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ABSTRACT The protein kinase catalytic domain is one of the most abundant domains across all branches of life. Although
kinases share a common core function of phosphoryl-transfer, they also have wide functional diversity and play varied roles
in cell signaling networks, and for this reason are implicated in a number of human diseases. This functional diversity is primarily
achieved through sequence variation, and uncovering the sequence-function relationships for the kinase family is a major chal-
lenge. In this study we use a statistical inference technique inspired by statistical physics, which builds a coevolutionary ‘‘Potts’’
Hamiltonian model of sequence variation in a protein family. We show how this model has sufficient power to predict the prob-
ability of specific subsequences in the highly diverged kinase family, which we verify by comparing the model’s predictions with
experimental observations in the Uniprot database. We show that the pairwise (residue-residue) interaction terms of the statis-
tical model are necessary and sufficient to capture higher-than-pairwise mutation patterns of natural kinase sequences. We
observe that previously identified functional sets of residues have much stronger correlated interaction scores than are typical.
INTRODUCTION
About 2% of the human genome belongs to the protein
kinase family and over 105 different kinases have been
sequenced from many species (1). Protein kinases’ common
catalytic role in protein phosphorylation is carried out by a
conserved catalytic structural motif, but individual kinases
are specialized to phosphorylate particular substrates and
are bound by different regulatory partners as part of cell
signaling networks. Kinases are implicated in many human
diseases, and understanding how a particular kinase’s
sequence determines its individual function has clinical
applications. The ability to predict the sequence-dependent
effect of specific mutations is relevant for the treatment of
kinase-related cancers (2), and understanding the differ-
ences in functionality between kinases can aid in selective
drug design (3).

One approach to understanding the effects of particular
kinase sequence variations has been by structural analysis,
based on thousands of observed kinase crystal structures
and comparison of their sequences. Patterns of structural
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variation and conservation within and between protein
kinase subfamilies has led to the identification of various
functional motifs such as the HRD and DFG motifs neces-
sary for catalysis, networks of stabilizing interactions
formed in the kinase active catalytic state known as the
C-spine and R-spine, and the importance of the C and F
helices in acting as rigid foundations on which the catalytic
core rests (4–10). Two conformational states, the catalyti-
cally active ‘‘DFG-in’’ and the inactive ‘‘DFG-out’’ states
have been discovered to be important in controlling kinase
activation and regulation (11). An important goal of these
studies is to understand the sequence-dependent ligand-
binding properties of different kinases for therapeutic
purposes; however, ligand binding affinities are still difficult
to predict (12–15), and crystal structures only give a partial
view of kinase function.

Another way to extract information about function from
kinase sequence variation is to construct a statistical (Potts)
model from a multiple sequence alignment (MSA) of
sequences collected from many organisms. The idea of us-
ing sequence statistics to understand protein structure and
function has been motivated and justified by the observation
that strongly covarying positions in an MSA correspond
well to contacts in structure, a fact used for protein contact
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prediction with significant success (16–21). Using concepts
from statistical physics, this idea has evolved and led to the
Potts model of protein sequence variation, which is able to
capture the pairwise and higher-order mutational correlation
patterns, although the model is inferred only from pairwise
interaction terms. The Potts model has wider potential appli-
cations beyond protein family contact prediction, and can be
used to predict sequence-specific properties (22–24). Statis-
tical energies computed using the Potts model can be used to
predict the relative probability of any sequence in the fam-
ily, including sequences not seen in the data set, and can be
used to predict the effect of mutations on the probability of a
sequence (25–28). The probability is often interpreted as a
fitness. The sequence-space landscapes predicted by the
Potts model have been found to correlate to experimentally
measured fitness landscapes and free energy landscapes
(24,29–32). For example, in human immunodeficiency virus
(HIV) sequences, Potts statistical energies correlate well
with in vitro fitness measurements for tens of sequence
variants with multiple mutations relative to the well-defined
wild-type sequence (26,33), and Potts models inferred on
one HIV sequence database predict sequence frequencies
in an independent database (25,34). Similarly, the Potts
probability is found to correlate well with measurements
of the free energy of folding of proteins in a family
(24,29,35–37). This connection between Potts probabilities
and fitnesses suggests that the Potts model can be used to
predict some features of the relationship between protein
sequence and function.

The physical interpretation of the Potts model parameters
and the capabilities and limitations of the Potts model are
still being explored. Potts model predictions of the effect
of mutations in particular sequences have often been limited
to a relatively small number of mutations at a time, typically
single and double mutants, or in systems with high sequence
conservation (29,33). Other studies have shown that higher-
than-pairwise variations are well described by Potts models
in a number of biological systems; however, these tests were
limited to systems with very small, explicitly enumerable
state spaces (38–40). Modeling the sequence landscape of
the highly diverged protein kinase family is a challenge
because kinase sequences have an average of only 30%
identity to each other, vary at many positions at once, and
cover a vast span of sequence space. In this work, we focus
on the model’s ability to reconstruct kinase sequence-spe-
cific statistics, particularly subsequence probabilities, and
illustrate how highly correlated patterns can be associated
with functional sets of positions.

We use a previously described Monte Carlo inference
method designed to obtain the Potts model parameters for
diverse protein families such as the protein kinase family
(22). We demonstrate the ability of the inferred model to
describe a large sequence landscape by showing that it cap-
tures the observed higher-order marginals (subsequence
probabilities) of the original MSA, which are not directly
22 Biophysical Journal 114, 21–31, January 9, 2018
fitted. Using in silico tests, we show that when the MSA
contains a few thousand effective sequences, the inferred
statistical energies of the model are not sensitive to the
size of the MSA. Through comparison to site-independent
(uncorrelated) models of sequence variation, we show the
that epistatic effects of correlations are essential to accu-
rately predict higher-order marginals, i.e., subsequences
that vary at many positions simultaneously. We show how
well the statistical energies of the Potts model for the kinase
family reflects the frequency of subsequences observed in
the Uniprot database and in the much larger data set con-
structed in silico. We then use the subsequence statistics
predicted by the Potts model to illustrate how highly corre-
lated patterns can be associated with functional motifs, and
to identify motifs within the kinase sequence with strong
correlated signals. We illustrate how functional units of
kinase family proteins are more conserved and exhibit
strong epistatic effects.
Potts covariation analysis

Potts covariation analysis models the distribution PðSÞ for
the probability of observing a sequence in an MSA of a
protein family, incorporating pairwise correlated effects to
parametrize the model. PðSÞ has been interpreted as a
fitness, and sometimes as the probability of the protein’s
native fold in thermodynamic equilibrium (24,29,41–43).
Because of the enormous size of sequence space (roughly
estimated to be 10140 sequences for the kinase family in
Supporting Material), this distribution cannot be directly
measured from an MSA of only a few thousand sequences.
An alternative is to solve for the maximum entropy distribu-
tion, subject to the constraints that the univariate and bivar-
iate marginals f ijab of sequences generated from the model
(for residues a; b at positions i; j) match those of the MSA
data set, which can be accurately measured. The maximum
entropy distribution is found to be PðSÞfe�EðSÞ for the Potts
Hamiltonian EðSÞ ¼ PL

i h
i
Si
þPL

i < jJ
ij
SiSj

, which contains
pairwise ‘‘coupling’’ terms J and single-site ‘‘fields’’ h,
which may be solved for by maximum likelihood inference.
One could in principle build a Hamiltonian that includes
higher-order terms by fitting triplet correlations in the
data, but not only is there insufficient data to build such a
model, it does not appear to be necessary as we discuss
below.

