1 Saito A. et al. 2 SUPPLEMENTARY INFORMATION 3 4 **1.** Supplementary Results 5 2. Supplementary Methods 6 3. Supplementary Figure and Table Legends 7 4. Supplementary Tables 8 **5.** Supplementary Figures 9 10 Title 11 Umbilical cord extracts improve osteoporosis-induced abnormalities of bone 12 marrow-derived mesenchymal stem cells and promote their therapeutic effects on 13 ovariectomised rats 14 Akira Saito, Kanna Nagaishi^{*}, Kousuke Iba, Yuka Mizue, Takako Chikenji, Miho Otani, 15 Masako Nakano, Kazusa Oyama, Toshihiko Yamashita, and Mineko Fujimiya

16 *Corresponding author

1 Supplementary Results

2 Bone volume and histological findings were abnormal in OVX rats

3	An osteoporosis model was constructed using OVX rats and analysed at 4 and
4	8 weeks after surgery. Micro-computed tomography (micro-CT) showed that the
5	number and volume of trabeculae were obviously reduced in the proximal tibia of OVX
6	rats compared with Sham rats (Supplementary Fig. S1a). Trabecular bone mass was
7	markedly reduced with time after OVX. In quantitative analysis of micro-CT images,
8	bone volume fraction and trabecular number were significantly decreased, while
9	trabecular separation was significantly increased in OVX rats 4 and 8 weeks after OVX
10	(P = 0.008 at 4 weeks, P = 0.002 at 8 weeks, Supplementary Fig. S1b; P = 0.016 at 4
11	weeks, $P = 0.011$ at 8 weeks, Supplementary Fig. S1d; $P = 0.014$ at 4 weeks, $P < 0.001$
12	at 8 weeks, Supplementary Fig. S1e). Trabecular thickness was not significantly
13	decreased in OVX rats compared with Sham rats 4 and 8 weeks after OVX ($P = 0.6$ at 4
14	weeks, $P = 0.274$ at 8 weeks, Supplementary Fig. S1c).

15

16 Immunophenotype of BM-MSC surface antigens

The immunophenotype of cell surface antigens was similar between
OVX-MSCs and Sham-MSCs (Supplementary Fig. S2a). It was unchanged in
OVX-MSCs-WJ(+) compared with OVX-MSCs-WJ(-) (Supplementary Fig. S2a).

2

Abnormal morphology of BM-MSCs derived from OVX rats

3	Morphological findings of BM-MSCs isolated from OVX rats (OVX-MSCs)
4	were abnormal in phase contrast observations, with short and dull cell protrusions,
5	enlarged cell area, flattened shape, and disordered orientation of cells compared with
6	BM-MSCs isolated from Sham rats (Sham-MSCs). These findings were similarly
7	observed from passage 0 (P0) to P2 (Supplementary Fig. S2b).

8

9 Differentiation potential into multiple mesenchymal lineages was altered in 10 OVX-MSCs and OVX-MSCs-WJ(+)

11 Osteogenic differentiation ability was decreased in OVX-MSCs-WJ(-) compared with Sham-MSCs, as indicated by a decreased number of alkaline 12 13 phosphatase-positive cells (Supplementary Fig. S2c, upper panels) and alizarin red-positive cells (Supplementary Fig. S2c, middle panels). Conversely, adipogenic 14 15 differentiation ability was enhanced in OVX-MSCs-WJ(-) compared with Sham-MSCs, 16 as indicated by an increased number of Oil red O-positive lipid droplets in the cytoplasm of BM-MSCs (Supplementary Fig. S2c, lower panels). Osteogenic 17 18 differentiation was slightly suppressed in OVX-MSCs-WJ(+) compared with

