-C data from HUVECs. Red pixels represent interactions between two regions respectively in chr 20 (X axis) and chr 14 (Y axis). The highlighted regions correspond to *Tm* promoter and *LEENE* enhancer regions. Note that no red pixel was shown in the overlapped highlighted region.

Detailed gene information of 4C-seq circoplot

Supplementary Figure 18: Detailed gene information of Fig. 3g. Each line in circoplot depicts a chromosomal interaction between IncRNAs (identified in Fig. 1b) and eNOS bait as revealed by 4C-seq. Blue lines: PS; red lines: OS.

Original uncropped scan of western blots

Supplementary Figure 19: Original uncropped scan of blots for Fig. 5b, left side 'ATV'

Original uncropped scan of western blots

Fig. 5b

Supplementary Figure 20: Original uncropped scan of blots for Fig. 5b, right side 'PS'

Original uncropped scan of western blots

Supplementary Figure 21: Original uncropped scan of blots for Fig. 5f

Supplementary Table 1 Human primer sequences

Name (Human)	Forward	Reverse
qPCR primer		
LINC00520 (LEENE)	TTTCCCTCTTTGGGGTCTCA	GCCCTTTGATGAGTGAGTCG
eNOS	TGATGGCGAAGCGAGTGAAG	ACTCATCCATACACAGGACCC
KLF2	CATGTGCCGTTTCATGTGC	GCAAGACCTACACCAAGAGTTCG
KLF4	CCCACATGAAGCGACTTCCC	CAGGTCCAGGAGATCGTTGAA
VCAM1	GTCAATGTTGCCCCCAGAGA	TTTTCGGAGCAGGAAAGCCC
ICAM1	GTGTCCTGTATGGCCCCCGACT	ACCTTGCGGGTGACCTCCCC
ACTB	CATGTACGTTGCTATCCAGGC	CTCCTTAATGTCACGCACGAT
MALAT1	GTGCTACACAGAAGTGGATTC	CCTCAGTCCTAGCTTCATCA
DANCR	AGGAGTTCGTCTCTTACGTCT	TGAAATACCAGCAACAGGACA
CasC7	GAGGCTGACCTAAACTGCTATC	CCACTACAGGAACTGAACTGAC
TUG1	CTGTGACCCAGAAGAGTTAAG	CATATCCCAGGGACTCAAAC
KTN1	AAGGAAAGGCAGCAACAGGT	CTGACCCTGAAGTTCCAGCC
Tm	ACCTTCCTCAATGCCAGTCAG	CGTCGCCGTTCAGTAGCAA
4C primer		
eNOS 4C Primer	AGGACTCAAGGGTGGGGATC	GCAGGTCAGCAGAGAGACTA
H3K27ac ChIP-qPCR primer		
Region I	GGCCAATGCATTTGACCTCC	GCTTGTTGGCCACCTGATTT
Region II	CGGTCACTTGCCTGACATCT	GGGCACAGTGATCCACTTCA
Region III	ACTGACACTGAGCTCTCCCT	CCCAGCCGGGATTTACCTTT
Region IV	ACCTTTGCTACCGGAACTCG	GAGAGAGAACGTGACGTGGG
ChIP-qPCR primer		
KLF4 ChIP		
eNOS Promoter	GCCCAGCAAGGATGTAGTGA	GTGTGGGGGTTCCAGGAAAT
LEENE P1	CAGCCTCGTACACAGAAGCT	AACTCATTCCATCTTTAACCTGC
LEENE P2	CTGGTTTCAAACTCGTGGCT	AACGTAGATAGGAGGCCAGG
LEENE P3	GATAGGGCCTGGTGAATTGC	TTATGGAAGGAAGGGCAGGG
LEENE P4	CCATGGCTTTGAAACTGCC	GCAAAGACAACCACCCTGTA
Pol II, KLF4, and Med1 ChIP		
eNOS Promoter P1	ATCCCCTGCTACAGAAACGG	AGCCACCAGGGGGTCATAAA
eNOS Promoter P2	GCCCAGCAAGGATGTAGTGA	GTGTGGGGGTTCCAGGAAAT
eNOS Promoter P3	GCCGAACACCAAATCTCCAAC	AGCCCTGCCAAGAATGATGC
ChIRP-qPCR primer		
LEENE Enhancer	CAGCCCTCACATGTATCCCC	GTGCTATGGAAGGTGGCGTA
eNOS Promoter	GCCGAACACCAAATCTCCAAC	AGCCCTGCCAAGAATGATGC
eNOS Gene Body	AACACATAGGCCCTGATTGGG	TGATGATGTGGTCTCATCCCG
150 Upstream (KTN1)	AGAGGTGATAGTGAAGAATGACT	CAGAAGACAGGTGAAAGGGT
150 Downstream (PEIL2)	GAAAGAGGCTGTGAGGATGA	TTTCAACTCAGCTGCTATGC
CRISPR PCR primer		
5' site	CAATGATAGGCTGGATTAAGAAAATGTGGC	GATGTTCTGATAAAATCATTGCAATCTGGGC
3' site	TGTCATGGGAGGGACTGAATGG	GGCCACATATTGTATGATTCCATTTATATGAG ATG
Spliced region	CAATGATAGGCTGGATTAAGAAAATGTGGC	GGCCACATATTGTATGATTCCATTTATATGAG ATG

Supplementary Table 2 Mouse primer sequences

Name (Mouse)	Forward	Reverse
qPCR primer		
BY707159.1 EST	GGACCTCTGGCTAAGGTGAG	TCCTTGCTTGTCCTGTCAGT
eNOS	CACCTACGACACCCTCAGTG	CTTGACCCAATAGCTGCTCAG

Supplementary Table 3 sgRNA sequences

sgRNA name	Sequence
ED_5'-1	ATGGGTGCAACACACCAACA
ED_5'-3	GGTGGGGAACATCACACACT
ED_5'-6	GAGGGGGGGAGGGATAGCATT
ED_3'-7	GTCATATCTTACATGGCAGA
ED_3'-9	GAGCACAGTCATATCTTACA
CD_5'-1	TACCATAACACTAGACCAGC
CD_5'-2	GCTCTCAGTCATTATATGAT
CD_5'-3	AGTAAAATCACCCCGTGTAG
CD_3'-1	GAAACCCCGAGCCAAACGTA
CD_3'-2	TGTGTTACGGTCTTCAATGG
CD_3'-3	CAGCCTCCATTGAAGACCGT

Supplementary Table 4 LEENE LNA-GapmeRs sequences

	Sequence	Position (NR_026797)
LNA-1	TTTGATGAGTGAGTCG	218-233
LNA-2	GTTACGGTCTTCAATG	1628-1643
Scramble	AACACGTCTATACGC	

Supplementary Table 5 LEENE ChIRP probe sequences

Number	Sequence	Position
1	ATAGAATCTTGCTTGGGCAG	170-198
2	CTGAGTGGATTGTAGGTGTT	443-462
3	TCCTGTCTTCTTACTTGTAC	629-648
4	CCCCAAAATCCTTTAAGGTA	927-946
5	TGTCTCTGGGAAGAGGAGAG	1072-1091
6	TGGATGTAAAGACTGGTGCC	1173-1192
7	CTGAGCTGTAGAATCCACAG	1277-1296
8	CTGACATCTCATCAAGGGAG	1377-1396
9	GCTCATCAAGAAGCAGCTAG	1488-1507
10	AGTCACAAGAAGTCCAAGGC	1594-1613