Given a parametrized model, the Hamiltonian EðSÞ
defines a statistical energy landscape over sequence space,
computable for any sequence such that lower values are
more favorable, and the coupling parameters JijSiSj give infor-
mation about the statistical interaction between two residues
in a sequence. The JijSiSj have been related to folding or bind-
ing free energy contributions (43,44). From PðSÞ we can
estimate the probability of any sequence, and by similar
computation we may also predict the probability of subse-
quences in particular (sub)sets of positions (not necessarily
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contiguous) of the MSA. The Potts model allows us to
explore aspects of the statistics that we do not have the
power to measure from the raw data because of sample
size. For instance, given a data set of N sequences, it is
not possible to directly measure the probability of a (sub)
sequence that appears in nature with frequency of roughly
1=N or less. This sampling noise (or ‘‘shot noise’’) issue is
particularly a problem for longer sets of positions and for
the full-length sequences because the probability of individ-
ual subsequences decreases rapidly with increasing number
of positions due to the increased size of the sequence space.
The correlated nature of the model is also important. The
collective effect of the pairwise terms J mean that the statis-
tics of the Potts model can be significantly different from a
site-independent or uncorrelated model that ignores corre-
lated effects, particularly for longer sets of positions where
more pairwise terms come into play. We will compare the
Potts model to the maximum entropy independent model
fitted to the univariate marginals of the data, which is
exactly solvable and takes a ‘‘log odds’’ form where
hia ¼ �log f ia and J ¼ 0.

Inference of the Potts model parameters is nontrivial. The
Potts landscape has primarily been used for the purpose of
protein structure contact prediction, and the approximations
and algorithms developed to solve for the parameters J have
mostly been tailored for this application (19,36,45–49). For
the purpose of understanding kinase sequence variation, the
distribution PðSÞ itself is more central, and more accurate
inference techniques are necessary to model this distribution
as illustrated in a recent benchmark (43). For this reason, we
use a Monte Carlo inference technique that makes fewer
approximations (22).
METHODS

In this study, we focus on the statistical properties of a Potts model for the

kinase family. We use a Potts model and kinase sequence data set that we

have previously prepared using methods of parameter inference, MSA pre-

processing, alphabet reduction, interaction scoring, and Protein Data Bank

(PDB) contact analysis described in (22). These methods are recapitulated

in additional detail for this study below. In the current study, we additionally

develop methods to analyze the subsequence statistics of this Potts model.
Potts model inference

We use Markov Chain Monte Carlo (MCMC) methods to perform the Potts

parameter inference, a method developed in previous studies (33,36,50).

Our implementation is based on the one described in reference (33).

This method makes few analytic approximations such as the weak-

coupling approximation used in mean-field methods (49), approximate

likelihood functions (19), or truncated cluster entropies (51), at the expense

of increased computation time. We compare our results to mean-field

methods below. In the MCMC method, we generate sequences from the

model according to the equilibrium distribution PðSÞ by MCMC, given a

trial set of couplings J, and update the parameters J based on the discrep-

ancy between the model and data set bivariate marginals. Our graphic pro-

cessing unit-based implementation decreases the computation time, and

also allows efficient generation and analysis of the large simulated
MSAs used in this study. A description of the MCMC algorithm is pro-

vided in the Supporting Material of (22). Convergence of the parameters

is shown in Fig. S8.
MSA preprocessing

We obtain kinase sequences using HHblits (52) to search the Uniprot

database starting from the Pfam kinase family seed (PF00069). We remove

any sequences with gaps in the ‘‘HRD’’ or ‘‘DFG’’ triplets, sequences

missing the aspartic acid required for Mg2þ binding, more than 10 gaps,

more than 40 inserts, or with invalid/unknown amino acids, leaving

127,113 sequences of length 241. These sequences are phylogenetically

related and sampled with experimental biases, and therefore do not repre-

sent independent samples from the distribution PðSÞ. We correct for this

as described in (49) by downweighting similar sequences. We assign a

weight w ¼ 1=n to each sequence, where n is the number of sequences in

the alignment with > 60% sequence identity to it. This cutoff was chosen

based on analysis of the distribution of pairwise sequence similarities in

the kinase data set (see Supporting Material). This leaves an effective num-

ber of sequences Neff ¼
P

w of 8149. We then trim the first 5 and last 61

positions from the alignment that contain variable secondary structures,

leaving 175 positions.
Alphabet reduction

We reduce the alphabet size q from 21 residue types (20 amino acids plus

gap) to 8 in a way that preserves the correlation structure of the MSA,

unlike amino acid reduction schemes based on physiochemical properties

(53,54). For each position (processed in random order) we merge the pair

of letters that gives the best least-squares fit between the

�
L
2

�
Mutual

Information (MI) scores across all position pairs of the MSA in the eight-

letter and 21-letter alphabets. MI is a measure of correlation strength

between two MSA columns i; j, given by MIij ¼ Pq
ab f

ij
ab log f

ij
ab=f

i
a f

j
b

(55). This merging is repeated until all positions have been reduced to eight

letters. In practice, this procedure often first merges the very low-frequency

residue types at a position into a single ‘‘mutant’’ residue. After computing

bivariate marginals from the weighted eight-letter sequence set, we add a

small pseudocount of roughly 1=N as a finite size correction.

Alphabet reduction has the benefit of eliminating many small marginals

(rare residue types) from the system and thus decreases the computational

cost of inference, which scales as q2. For the kinase MSA, we find that

reduction to eight letters is a suitable compromise between reducing the

problem size and preserving the sequence correlations (Fig. S1 B), and

captures almost all the sequence variation; kinase sequences in our data

set have 27% average pairwise identity with 21 letters but still only 31%

identity after reduction to eight (Fig. S1 A). Further justifying this choice,

the mean effective number of amino acids at each position of our raw data

set is 8.9, computed by exponentiating the site entropy (see Supporting

Material). The Pearson correlation between the 21-letter and eight-letter

MI scores is 0.97.
Interaction score: weighted Frobenius norm

A number of different methods have been suggested for obtaining a position

pair interaction score from the Potts model parameters, including the

‘‘Direct information’’ (45), Frobenius norm (19), and average product

corrected Frobenius norm (56). To control and reduce the contribution of

marginals with high sampling error, we score interactions using a weighted

Frobenius norm computed as Iij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

abðwij
abJ

ij
abÞ

2
q

where wij
ab > 0 are

tunable weights. In the case where the weights wij
ab ¼ 1, this reproduces

the unweighted Frobenius norm calculation. Both the Frobenius norm
Biophysical Journal 114, 21–31, January 9, 2018 23
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and weighted Frobenius norm depend on the choice of ‘‘gauge’’ of the

model, referring to the fact that the Potts model described above with�
L
2

�
q2 couplings contains superfluous parameters, such that compensa-

tory transformations of the Jijab parameters can leave the distribution PðSÞ
unchanged. In fact, there are only

�
L
2

�
ðq� 1Þ2 þ Lðq� 1Þ independent

parameters, fitted based on an equal number of independent marginals.