1	OVX-MSCs-WJ(-), as indicated by a decreased number of alkaline
2	phosphatase-positive cells (Supplementary Fig. S2c, upper panels) and alizarin
3	red-positive cells (Supplementary Fig. S2c, middle panels). Conversely, adipogenic
4	differentiation ability was unchanged in OVX-MSCs-WJ(+) compared with
5	OVX-MSCs, as indicated by the number of Oil red O-positive lipid droplets in the
6	cytoplasm of BM-MSCs (Supplementary Fig. S2c, lower panels).
7	
8	Distribution of Sham-MSCs, OVX-MSCs-WJ(-), and OVX-MSCs-WJ(+) in OVX
9	rats
10	PKH26-labelled BM-MSCs were distributed in the bone marrow of the
10 11	PKH26-labelled BM-MSCs were distributed in the bone marrow of the epiphysis in OVX rats (Supplementary Fig. S4a). The number of distributed cells in
10 11 12	PKH26-labelled BM-MSCs were distributed in the bone marrow of the epiphysis in OVX rats (Supplementary Fig. S4a). The number of distributed cells in bone was larger in OVX-Sham-MSCs and OVX-OVX-MSCs-WJ(+) rats compared
10 11 12 13	PKH26-labelled BM-MSCs were distributed in the bone marrow of the epiphysis in OVX rats (Supplementary Fig. S4a). The number of distributed cells in bone was larger in OVX-Sham-MSCs and OVX-OVX-MSCs-WJ(+) rats compared with OVX-OVX-MSCs-WJ(-) rats on days 1, 3, and 7 after each cell administration
10 11 12 13 14	PKH26-labelled BM-MSCs were distributed in the bone marrow of the epiphysis in OVX rats (Supplementary Fig. S4a). The number of distributed cells in bone was larger in OVX-Sham-MSCs and OVX-OVX-MSCs-WJ(+) rats compared with OVX-OVX-MSCs-WJ(-) rats on days 1, 3, and 7 after each cell administration (Supplementary Fig. S4b). PKH26 fluorescence-labelled BM-MSCs were also
10 11 12 13 14 15	PKH26-labelled BM-MSCs were distributed in the bone marrow of the epiphysis in OVX rats (Supplementary Fig. S4a). The number of distributed cells in bone was larger in OVX-Sham-MSCs and OVX-OVX-MSCs-WJ(+) rats compared with OVX-OVX-MSCs-WJ(-) rats on days 1, 3, and 7 after each cell administration (Supplementary Fig. S4b). PKH26 fluorescence-labelled BM-MSCs were also distributed in the lung on days 1, 3, and 7 after each cell administration, but there was
 10 11 12 13 14 15 16 	PKH26-labelled BM-MSCs were distributed in the bone marrow of the epiphysis in OVX rats (Supplementary Fig. S4a). The number of distributed cells in bone was larger in OVX-Sham-MSCs and OVX-OVX-MSCs-WJ(+) rats compared with OVX-OVX-MSCs-WJ(-) rats on days 1, 3, and 7 after each cell administration (Supplementary Fig. S4b). PKH26 fluorescence-labelled BM-MSCs were also distributed in the lung on days 1, 3, and 7 after each cell administration, but there was no difference between the cell types examined (Supplementary Fig. S4c,d).

18 Differentiation and maturation of RAW264.7 cell-derived osteoclasts in vitro

1	The macrophage cell line RAW264.7 was differentiated into
2	macrophage-derived osteoclasts by adding receptor activator of nuclear factor κ -B
3	ligand (RANKL) alone or in combination with the MEK inhibitor PD98059 in vitro
4	(Supplementary Fig. S5a). Macrophages were fused into multinucleated osteoclasts.
5	Morphologically, osteoclasts became larger and more mature by the addition of
6	RANKL and PD98059 in combination, but not with RANKL alone (Supplementary Fig.
7	S5b). TRACP activity in the culture supernatant of macrophage-derived osteoclasts was
8	increased 72 h after induction with RANKL ($P < 0.05$, Supplementary Fig. S5c).
9	
10	Differentiation and maturation of mouse BMC-derived osteoclasts in vitro
10 11	Differentiation and maturation of mouse BMC-derived osteoclasts <i>in vitro</i> Mouse BMCs were differentiated into macrophage-derived osteoclasts by the
10 11 12	Differentiation and maturation of mouse BMC-derived osteoclasts <i>in vitro</i> Mouse BMCs were differentiated into macrophage-derived osteoclasts by the addition of RANKL alone or in combination with PD98059 <i>in vitro</i> (Supplementary Fig.
10 11 12 13	Differentiation and maturation of mouse BMC-derived osteoclasts in vitro Mouse BMCs were differentiated into macrophage-derived osteoclasts by the addition of RANKL alone or in combination with PD98059 in vitro (Supplementary Fig. S6a). Macrophages in the BMC cultures were fused into multinucleated osteoclasts.
10 11 12 13 14	Differentiation and maturation of mouse BMC-derived osteoclasts in vitro Mouse BMCs were differentiated into macrophage-derived osteoclasts by the addition of RANKL alone or in combination with PD98059 in vitro (Supplementary Fig. S6a). Macrophages in the BMC cultures were fused into multinucleated osteoclasts. Morphologically, osteoclasts became larger and more mature with the addition of
 10 11 12 13 14 15 	Differentiation and maturation of mouse BMC-derived osteoclasts in vitro Mouse BMCs were differentiated into macrophage-derived osteoclasts by the addition of RANKL alone or in combination with PD98059 in vitro (Supplementary Fig. S6a). Macrophages in the BMC cultures were fused into multinucleated osteoclasts. Morphologically, osteoclasts became larger and more mature with the addition of RANKL and PD98059 in combination, but not with RANKL alone (Supplementary Fig.
 10 11 12 13 14 15 16 	 Differentiation and maturation of mouse BMC-derived osteoclasts <i>in vitro</i> Mouse BMCs were differentiated into macrophage-derived osteoclasts by the addition of RANKL alone or in combination with PD98059 <i>in vitro</i> (Supplementary Fig. S6a). Macrophages in the BMC cultures were fused into multinucleated osteoclasts. Morphologically, osteoclasts became larger and more mature with the addition of RANKL and PD98059 in combination, but not with RANKL alone (Supplementary Fig. S6b). TRACP activity in the culture supernatant of macrophage-derived osteoclasts was
 10 11 12 13 14 15 16 17 	 Differentiation and maturation of mouse BMC-derived osteoclasts in vitro Mouse BMCs were differentiated into macrophage-derived osteoclasts by the addition of RANKL alone or in combination with PD98059 in vitro (Supplementary Fig. S6a). Macrophages in the BMC cultures were fused into multinucleated osteoclasts. Morphologically, osteoclasts became larger and more mature with the addition of RANKL and PD98059 in combination, but not with RANKL alone (Supplementary Fig. S6b). TRACP activity in the culture supernatant of macrophage-derived osteoclasts was increased 10 days after induction with RANKL (P < 0.05, Supplementary Fig. S6c).