These gauge transformations have been described in other publications

(45,49,51). Typically, the Frobenius norm is computed in the ‘‘zero-

mean’’ gauge, which minimizes the Frobenius norm and guarantees that

uncorrelated positions have an interaction score of 0. For the weighted

Frobenius norm, we instead transform the model to a gauge that satisfies

the gauge constraint
P

aw
ij
abJ

ij
ab ¼ 0, which similarly minimizes the

weighted norm. To downweight the influence of couplings corresponding

to infrequently observed mutant pairs that have high sampling error, we

heuristically choose wij
ab ¼ f ijab, which gives good correspondence between

the interaction score and observed contacts in crystal structures (see Fig. S5;

Supporting Material).
PDB contact frequency analysis

To measure contact frequencies in the kinase DFG-out and DFG-in confor-

mational states, we obtain 2896 kinase structures from the PDB classified

into the DFG-in and DFG-out state collected as described in a previous

publication (22) and aligned them to our kinase MSA. A contact is defined

as a nearest heavy-atom distance between two residues of less than 6 Å. See

reference (22) for further details. When compiling statistics of the residue

identities in the sequences of the PDB data set, the sequences are weighted

to account for similarity at a 10% similarity threshold after applying the

method described above for MSA preprocessing.
In silico sequence data set

We generate our main in silico data set by sampling from the kinase

Potts Hamiltonian by MCMC. To roughly simulate the effect of the phylo-

genetic corrections, we take sequence samples after only a short interval of

175 MCMC steps, giving a nonindependent set of sequences. We then apply

the phylogenetic filter at 40% identity, giving 9990 effective sequences.

We infer a new in silico set of Potts model parameters using this in silico

data set as input, which may differ from the original kinase model due to

the effects of finite sampling, phylogeny, and other potential sources of

error.
Estimating subsequence frequencies

To test the Potts model’s ability to describe the probability of variations

over many positions, we need to estimate the frequency of subsequences

(higher-order marginals) predicted by the model. We use two methods to

do this. For shorter sets of positions with L%10, we generate a large

in silico MSA of 4� 106 sequences by Monte Carlo sampling of the kinase

Potts Hamiltonian and simply count the subsequence frequencies. For

longer sets of positions, this method is insufficient because the probability

of generating a particular subsequence falls far below 1=106. Instead, we

use a reweighting procedure that allows us to compute relative subsequence

frequencies from a generated in silico MSA even if the subsequence does

not appear in it. The procedure is described next.

Dividing the MSA into a set of positions whose subsequence probabil-

ities we wish to estimate and a remainder set of ‘‘background’’ positions,

the equilibrium probability of a subsequence A is given by fA ¼ P
bp

A
b,

where pAb is the Potts probability of a sequence with background b and sub-

sequence A. Since pAb ¼ e�EA
b =Z and pBb ¼ e�EB

b =Z for subsequence B at the
24 Biophysical Journal 114, 21–31, January 9, 2018
same positions, we can also write fA ¼ P
bp

B
b e

EB
b�EA

b . It follows that given a

large enough equilibrium sample of sequences fSg, we can approximate

the frequency of subsequence A as fAf
P

Se
ES�EA/S , where ES is the Potts

energy of sequence S and EA/S is the energy after substituting subse-

quence A, up to an unknown normalization constant. The ratio of subse-

quences frequencies, e.g., fA=fB, can then be unambiguously obtained as

the unknown normalization factor cancels. This approximation becomes

exact in the limit of large in silico MSAs, and should be valid as long as

the distributions of sampled backgrounds for each subsequence, with the

subsequence held fixed, would overlap significantly with each other. Using

an in silico MSA of size 4� 106, we confirm that this approximation is ac-

curate, first for shorter subsequences tested for lengths 2–10 by comparing

the frequency predicted by this method to the counted frequency in the raw

MSA, and second for longer subsequences of length L� 8 to L (i.e., those

with short backgrounds), by comparing to the exact frequencies computed

by enumerating the backgrounds b and summing Potts probabilities as

fAf
P

be
�EA

b .
RESULTS AND DISCUSSION

We infer a model for a data set of N ¼ 8149 effective
kinase sequences of length 175, and quantify the quality
of fit through the sum of squared residuals (SSR) of the
bivariate marginals. Due to the finite sample size, there is
error in each measured bivariate marginal f around its
true (unknown) value, and due to this error we estimate
an expected SSR of 1.69 between the data set marginals
and the (unknown) true marginals. This estimate is obtained
by summing over the expected binomial variances of each
bivariate marginal of f ð1� f Þ=N (approximating the
observed bivariate marginals as independent), and we also
confirm this by generating MSAs of size 8149 from the
inferred model and comparing these MSA’s SSR relative
to the model’s marginals. The SSR between the inferred
Potts model’s marginals and the observed MSA’s marginals
is close to 1.69, which suggests that the inferred model
approximates the ‘‘true’’ bivariate marginals as well as
finite sampling effects allow. In contrast, the SSR of 36.4
between the independent model and the data set is much
larger. This shows that the independent model must have
significant error in addition to finite sampling error, and
demonstrates the importance of modeling correlated
effects.
Probability distributions of kinase subsequences

Although the Potts model is fitted to the bivariate marginals
of a data set of N � 104 sequences, it is able to capture
higher-order marginals of the data set involving simulta-
neous variation at many positions. To test this, we would
ideally directly compare predicted higher-order marginals
(equivalent to subsequence probabilities) to the correspond-
ing frequency observed in an MSA. However, the ‘‘shot
noise’’ effect makes this impossible for long sequences, as
the probability of seeing an individual kinase sequence of
length 175 is always many orders of magnitude smaller
than 1=N (the smallest observable frequency). We may
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nevertheless verify the Potts model predictions by exam-
ining shorter sets of positions whose MSA statistics can still
be measured with reasonable accuracy given the sample size
of the data set, but long enough that they encompass a large
sequence space. To quantify model error for a set of posi-
tions, we measure the Pearson correlation r20 between the
frequency of the top 20 subsequences most frequently
observed at those positions in the kinase family MSA to
the probability predicted by the Potts model. We estimate
the Potts probability of a subsequence from a generated
MSA of 4� 106 sequences as described in the Methods.
We use the top 20 subsequences for each set of positions
in this comparison because the remaining rarer subse-
quences have high sampling error.

For sets of positions up to about length 10 for which
there are sufficient statistics to test the model, the Potts
model correctly predicts the observed frequencies and the
independent model performs very poorly. In Fig. 1 A we
illustrate subsequence frequencies for a specific set of seven
positions associated with the DFG-in versus DFG-out
conformational transition, described in more detail in
another section. The r20 score for this set is very high
(0.94), which means that the predicted probabilities of the
subsequences (seventh-order marginals) agree very well
with the corresponding frequencies observed in the data
set MSA. In contrast, there is essentially no r20 correlation
with the independent model.

We verify this more generally by choosing 1000 random
sets of positions of length 2–10 from the 175 positions of
the full sequence, and compute r20, as shown in Fig. 1 B.
We also compute the expected r20 due to finite sampling
alone, by comparing subsequence frequencies in a synthetic
MSA of size 8149 generated by the Potts model to those
predicted by a second Potts model fitted to this synthetic
MSA, estimated from a sample of 4� 106 sequences,
shown as a dashed line. The Potts model r20 correlation
decreases for increasing subsequence length, but it closely
follows the expected r20 due to finite sampling, which
shows that this decrease reflects the increasing statistical
error in the finite sample data set observed marginals rather
than increasing error in the model. Furthermore, the r20
between the Potts model and the data set is entirely
accounted for by the finite sample size of the data. If third-
or higher-order terms affected the subsequence frequency
distributions for the lengths we tested, on average, this
could manifest as additional error in the model past that
we observe due to the finite sample size of the reference
data set. For instance, in Fig. 1 B one analogously sees
how the lack of second-order terms in the independent
model manifests as additional error of this model relative
to the finite sample estimate. The absence of such addi-
tional error in the Potts model estimates suggests that
higher-than-pairwise terms do not play a significant role
here. This is a striking result. We note, however, that
absence of evidence is not necessarily evidence of absence:
It remains possible that a large number of weaker higher-or-
der interaction terms have a small effect for subsequences
with L< 10, but a greater effect for larger L.

Nevertheless, these observations support an interpretation
that the collective effects of the pairwise terms of the Potts
model are necessary and also sufficient to predict higher-or-
der statistics (marginals) of the data set. The fact that the
Potts model captures the higher-order marginals of the
data set significantly beyond the pair marginals (up to
FIGURE 1 Subsequence frequency predictions.

(A) Predicted subsequence frequencies for a set of

seven positions known to be important for kinase

activity, compared to the data set frequencies.

The Potts distribution (top) models the observed

distribution well, in contrast to the independent

model (bottom). (B) Average correlation between

observed and predicted frequencies for the top 20

subsequences for large samples of subsequences

of varying length, for observed subsequence fre-

quencies with the Potts model (blue), and with

the independent model (red, dotted). Circles show

the means, and error bars show the range of first

to third quartile values (25–75% of sets of posi-

tions). The dashed line (black) is an estimate of

the expected correlation due only to finite sam-

pling, computed by comparing the subsequence

frequencies of a finite synthetic data set MSA of

size 8149 to the frequencies of a large MSA of

4� 106 sequences generated from a Potts model

fitted to the synthetic MSA of size 8149. Both the

trend and range of the expected correlations due

to the effects of the sample size (8149) are consis-

tent with the correlation between the observed

frequencies and those predicted by the Potts model.

To see this figure in color, go online.
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10th order, see Fig. 4) which it fits directly supports its use
in predicting properties of the sequence space landscape.
In silico tests: shot noise and importance of
pairwise terms

To further demonstrate the ability of the model to describe
large sequence spaces for longer sets of positions with
L> 10, we perform in silico tests to show that the statistical
energies of sequences are not strongly affected by finite
sampling effects given a sequence sample size of �104.
For longer sequence lengths it is conceivable that the effects
of sampling noise in the data or inference errors become
more pronounced, as the number of pairwise terms J used
in the computation of statistical energy grows quadratically
in L. To test this, we generate an in silico data set MSA con-
sisting of 9990 effective sequences generated from the orig-
inal Potts model as described in the Methods, to which we fit
a new in silico Potts model, and then compare the two
models. The in silico data set represents a finite resampling
process that scrambles small bivariate marginals that have
large relative error, and serves to demonstrate that the
inferred model is not sensitive to their precise values.

We first examine subsequence statistics of longer position
sets. In sets longer than length 10, the subsequence fre-
quencies become minute and cannot be measured even by
generating simulated MSAs of up to �106 sequences, but
instead we are able to compute their relative frequencies
using an algorithm described in the Methods. We compute
these frequencies using both the original Potts model param-
eterized on the kinase family MSA and the in silico Potts
model, and take the logarithm, giving an effective statistical
energy of each subsequence for both models. We find that
for subsequences from length 4–175, the two Potts models
agree with an average correlation of 0.9 in statistical energy
(Fig. S2). The independent model, in contrast, predicts sta-
tistical energies for short subsequences of length 4 with
similar correlation, but as position set length increases its
power drops dramatically, and for sequences of length 128
it has no predictive power ðr ¼ 0:08Þ.
26 Biophysical Journal 114, 21–31, January 9, 2018
The importance of correlated effects is most pronounced
for full kinase sequences varying over all 175 positions. In
Fig. 2 A we compare the statistical energies of the 127,113
kinase family sequences of our unweighted data set
computed using the in silico Potts model with those
computed using the original Potts model (the ‘‘reference
energy’’), finding a Pearson correlation of r ¼ 0:92. Most
of the sequences in this plot are highly dissimilar from
the 9990 effective in silico sequences used to parametrize
the in silico model. On average, a sequence in the
in silico data set has only 52% sequence identity to its
most similar sequence in the unweighted kinase data set,
and 31% similarity on average to the whole data set,
demonstrating the Pott model’s ability to model variation
far in sequence space from the sequences it is parametrized
with. In contrast, the independent model is unable to predict
statistical energies, showing no correlation ðr ¼ 0:05Þ
between its predictions and the original statistical energy
values (Fig. 2 B). Most dramatically, sequences predicted
to be lowest probability (high statistical energy) in the inde-
pendent model include some of the highest probability (low
statistical energy) sequences predicted by the Potts model.
These are sequences with multiple rare mutations that the
independent model necessarily assigns a low probability,
but which the Potts model predicts are very favorably
coupled. These results strongly support the importance of
the correlated terms and show that they become necessary
for predicting statistics of full sequences with many
mutations.