 $\mathbf{5}$

1 Supplementary Methods

2 Isolation, culture, and characterisation of BM-MSCs

Bone marrow was collected from Sham and OVX rats. BM-MSCs were 3 4 harvested by adherent cultures of BMCs as previously described¹. Briefly, BMCs were 5 harvested from femurs and tibias by flushing whole bone marrow with complete 6 α-modified Eagle's medium (α-MEM; GIBCO BRL, Palo Alto, CA, USA) containing 7 15% foetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). Bone marrow 8 cells were suspended as single cells and plated. Cells were grown in complete a-MEM 9 at 37°C and 5% CO₂. Adherent cells grown to confluency were defined as P0. Cells at 10 P2-4 were used for experiments. Surface antigens of BM-MSCs were detected by 11 fluorescence-activated cell sorting (Calibur; BD Bioscience, Franklin Lakes, NJ, USA) 12 using rat surface antigen-specific antibodies to CD90, CD44, CD31, HLA-DR, CD45, 13 CD11b, and CD34. Primary and secondary antibodies used for fluorescence-activated 14 cell sorting are listed in Supplementary Tables S1 and S2.

15

Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) of BM-MSCs

18 Total RNA was extracted using TRI Reagent (Molecular Research Center, Inc.,

1	Cincinnati, OH, USA), and 1 µg total RNA was reverse-transcribed into cDNA with
2	oligo-dT primers (Promega, Madison, WI, USA) using an Omniscript RT Kit (QIAGEN,
3	Hilden, Germany). Quantitative PCR was performed using an ABI PRISM 7500
4	Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) with Universal
5	SYBR PCR Master Mix (PerkinElmer, Covina, CA, USA). Thermal cycling conditions
6	were as follows: 40 cycles of a two-step amplification (95°C for 15 s and 60°C for 1
7	min). Data were analysed using the comparative Ct method ($\Delta\Delta$ CT method). Specific
8	primers used for rat Opg are shown in Supplementary Table S5. Rat Gapdh primers
9	acted as an internal standard for RNA integrity and quantity. All PCRs were performed
10	at least in duplicate.

12 Osteogenic differentiation of BM-MSCs

13 The *in vitro* differentiation potential of BM-MSCs was confirmed by 14 previously described methods². The multilineage differentiation potential of BM-MSCs 15 was identified by culturing cells. MSCs were plated at a concentration of 4.2×10^3 16 cells/cm² on 4-well slides with MSC culture medium and incubated at 37°C and 5% 17 CO₂. When cells were at 70% confluency 24–48 h later, the medium was replaced with 18 500 µL of osteogenic differentiation medium. The osteogenic differentiation medium