This test does not probe whether triplet and higher-order
terms in the Hamiltonian are needed to predict full sequence
probabilities because the in silico data set MSA is generated
from a pairwise model. However, the lack of a need to
parametrize higher-order terms in the Hamiltonian is justi-
fied by the results of the previous section for L< 10. The
in silico tests do show that, given such a pairwise model,
the statistical energy predictions for sequences with
L> 10, for which sampling error is more significant, are
robust given an MSA of thousands of sequences, and the
independent model is grossly inadequate.
FIGURE 2 Statistical energies computed for ki-

nase sequences taken from Uniprot. (A) Statistical

energies computed using the original Potts model

compared to those computed using a Potts model

refitted to a finite size in silico sample of 9990

effective sequences generated from the first model,

and (B) computed using the original Potts model

compared to the those computed using an indepen-

dent model fit to the in silico sequences. Lower

energies are more favorable. The darkness of a

plotted point reflects the log of the number of se-

quences at that point, and most sequences are

concentrated near the center of the distribution.
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Although we have focused on the kinase family, we
expect these results generalize to other protein families.
We have also analyzed the trypsin and photoactive yellow
protein families using the same methods as for the kinase
family, and obtain similar results (see Fig. S4). We also
analyze the kinase in silico data set using the more approx-
imate mean-field methods for parameter inference. We find
that the correlation between the energies computed with this
model and those computed with the original model is 0.7,
compared with 0.92 found by MCMC (Fig. S7, compare
to Fig. 2 A).
Identifying highly correlated sets of mutations
and functional motifs

Statistical energies calculated from the Potts model can be
used to investigate kinase function, and allow us to probe
statistics not measurable from the data alone because the
finite size of the MSA prevents direct measurement of the
frequencies of subsequences or full sequences. As an
example, we examine subsequence statistics of particular
kinase position sets, and investigate how functional sets of
positions (motifs) have strong correlated interactions
contributing to their statistical energy, and can be identified
because their marginals are more accurately predicted by
the Potts model than by the independent model as measured
by the r20 scores.

To use the r20 scores in this way, it is useful to understand
that r20 scores for a particular position set, in either the
independent model or the Potts model, can be lower (reflect-
ing poorer model-data correspondence) due to two different
effects. First, due to inaccuracy of the model itself (i.e., due
to ignoring correlations), and second, due to sampling error
(shot noise) in the data set used as the benchmark for the
model predictions, due the finite size of the data MSA.

The degree of model inaccuracy depends on the nature of
the correlated interactions within the set of positions. If the
‘‘true’’ Hamiltonian describing the MSA involves higher-or-
der terms than those included in the model (e.g., third-order
terms) this will lower the r20 score for the Potts model,
particularly for sets of positions in which the higher-order
interactions contribute significantly to the statistics. At least
for L< 10, our results above suggest that these terms are not
important. The independent model does not include second-
order terms, so we expect it to perform more poorly for
motifs that have functional constraints and therefore corre-
lation is expected to be important. We expect highly corre-
lated (potentially functional) sets of positions to have higher
r20 score with the Potts model than with the independent
model.

Data set sampling error, on the other hand, will often be
smaller in functional motifs because they have greater con-
servation. The sampling error for a subsequence of
frequency f can be modeled as the binomial distribution
SD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1� f Þ=Np

for MSA size N. For small f, the relative
error in a statistical energy (obtained by dividing by f) is
approximately

ffiffiffiffiffiffiffiffiffiffiffi
1=Nf

p
, meaning that higher-frequency

subsequences have lower relative statistical error. Highly
conserved sets of positions, whose statistics are dominated
by a small number of high-frequency subsequences, will
therefore have lower sampling error as measured by r20.
We expect more highly conserved sets of positions to have
higher r20 scores with both the Potts model and the indepen-
dent model.

These observations suggest that we can identify strongly
correlated motifs by comparing the r20 statistics using the
Potts model with the corresponding results for the indepen-
dent model. A high r20 score for the Potts model and a low
score for the independent model is a sign that the set of
positions is more conserved and more correlated than
typical, suggesting that it may be an important functional
motif.

Previously identified functional set of positions has high
correlation

We first examine a motif of length 7 formed from a set po-
sitions previously identified in the literature to control ki-
nase function by structure-based analysis (11), illustrated
in Fig. 1 A. Its Potts r20 ¼ 0:94 score is much higher than
the typical score for sequences of the same length
(r20 ¼ 0:65, see Fig. 1 B), yet the independent model’s
r20 ¼ 0:02 is much lower than is typical ðr20 ¼ 0:18Þ. These
are the positions 24, 42, 67, 112, 113, 115, and 127 in our
alignment, which correspond to PDB residue indices K72,
L95, M120, L167, K168, E170, and V182 for the protein
kinase A PDB: 2CPK (57), as tabulated in Tables S1 and
S2. These seven residues are highlighted in the kinase struc-
ture in Fig. 3 A. Residues 112, 113, 115, and 127 form a
small subgroup anchoring the catalytic loop, and 24 (known
as the b-3 Lysine), 42, and 67 (the gatekeeper residue) form
a group on the opposite side of the DFG motif. This example
motif demonstrates how sets of positions identified to be
important structurally are also found by examining the Potts
sequence statistics, and both conservation and correlation
are important in the statistics of functional motifs.

The Potts model also gives us insights into the important
interactions among these residues. The high Potts interac-
tion scores (see Methods) between pairs of these residues
suggest that position pairs 112–127 and 113–115 interact
strongly, and that the gatekeeper (67) and position 42 on
the a-C helix also have a moderate-to-strong interaction.
Position 112 is an important residue known to anchor the
N-terminal of the catalytic loop to the F-helix (11), whereas
position 127 is in the b-8 loop at the N-terminal of the acti-
vation loop. The strong Potts interaction score between 112
and 127 suggests a, to our knowledge, new interpretation
that the start of the activation loop is indirectly anchored
to the F-helix through the intermediary residue 112, thus sta-
bilizing the activation loop. Positions 113 and 115 are
known to be involved in catalysis and substrate binding,
Biophysical Journal 114, 21–31, January 9, 2018 27



FIGURE 3 (A) Seven positions (red) identified

as important for kinase function in previous litera-

ture based on structural analysis shown in crystal

structure (PDB: 2CPK), which we identify to be a

highly correlated motif. The C-lobe (white) and

N-lobe (light green) are shown with the A-loop in

blue, the DFG motif and b-7-8 loops in cyan, cata-

lytic loop in yellow, and the a-C helix in orange.

The seven positions are shown in red with their

alignment index, (B) six positions in the activation

loop identified to form a correlated motif (red), and

other colors as in (A) (PDB: 2YAC, in the DFG-in

state). Residue numbers correspond to positions in

our alignment, and map to PDB residue indices as

listed in Tables S1 and S2. To see this figure in co-

lor, go online.

FIGURE 4 Observed and predicted marginals for a set of six positions in

the activation loop. Top: Potts model predictions. Bottom: Independent

model predictions. The slightly negative correlation coefficient means

that the independent model predicts a low frequency for some of the

most frequent subsequences observed in the data, an effect already noted

in the discussion of Fig. 2 B.
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respectively (11). The predicted interaction between the
gatekeeper (67) and position 42, a residue in the a-C helix
and part of what is called the ‘‘hydrophobic spine,’’ supports
previous results suggesting that the gatekeeper can stabilize
this spine (58) and anchor the a-C helix, whose positioning
is important for catalysis. The Potts model recapitulates
previously identified interactions between important resi-
dues, but also suggests, to our knowledge, new interactions
among them.