1	was replaced every 3 days. After BM-MSCs were cultured in osteogenic differentiation
2	medium for 21 days, they were stained with alkaline phosphatase and alizarin red.
3	
4	Adipogenic differentiation of BM-MSCs
5	The multilineage differentiation potential of BM-MSCs was identified by
6	culturing cells. BM-MSCs were plated at a concentration of 2.1 \times 10 4 cells/cm 2 on a
7	4-well slide with MSC culture medium and incubated at 37°C and 5% CO ₂ . When the
8	cells were 100% confluent 24–48 h later, the medium was replaced with 500 μL of
9	adipogenic differentiation medium. The adipogenic differentiation medium was
10	replaced every 3 days. After BM-MSCs were cultured in adipogenic differentiation
11	medium for 14 days, they were stained with Oil Red O.
12	
13	Immunofluorescence staining of BM-MSCs
14	Immunofluorescence staining of TGF-B1 in BM-MSCs was performed. Each
15	BM-MSC type [Sham-MSCs, OVX-MSCs-WJ(-), and OVX-MSCs-WJ(+); $n = 4$ per
16	group] was plated in an 8-well chamber slide and cultured for 72 h. WJS (of 0.25
17	mg/ml) was added to culture medium for 48 h prior to the fixation of cells. Following
18	incubation, BM-MSCs were fixed in 4% paraformaldehyde for 20 min.

1	Immunofluorescence staining of TGF- β 1 was performed by incubating BM-MSCs with
2	primary and secondary antibodies (Supplementary Tables S3 and S4). Nuclei were
3	stained with DAPI (Dojindo Laboratories). Stained sections were observed under a
4	confocal laser-scanning microscope.
5	
6	Scratch assay
7	The mobilisation ability of BM-MSCs was evaluated by measuring the area of
8	an open wound at 6 h and 12 h after scratching the cell monolayer. After plating 5×10^4
9	BM-MSCs [Sham-MSCs, OVX-MSCs-WJ(-), and OVX-MSCs-WJ(+); n = 4 per group]
10	in 35-mm dishes and culturing for 72 h, WJS was added (concentration of 0.25 mg/ml)
11	to culture medium of OVX-MSCs-WJ(+) for 48 h prior to commencing the scratch
12	assay. Crossed straight lines were added to the cell monolayer to create a "scratch" with
13	a P25 pipette tip, and debris was removed by extensive washing. Medium was replaced
14	with 1.5 mL of complete medium. Phase contrast images were taken immediately after
15	making scratches and wound closure was monitored for 12 h. Each experiment was
16	repeated at six times. Open area of the cell monolayer was measured using ImageJ
17	software ³ .

1 Chemotaxis assay

2	The migration assay was carried out using 12-well culture plates with cell
3	culture inserts containing membranes with 8-µm pores. Upper chambers were loaded
4	with 5 \times 10 4 of PKH-26–labelled BM-MSCs with 200 μl of $\alpha\text{-MEM}$ containing 15%
5	FBS and 1% P/S, while lower chambers were loaded with 1000 μl of $\alpha\text{-MEM}$
6	containing 15% FBS and 1% P/S. After 24 hours, the upper chamber medium was
7	changed to 200 μl of $\alpha\text{-MEM}$ containing 0.5% FBS, and the lower chamber was
8	changed to 1000 μl of $\alpha\text{-MEM}$ containing 0.5% FBS with or without 100 ng/ml of
9	SDF-1 (Peprotech, Inc., Rocky Hill, NJ, USA), 100 ng/ml of IL-1ß (BioLegend, Inc.
10	San Diego, USA), or 100 ng/ml of IL-6 (BioLegend). Following incubation for 24 h,
11	cells remaining in the upper chamber were removed with cotton swabs, and membranes
12	and lower chamber cells were fixed in 4% paraformaldehyde for 20 min. Cells that
13	migrated to the opposite side of the membrane were stained with DAPI. The number of
14	migrated cells per unit area was determined by counting three randomly selected fields
15	of the membrane with a confocal microscope, and the bottom of the cell culture plate
16	with light a microscope. Recombinant chemokines used for chemotaxis assay were
17	listed in Supplementary Table S6.

1 Distribution of donor BM-MSCs

2 Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) were labelled with a PKH26 Red Fluorescent Cell Linker Kit (Sigma-Aldrich) and administered to OVX rats 3 by tail vein injection 4 weeks after OVX. Rats were euthanised 1, 3, or 7 days after 4 5 BM-MSC injection, and tibias, lung, liver, and spleen were collected. Bone tissues were immersed in 4% paraformaldehyde for 2 days, and decalcified with 0.5 M 6 7 ethylenediaminetetraacetic acid (Wako, Osaka, Japan) for 30 days. Lung, liver, and spleen were fixed in 4% paraformaldehyde for 2 days. Frozen sections were stained 8 9 with DAPI (Dojindo Laboratories, Kumamoto, Japan) at 0.1 mg/mL. The distribution of 10 BM-MSCs expressing red fluorescence in each tissue was observed by confocal 11 laser-scanning microscopy (LSM 510; Carl Zeiss, Oberkochen, Germany). The number 12 of distributed to bone per unit area was determined by counting three randomly selected 13 fields of the view with a confocal microscope in 200 times magnification. The number 14 of distributed to lung per unit area was determined by counting five randomly selected fields of the view with a confocal microscope in 100 times magnification. 15