Correlated motif within the activation loop

We next investigate functionality of the activation loop. It is
well known that the activation loop conformation consisting
of �23 residues is important in controlling kinase activation
and signaling (22,56). Phosphorylation of residues in the
activation loop causes kinase activation in vivo. The activa-
tion loop has different conformations in different functional
states (e.g., active, src-like inactive, and DFG-out inactive)
and the residues are intricately coupled (Fig. 3 B). In the
active state, this loop becomes more structured and stabi-
lizes the catalytic residues in preparation for catalysis, and
forms more extensive contacts with other parts of the
protein. An important catalytically inactive state is known
as DFG-out, in which the activation loop becomes more
flexible and frequently cannot be resolved in DFG-out crys-
tal structures, and forms more intraloop contacts and fewer
contacts with the rest of the protein. This conformation has
clinical significance because certain inhibitors stabilize the
DFG-out state, rendering the kinase inactive.

To investigate networks of interactions within the activa-
tion loop that are likely to contribute to kinase function, we
searched for sets of positions within the loop with the largest
differences in r20 between the Potts and independent
models. These correspond to motifs that are both more
28 Biophysical Journal 114, 21–31, January 9, 2018
conserved and more correlated than observed on average
for subsequences of that length, leading us to a motif of
six positions, with statistics shown in Fig. 4 and structure
shown in Fig. 3 B. To understand the possible functional sig-
nificance of these residues, we investigated whether they are
related to the DFG-in and DFG-out conformational transi-
tion, by comparing the interaction scores for pairs of these
residues to contact frequencies in the DFG-in and DFG-
out conformations measured from a set of 4129 PDB struc-
tures, shown in Fig. 5. We find that out of the 15 possible
pair interactions, six of these have high interaction scores



FIGURE 5 Interaction map and Contact map focusing on the activation loop region. (A) Potts Interaction Score map. The activation loop spans positions

132–151, and is preceded by the DFG motif (which is shown as a hashed area). Position pairs are shaded by their interaction score (see Methods). The

six-residue motif identified as highly correlated is marked by red points, and three particular interactions are pointed out with colored arrows: the pair

132,145 (red) is an interaction in the DFG-in state only, and 132,141 (blue) and 139,142 (green) are interactions in the DFG-out state only. (B) Contact fre-

quency map constructed from analysis of the PDB database. The upper triangle shows pair-contact frequency (6 Å closest heavy atom-atom cutoff) in DFG-in

conformations, and lower triangle in DFG-out conformation. (C) Network interaction structure of the six-residue motif, showing a link for pairs with high

interaction score, or a dotted line for intermediate to weak interaction score. To see this figure in color, go online.
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above a cutoff that is used to distinguish contacts during
contact prediction. They are connected together, forming a
network illustrated in Fig. 5 C.

We further investigate the residue pair 132–145, as it has
a very strong Potts interaction score and forms a contact in
81% of DFG-in structures and only 8% of DFG-out struc-
tures, yet to our knowledge has not been previously identi-
fied as functionally important. Position 132 is the DFG þ 1
residue, and position 145 is a residue closer to the C-termi-
nal end of the activation loop. An example crystal structure
in which this pair is in contact in the DFG-in state (PDB:
2YAC) is shown in Fig. 3 B. To better understand why
this interaction may be important, we examine kinase struc-
ture and sequence statistics for sequences observed in our
sequence data set and in the DFG-in or DFG-out state in
the PDB. Interactions between a leucine or phenylalanine
at position 132 and cysteine at position 145 are present in
�20% of DFG-in structures, and none of the DFG-out struc-
tures. The ‘‘LC’’ residue combination also gives one of the
most positive Cij

ab correlations from among the 64 possibil-
ities for this position pair in the kinase alignment, as well as
one of the most positive contributions to the interaction
score (see Fig. S6, D and E). The ‘‘FC’’ residue combination
behaves similarly. Crystal structures involving these interac-
tions show that the LC and FC residue combinations often
form a hydrophobic interaction, and that the more polar
cysteine is more solvent exposed and shields the L or F
from solvent. Other residue combinations more prevalent
in the DFG-in sequences similarly involve hydrophobic
residues (see Fig. S6 B). In total, the 132–145 pair appears
to form interactions that stabilize the DFG-in state, based
on Potts model scores and crystal structure conformations.

This example illustrates first how functional motifs within
a protein might be identified, and second how the Potts
model can help suggest the biophysical basis for the func-
tional role of the motif. In future work, we will develop
more systematic methods of identifying functional groups
of residues. Previous studies have shown how covariation-
based techniques can give information about protein archi-
tecture and groups of coevolving residues, which have
been termed ‘‘protein sectors’’ (59,60). Our present results
suggest that the Potts model may be used in a similar way,
in addition to accounting for the collective effects of many
pairwise interactions at once.
CONCLUSIONS

The protein kinase catalytic domain is one of the most abun-
dant domains across all branches of life. Although kinases
share a common core function of phosphoryl-transfer, they
also have wide functional diversity, which is primarily
achieved through sequence variation. In this study, we use
a statistical inference technique to build a maximum entropy
coevolutionary Potts Hamiltonian model of sequence varia-
tion in the kinase protein family. Our results show that the
kinase sequence statistics (higher-order marginals) calcu-
lated with a Potts model containing only two-body interac-
tions in the Hamiltonian, and inferred using the MCMC
algorithm as we have done, recapitulate the observed mar-
ginals for the kinase family up to the observable limit
imposed by the shot noise effects inherent in the data
because of the sample size. The higher-order marginals
(beyond bivariate marginals) are not fitted.

We have shown that the pairwise terms of the Potts model
are necessary, and also appear to be sufficient, to model the
kinase sequence landscape, particularly for the purpose of
modeling the higher-order marginals. The discrepancies
we observe between the kinase family subsequence proba-
bilities predicted by the Potts model, with only pairwise
terms and the observed subsequence frequency counts in
Biophysical Journal 114, 21–31, January 9, 2018 29
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the MSA, can be accounted for by the finite size effect of the
MSA. Other groups have explored how shot noise can affect
the univariate and bivariate marginals, and individual
coupling parameters in toy models (46,61), and we have pre-
viously studied the effects of finite sampling for Potts
models fitted to HIV sequence data (40,62). Here, we
examine how shot noise affects the prediction of subse-
quence probabilities and the statistical energies of full
sequences, using real data from the kinase protein family.

Although the finite size of the kinase sequence database
and MSA constructed from the database places a limit on
the ability of the Potts model to recapitulate the statistics
of the higher-order marginals actually observed in the
sequence database, it has only a small effect on the statisti-
cal energies of the Potts model itself. To show this, we
carried out an in silico test. In this test, we used our Potts
model of the kinase family to construct an in silico MSA
data set, of size �8000 sequences. This in silico MSA has
only 31% sequence similarity to the original MSA that we
generated from the Uniprot database. We then parameter-
ized a new Potts model from the set of in silico kinase se-
quences, and showed that the scoring of Uniprot
sequences with the new Potts model was highly correlated
with that of the original Potts model (see Fig. 2 A).