16

17 Differentiation and maturation of RAW264.7 cell-derived osteoclasts *in vitro*

18

Osteoclastogenesis of monocytes/macrophages was conducted by modifying

1	the method of Yonezawa et al. ¹ . The murine RAW264.7 monocyte/macrophage cell line
2	(ATCC, Manassas, VA, USA) was used as osteoclast precursors. Cells were grown to
3	subconfluence in a T75 standard flask with Dulbecco's Modified Eagle's Medium
4	(DMEM; Wako Pure Chemical, Osaka, Japan) supplemented with 10% heat-inactivated
5	FBS (Invitrogen, Frederick, MD, USA) and 1% penicillin-streptomycin-glutamine 100×
6	(1% P/S) at 37°C in a humidified atmosphere of 5% CO ₂ . Subsequently, RAW264.7
7	cells were transferred to 12-well culture plates and cultured in DMEM supplemented
8	with 15% heat-inactivated FBS and 1% PS at 37°C in a humidified atmosphere of 95%
9	air and 5% CO ₂ . After 24 h, the culture medium was changed to α -MEM (Wako Pure
10	Chemical) supplemented with 15% heat-inactivated FBS and 1% P/S. For
11	differentiation into mature osteoclasts, RAW264.7 cells (5.0×10^4 cells/well in 12-well
12	culture plates) were cultured for 72 h in the presence of RANKL (100 ng/mL) and/or
13	PD98059 (20 mM), a MAPK inhibitor that accelerates osteoclastogenesis. Cell
14	morphology and supernatant TRACP levels were evaluated.

16 Differentiation and maturation of mouse BMC-derived osteoclasts in vitro

Osteoclastogenesis of mouse BMCs was conducted by modifying the method
of Yonezawa et al.⁴. Briefly, mouse BMCs from 7-week-old C57BL/6 mice were used

1	as osteoclast precursors. Cells were grown to subconfluence in a T25 standard flask
2	with α -MEM supplemented with 10% FBS, 1% P/S, and 100 ng/mL recombinant mouse
3	M-CSF at 37°C in a humidified atmosphere of 5% CO ₂ . Subsequently, mouse BMCs
4	were transferred to 12-well culture plates and cultured with α -MEM supplemented with
5	10% FBS, 1% P/S, and 100 ng/mL M-CSF at 37°C in a humidified atmosphere of 95%
6	air and 5% CO ₂ . After 48 h, the culture medium was changed to α -MEM supplemented
7	with 15% FBS, 1% P/S, and 100 mg/mL M-CSF. For differentiation into mature
8	osteoclasts, mouse BMCs (6.0×10^5 cells/well in 12-well culture plates) were cultured
9	for 10 days in the presence of RANKL (100 ng/mL) with or without PD98059 (20 mM).
10	Cell morphology and supernatant TRACP levels were evaluated.
11	
12	Measurement of TRACP levels in culture supernatant of osteoclasts
13	Culture supernatants of osteoclasts were collected and stored at -80°C until use.
14	TRACP levels in culture supernatants were measured with a TRACP & ALP Assay Kit
15	(Takara Bio, Inc., Shiga, Japan) according to the manufacturer's instructions.
16	
17	Supplementary References

1	1	Javazon, E. H., Colter, D. C., Schwarz, E. J. & Prockop, D. J. Rat marrow
2		stromal cells are more sensitive to plating density and expand more rapidly from
3		single-cell-derived colonies than human marrow stromal cells. Stem Cells 19,
4		219-225, doi:10.1634/stemcells.19-3-219 (2001).
5	2	Romanov, Y. A., Svintsitskaya, V. A. & Smirnov, V. N. Searching for
6		alternative sources of postnatal human mesenchymal stem cells: candidate
7		MSC-like cells from umbilical cord. Stem Cells 21, 105-110,
8		doi:10.1634/stemcells.21-1-105 (2003).
9	3	Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25
10		years of image analysis. Nat Methods 9, 671-675 (2012).
11	4	Yonezawa, T. et al. Biselyngbyaside, isolated from marine cyanobacteria,
12		inhibits osteoclastogenesis and induces apoptosis in mature osteoclasts. Journal
13		of cellular biochemistry 113, 440-448, doi:10.1002/jcb.23213 (2012).
14		
15	Supp	olementary Figure Legends
16	Supp	elementary Figure S1. Abnormalities of bone tissues in OVX rats.
17	(a) R	epresentative micro-CT images of tibias at 4 and 8 weeks after Sham or OVX
18	opera	ation in rats. (b-e) Quantitative changes in trabecular parameters, including

1	trabecular bone volume expressed as b: percentage of total tissue volume (BV/TV), c:
2	trabecular thickness (Tb.Th), d: trabecular number (Tb.N), and e: trabecular separation
3	(Tb.Sp). * $P < 0.05$. Data are expressed as mean \pm SE of 4–5 animals.
4	
5	Supplementary Figure S2. Characterisation of Sham-MSCs, OVX-MSCs-WJ(-),
6	and OVX-MSCs-WJ(+).
7	(a) Immunophenotype expression of cell surface antigens analysed by flow cytometry in
8	Sham-MSCs (upper panels), OVX-MSCs-WJ(-) (middle panels), and
9	OVX-MSCs-WJ(+) (lower panels). (b) Phase contrast observations of Sham-MSCs (left
10	panel) and OVX-MSCs (right panel). Images were obtained from P0, P1, and P2 cells at
11	12 weeks after surgery. Bar: 100 μ m. (c) Osteogenic and adipogenic differentiation of
12	Sham-MSCs (left panel), OVX-MSCs-WJ(-) (middle panel), and OVX-MSCs-WJ(+)
13	(right panel). Images were obtained at 14 days after culture with osteogenic or
14	adipogenic differentiation medium. Bone matrices are stained blue using an alkaline
15	phosphatase (ALP) staining kit, and red by alizarin red staining kit. Fat droplets are
16	stained red with Oil red O staining. Bar: 100 µm.
17	

18 Supplementary Figure S3. WJS enhanced the mobilisation of OVX-MSCs.

1	(a) Chemotaxis assay. Phase contrast observations of BMCs mobilised into the bottom
2	of the lower chamber without any chemokines (upper panel), with SDF-1 (middle upper
3	panel), IL-1 β (middle lower panel), or IL-6 (lower panel). Images were obtained 24 h
4	after culture with SDF-1, IL-1 β , or IL-6. Bar: 500 μ m. SDF-1, stromal cell-derived
5	factor 1; IL-1 β , interleukin-1 beta; IL-6, interleukin-6. (b) Numbers of migrated
6	BM-MSCs in the bottom of lower chambers counted under a light microscope. Values
7	represent mean \pm SE of Sham-MSCs, OVX-MSCs-WJ(-), and OVX-MSCs-WJ(+). * <i>P</i> <
8	0.05. Data are expressed as mean \pm SE of three BM-MSC cultures.
9	
10	Supplementary Figure S4. Distribution of Sham-MSCs, OVX-MSCs, and
10 11	Supplementary Figure S4. Distribution of Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) in OVX rats.
10 11 12	Supplementary Figure S4. Distribution of Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) in OVX rats. Distribution of administered Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) in
10 11 12 13	Supplementary Figure S4. Distribution of Sham-MSCs, OVX-MSCs, andOVX-MSCs-WJ(+) in OVX rats.Distribution of administered Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) inOVX rats at days 1, 3, and 7. DAPI was used for counterstaining nuclei (blue). White
10 11 12 13 14	Supplementary Figure S4. Distribution of Sham-MSCs, OVX-MSCs, andOVX-MSCs-WJ(+) in OVX rats.Distribution of administered Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) inOVX rats at days 1, 3, and 7. DAPI was used for counterstaining nuclei (blue). Whitedotted line indicated the edge of trabeculae bone. (a) BM-MSCs were detected in bone
 10 11 12 13 14 15 	Supplementary Figure S4. Distribution of Sham-MSCs, OVX-MSCs, andOVX-MSCs-WJ(+) in OVX rats.Distribution of administered Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) inOVX rats at days 1, 3, and 7. DAPI was used for counterstaining nuclei (blue). Whitedotted line indicated the edge of trabeculae bone. (a) BM-MSCs were detected in boneusing the immunofluorescence marker PKH26 (red). Bar: 50 µm. (b) Numbers of
 10 11 12 13 14 15 16 	Supplementary Figure S4. Distribution of Sham-MSCs, OVX-MSCs, andOVX-MSCs-WJ(+) in OVX rats.Distribution of administered Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) inOVX rats at days 1, 3, and 7. DAPI was used for counterstaining nuclei (blue). Whitedotted line indicated the edge of trabeculae bone. (a) BM-MSCs were detected in boneusing the immunofluorescence marker PKH26 (red). Bar: 50 µm. (b) Numbers ofBM-MSCs detected in bone tissues. *P < 0.05. Values represent mean ± SE of
 10 11 12 13 14 15 16 17 	Supplementary Figure S4. Distribution of Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) in OVX rats. Distribution of administered Sham-MSCs, OVX-MSCs, and OVX-MSCs-WJ(+) in OVX rats at days 1, 3, and 7. DAPI was used for counterstaining nuclei (blue). White dotted line indicated the edge of trabeculae bone. (a) BM-MSCs were detected in bone using the immunofluorescence marker PKH26 (red). Bar: 50 µm. (b) Numbers of BM-MSCs detected in bone tissues. * <i>P</i> < 0.05. Values represent mean ± SE of Sham-MSCs rats, OVX-OVX-MSCs-WJ(-) rats, OVX-OVX-MSCs-WJ(+) rats, n = 4 in