We propose that kinase family protein functional motifs
may be identified as sets of positions where the sequence
covariation is much more correlated than is typical for sub-
sequences of that length, and which also exhibit larger than
average sequence conservation. Those two criteria can be
quantified by identifying sets of positions where the Potts
statistical energies are much more favorable than the
average Potts statistical energy of a marginal of that same
length, whereas the statistical energy of the independent
model is much less favorable than the average. We have
shown how a set of previously identified functional residues
have higher correlation and conservation than typical
random sets of positions, and we have also identified a
highly correlated and conserved set of positions in the acti-
vation loop, which is potentially important in controlling
activation loop function. We hope that Potts models used
in this and similar ways will help increase our understanding
about the deep connections between protein sequence
covariation on one hand, and protein structure and function
on the other.
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Details of the Potts model inference methods used in
this study are published in the supplementary informa-
tion of [1]. Source code for our software is available
at https://github.com/ahaldane/IvoGPU. Here we de-
scribe additional analysis discussed in the main text.

I. PHYLOGENETIC WEIGHTING

As described in the main text, ideally the sequences
in our dataset MSA would represent independent sam-
ples but in practice some sequences are related due to
phylogeny and experimental biases, which we correct for
by weighting each sequence using a sequence similarity
cutoff. In many publications a sequence identity cut-
off of 80% is used to detect sequences which are non-
independent.

In this study we instead use a cutoff determined by ex-
amining the distribution of pairwise sequence identities
between all pairs of sequences in the MSA (figure S1A).
The fact that the upper tail of this distribution becomes
negligible in size near about 60% sequence identity leads
us to use this value as the cutoff for the phylogenetic
weighting, as any sequences more similar that this are
unlikely to occur independently in nature by chance.

II. KINASE EFFECTIVE ALPHABET SIZE

In the main text we justify our reduction of the amino
alphabet from 21 letters to 8 letters on the basis that the
Mutual Information (MI) values between residue pairs
are preserved, as illustrated in figure S1B, and based on
the small change in average sequence dissimilarity seen
in figure S1A. The reduction to 8 letters can be further
justified by a statistical estimate of the “effective” num-
ber of amino acids. This calculation also allows us to
estimate the size of the kinase sequence space.

We estimate the effective number of amino acids at
each position of the alignment as the exponential of the

entropy per site, qeff
i = e−

P
α fiα log fiα , since entropy can

be interpreted as the log of the number of states. For
the kinase dataset we find this gives an average of 8.9
effective amino acids per position on average. The size
of the evolutionary accessible sequence space assuming
site independence can be estimated as

∏
i q

eff
i , giving an

evolutionarily accessible sequence space of roughly 10149

for kinase sequences. These results illustrate the large
size of the kinase sequence space and the high degree of
variation of kinase sequences.

III. ANALYSIS OF TRYPSIN AND
PHOTOACTIVE YELLOW PROTEIN

To test whether our results may apply to systems be-
sides kinase, we also analyze the Trypsin and Photoac-
tive Yellow Protein (PYP) families, using the MSAs for
these families generated in [3]. The mean effective num-
ber of amino acids in these families is 8.8 and 10.4 re-
spectively. We reduce both families to 8 letters as de-
scribed in the main text, and based on the upper tail of
the distributions shown in figure S3 we choose sequence
identity cutoffs of 60% and 40% respectively for phyloge-
netic weighting, giving an effective number of sequences
of 4806 and 5720. We fit Potts models to these datasets
and generate in silico MSAs from these models of size
4806 and 5720 sequences, respectively. In figure S4C we
compare subsequence frequencies of the dataset to those
of the model and to those of an independent model, again
showing that the Potts model outperforms the indepen-
dent model and that its performance is close to that
expected due to finite-sampling effects alone.

We then fit in silico Potts models to the in silico
datasets, and compare the statistical energies of the orig-
inal and in silico Potts models and the independent
model (figure S4A and B). In the case of PYP, the in-
dependent model energies still have a small correlation
with the reference energies, though much lower than for
the energies of the in silico Potts model. The number
of effective sequences in these families is smaller than
for kinase, and we correspondingly observe a decrease in
the correlation of the in silico energies to the reference
energies. Overall, the behavior of these two families is
similar to that of the kinase family.
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FIG. S1. (A) Distribution of sequence identity scores (normalized inverse Hamming distance) between all pairs of sequences
in the kinase dataset, computed for the original sequences using a 21 letter alphabet of 20 residues plus gap with phylogenetic
weighting, and for the reduced 8 letter alphabet. The mean sequence identity is 27% for 21 letters and 31% for 8 letters. (B)
Pearson correlation between the

(
L
2

)
MI values for reduction from 21 letters to alphabet size q, for varying q. This figure was

previously published in the supplementary information of [1].

FIG. S2. Using the in silico model we demonstrate the accuracy of the Potts model for longer subsequences with L > 10.
Here we show the correlation between the “true” log frequencies of subsequences and the log frequencies predicted by the
independent model (red) and the in silico Potts model (black), computed using the approximation described in the Methods of
the main text. The correlation decreases quickly for longer subsequence lengths for the independent model, but stays roughly
constant for the Potts model.
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FIG. S3. Distribution of sequence identity scores (normalized inverse Hamming distance) between all pairs of sequences in
the PYP and trypsin datasets, computed for the original sequences using a 21 letter alphabet and for the reduced 8 letter
alphabet.
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FIG. S4. Analysis of Potts models fit to two different protein families. (A,B,C) Photoactive Yellow Protein, and (D, E, F)
Trypsin. (A and D) Statistical energies computed using the original Potts model compared to those computed using a Potts
model refit to a finite size sample of sequences from the first model, as in figure 2 in the main text. (B, E) Comparison of
statistical energies computed using the original Potts model compared to the those computed using the independent model.
(C, F) Average correlation between observed and predicted frequencies for the top 20 subsequences for large samples of
subsequences of varying length, as described in figure 1 in the main text.