1	the lung. Bar: 100 μ m. (d) Numbers of detected BM-MSCs counted under a light
2	microscope. Values represent mean \pm SE of Sham-MSCs, OVX-MSCs-WJ(-), and
3	OVX-MSCs-WJ(+). * $P < 0.05$. Data are expressed as mean \pm SE of three BM-MSC
4	cultures.
5	
6	Supplementary Figure S5. Differentiation of RAW264.7 cells into osteoclasts.
7	(a) Experimental protocol to induce macrophage-derived osteoclasts using RAW264.7
8	cells. (b) Phase contrast observations of RAW264.7 cells cultured without RANKL (left
9	panel), with RANKL (middle panel), and with RANKL and PD98059 (right panel).
10	Images were obtained 72 h after adding RANKL with or without PD98059 to the
11	culture medium. Bar: 500 μ m in upper panel, 100 μ m in lower panel. (c) TRACP levels
12	in the supernatant of RAW264.7 cell-derived osteoclasts. $*P < 0.05$. Data are expressed
13	as mean \pm SE of three experiments.
14	
15	Supplementary Figure S6. Differentiation of mouse BMCs into osteoclasts.
16	(a) Experimental protocol to induce macrophage-derived osteoclasts using BMCs from
17	mice. (b) Phase contrast observations of BMCs cultured without RANKL (left panel),
18	with RANKL (middle panel), and with RANKL and PD98059 (right panel). Images

1	were obtained 10 days after adding RANKL with or without PD98059 to the culture
2	medium. Bar: 500 μ m in upper panel, 100 μ m in lower panel. (c) TRACP levels in the
3	supernatant of BMC-derived osteoclasts. * $P < 0.05$. Data are expressed as mean \pm SE of
4	six experiments.
5	
6	Supplementary Table Legends and Captions
7	Supplementary Table S1. Primary antibodies used for fluorescence-activated cell
8	sorting analysis
9	Ms, mouse; Rt, rat; Hu, human.
10	
11	Supplementary Table S2. Secondary antibodies used for fluorescence-activated cell
12	sorting analysis.
13	Dnk, donkey.
14	
15	Supplementary Table S3. Primary antibodies used for immunofluorescence.
16	RANK, receptor activator of NF- κ B; TRACP, tartrate-resistant acid phosphatase; IL-1 β ,
17	interleukin-1 beta; IL-6, interleukin-6; TGF- β , transforming growth factor β 1; Ms,
18	mouse; Rt, rat; Hu, human.
19	
20	Supplementary Table S4. Secondary antibodies used for immunofluorescence.
21	Dnk, donkey.

2	Supplementary Table S5. Primer sequences used for quantitative RT-PCR of rat				
3	BM-MSCs.				
4	Opg, osteoprotegerin; Gapdh, glyceraldehyde 3-phosphate dehydrogenase.				
5					
6	Supplementary Table S6. Recombinant chemokines used for chemotaxis assay.				
7	SDF-1, stromal-cell derived factor-1; IL-1β, interleukin-1 beta; IL-6, interleukin-6; Rt,				
8	rat.				
9					
10	Supplementary Table S7. Primer sequences used for quantitative RT-PCR of				
11	RAW264.7 cell-derived osteoclasts and mouse bone marrow-derived osteoclasts.				
12	Nfatc1, nuclear factor of activated T cells; Cath-k, cathepsin K; Clc7, chloride channel				
13	7; Atp6i, ATPase, H ⁺ transporting, (vacuolar proton pump) member I; Dc-stamp,				
14	dendritic cell-specific transmembrane protein; Gapdh, glyceraldehyde 3-phosphate				
15	dehydrogenase.				
16					
17	Supplementary Tables				
18	Supplementary Table S1. Primary antibodies used for fluorescence-activated cell				
19	sorting analysis				
	Antibody Species Reactivity Manufacture				

Immunophenotype				
CD90(Thy1.1)	Ms-IgG1	Ms, Rt	BioLegend	
CD44	Ms-IgG1	Rt	BioLegend	
CD31	Ms-IgG1	Rt	AbD Serotec	
HLA-DR	Ms-IgG1	Rt	BioLegend	
CD45	Ms-IgG2a	Rt	BioLegend	
CD11b	Ms-IgG2a	Rt	BioLegend	
CD34	Rb	Ms, Rt, Hu	BioLegend	
Mouse IgG1		-	BD Bioscience	
Mouse IgG2a		-	BD Bioscience	
Rabbit IgG		-	BioLegend	

2 Supplementary Table S2. Secondary antibodies used for fluorescence-activated cell

3 sorting analysis

Antibody	Species	Conjugate	Manufacture
Immunopheno	otype		
Anti-mouse IgG	Dnk	FITC	Chemicon
Anti-rabbit IgG	Dnk	FITC	Chemicon

Antibody	Species	Reactivity	Manufacturer			
Immunofluoresc	Immunofluorescence					
RANK	Rt	Ms, Rt, Hu	Santa Cruz Biotechnology			
TRACP	Ms	Ms, Rt, Hu	BioLegend			
П 10	American	Mc Dt	Piol agond			
IL-IP	Hamster	1915, Kt	BioLegend			
IL-6	Goat	Ms, Rt	Santa Cruz Biotechnology			
TGF-β1	Rb	Ms, Rt, Hu, Pig	Abcam			

1 Supplementary Table S3. Primary antibodies used for immunofluorescence

2

3 Supplementary Table S4. Secondary antibodies used for immunofluorescence

Antibody	Species	Conjugate	Manufacturer
Immunofluorescenc	e		
Anti-mouse IgG	Dnk	Cy3	Chemicon
Anti-rabbit IgG	Dnk	Cy3	Jackson Laboratory
Anti-American	Goat	DyLight649	BioI egend
Hamster IgG		DyLight049	DioLegenu
Anti-Goat IgG	Dnk	Cy3	Merck Millipore

1 Supplementary Table S5. Primer sequences used for quantitative PCR of

2 BM-MSCs

Gene	Locus	Direction	Sequence
Opg	NM_012870	forward	5'- gccaacactgatggagcagat -3'
		reverse	5'- tcttcattcccaccaactgatg -3'
Gapdh	NM_017008	forward	5'- caaggatactgagagcaagaga -3'
_		reverse	5'- aggcccctcctgttgttat -3'

3

4 Supplementary Table S6. Recombinant chemokines used for chemotaxis assay

Recombinant	Reactivity	Manufacturer	
SDF-1a	Rt	Peprotech	
IL-1β	Rt	BioLegend	
IL-6	Rt	BioLegend	

5

6 Supplementary Table S7. Primer sequences used for quantitative RT-PCR of

7 RAW264.7 cell-derived osteoclasts and mouse bone marrow-derived osteoclasts

Gene	Locus	Direction	Sequence
Nfatc1	NM_1164111	forward	5'- cagtgtgaccgaagatacctgg-3'
		reverse	5'- tcgagacttgatagggacccc-3'

	Cath-k	NM_007802	forward	5'- aataceteeetetegateetaea-3'
			reverse	5'- tggttcttgactggagtaacgta-3'
	Clc7	NM_011930	forward	5'- gacaacagcgagaatcagctc-3'
			reverse	5'- ccaatgagggcacagataacc-3'
	Atp6i	NM_001167784.	forward	5'- attgccagctttcgggagac-3'
			reverse	5'- cggatcttctgtccgatctgc-3'
	Dc-stamp	NM_001289506	forward	5'- ctgtgtcctcccgctgaataa-3'
			reverse	5'- agccgatacagcagatagtcc-3'
	Gapdh	NM_01289726	forward	5'- tggccttccgtgttcctac-3'
			reverse	5'- gagttgctgttgaagtcgca-3'
1				

С

100

80

20

0

4

(mr) 40 40

b Bone volume fraction

Trabecular thickness

8

Time (week)

e Trabecular separation

а

□ Sham-MSCs
 ■ OVX-MSCs-WJ(-)
 ■ OVX-MSCs-WJ(+)

Day3

Day1

С

Time (days)

□ Sham-MSCs
■ OVX-MSCs-WJ(-)
■ OVX-MSCs-WJ(+)

Macrophage-derived osteoclast

b

b

Mouse BMC-derived osteoclast