4



FIG. S5. Comparison of interaction scores with crystal structure contacts. (A) Interaction scores computed using the (un-
weighted) Frobenius Norm, shown as a pairwise interaction score map between all pairs of the 175 residues. The shading
ranges from 0 to the maximum score. (B) Interaction scores computed using the Weighted Frobenius Norm, shown as in panel
A. (C) Contact Frequency in the kinase PDB dataset (see main text), with contacts between residues 3 or less apart along the
sequence removed. (D) Distances for each residue-pair, averaged over all PDB structures, compared to the interaction scores.
The dotted lines represent a rough estimate of the noise threshold for interaction score significance, showing how the weighted
norm better distinguishes contacts.
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FIG. S6. Statistics and parameters describing the position pair 132-145 in the kinase model. Each subplot is an 8x8 grid
representing the entries in the bivariate marginal and coupling parameter matrices at this position pair, for each combination
of the 8 letters in the reduced alphabet. Position 132 is the top (left-right) dimension, and 145 the left (up-down) dimension.
For each column or row, the letter in the 8-letter alphabet is mapped back to the possibilities in the 21 letter alphabet with
shading proportional to that letter’s frequency. For example the 7th letter at position 145 appears as an R or K in the 21
letter alphabet with about equal frequency. (A) Bivariate marginals computed from the kinase MSA. Univariate marginals are
shown in the margins. (B) Bivariate marginals for sequences in the PDB dataset, found to be in the DFG-in state by our PDB
analysis. Note that when computing the marginals, a phylogenetic weighting of 0.1 was applied (see methods in main text).
(C) Bivariate marginals for PDB sequences in the DFG-out conformation. (D) Correlation coefficients Cijαβ = f ijαβ − f iαf

j
β

computed from marginals in the kinase MSA. (E) Interaction score elements from the inferred Potts model. Iijαβ = wijJ ijαβ
computed in the weighted gauge, as described under “interaction score” in the main text, such that the weighted FFFFFFFFF

norm is given by Iij =
√∑

αβ(Iijαβ)2.
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FIG. S7. Reconstruction of Potts energies as in figure 2A in the main text, but using the mfDCA inference method. We fit a
Potts model to the in silico dataset using the mfDCA method. For this purpose, we use the same phylogenetic weighting as
in the in silico test using the MCMC inference, but in contrast we add a very large pseudocount as prescribed in [4], using
λ = Meff as defined in that publication corresponding to a pseudocount equal in size the the dataset itself. We then compute
Potts energies of the uniprot MSA using this Potts model, and compare to the energies computed using the original Potts
model used to generate the in silico dataset.

FIG. S8. Convergence of the MCMC algorithm for the Kinase dataset. This shows the SSR (sum of squared residuals)
between the observed kinase MSA bivariate marginals, and those of the inferred Potts model decrease for increasing iterations
of the quasi-Newton algorithm, described in [1]. Each iteration represents a round of MCMC sequence generation, followed
by quasi-Newton optimization, for a total of 60 iterations.
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1 48 T P-loop 41 94 I α-C Helix 81 136 G 121 176 Q 161 215 Y

2 49 L P-loop 42 95 L 82 137 R 122 177 Q 162 216 N

3 50 G P-loop 43 96 Q 83 138 F 123 178 G 163 217 K

4 51 T P-loop 44 97 A 84 - S 124 179 Y 164 218 A

5 52 G P-loop 45 98 V 85 140 E 125 180 I 165 219 V

6 53 S P-loop 46 99 N 86 141 P 126 181 Q 166 220 D

7 54 F P-loop 47 100 F 87 142 H 127 182 V 167 221 W

8 55 G P-loop 48 101 P 88 143 A 128 183 T 168 222 W

9 56 R P-loop 49 102 F 89 144 R 129 184 D D 169 223 A

10 57 V 50 103 L 90 145 F 130 185 F F 170 224 L

11 58 M 51 104 V 91 146 Y 131 186 G G 171 225 G

12 59 L 52 105 K 92 147 A 132 187 F Act. Loop 172 226 V

13 60 V 53 106 L 93 148 A 133 188 A Act. Loop 173 227 L

14 61 K 54 107 E 94 149 Q 134 189 K Act. Loop 174 228 I

15 62 H 55 108 F 95 150 I 135 190 R Act. Loop 175 229 Y

16 63 K 56 109 S 96 151 V 136 191 V Act. Loop

17 64 E 57 110 F 97 152 L 137 192 K Act. Loop

18 65 S 58 111 K 98 153 T 138 - - Act. Loop

19 66 G 59 112 D 99 154 F 139 193 G Act. Loop

20 68 H 60 113 N 100 155 E 140 194 R Act. Loop

21 69 Y 61 114 S 101 156 Y 141 195 T Act. Loop

22 70 A 62 115 N 102 157 L 142 196 W Act. Loop

23 71 M 63 116 L 103 158 H 143 197 T Act. Loop

24 72 K β-3 Lysine 64 117 Y 104 159 S 144 198 L Act. Loop

25 73 I 65 118 M 105 160 L 145 199 C Act. Loop

26 74 L 66 119 V 106 161 D 146 200 G Act. Loop

27 75 D 67 120 M Gatekeeper 107 162 L 147 201 T Act. Loop

28 76 K α-C Helix 68 121 E Hinge 108 163 I 148 202 P Act. Loop

29 77 Q α-C Helix 69 122 Y Hinge 109 164 Y H 149 203 E Act. Loop

30 78 K α-C Helix 70 123 V Hinge 110 165 R R 150 204 Y Act. Loop

31 79 V α-C Helix 71 124 A Hinge 111 166 D D 151 205 L Act. Loop

32 80 V α-C Helix 72 126 G Hinge 112 167 L 152 206 A Act. Loop

33 81 K α-C Helix 73 127 E Hinge 113 168 K 153 207 P

34 82 L α-C Helix 74 128 M Hinge 114 169 P 154 208 E

35 83 K α-C Helix 75 129 F 115 170 E 155 209 I

36 84 Q α-C Helix 76 130 S 116 171 N 156 210 I

37 90 N α-C Helix 77 131 H 117 172 L 157 211 L

38 91 E α-C Helix 78 132 L 118 173 L 158 212 S

39 92 K α-C Helix 79 133 R 119 174 I 159 213 K

40 93 R α-C Helix 80 134 R 120 175 D 160 214 G

TABLE S1. Mapping from MSA alignment position to PDB
residue index for PDB 2CPK. This table was provided in the
supplementary information of [1].
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1 58 F P-loop 41 104 I α-C Helix 81 146 K 121 186 E 161 228 H

2 59 L P-loop 42 105 H 82 147 A 122 187 D 162 229 S

3 60 G P-loop 43 106 R 83 148 L 123 188 L 163 230 F

4 61 K P-loop 44 107 S 84 149 T 124 189 E 164 231 E

5 62 G P-loop 45 108 L 85 150 E 125 190 V 165 232 V

6 63 G P-loop 46 109 A 86 151 P 126 191 K 166 233 D

7 64 F P-loop 47 110 H 87 152 E 127 192 I 167 234 V

8 65 A P-loop 48 111 Q 88 153 A 128 193 G 168 235 W

9 66 K P-loop 49 112 H 89 154 R 129 194 D D 169 236 S

10 67 C 50 113 V 90 155 Y 130 195 F F 170 237 I

11 68 F 51 114 V 91 156 Y 131 196 G G 171 238 G

12 69 E 52 115 G 92 157 L 132 197 L Act. Loop 172 239 C

13 70 I 53 116 F 93 158 R 133 198 A Act. Loop 173 240 I

14 71 S 54 117 H 94 159 Q 134 199 T Act. Loop 174 241 M

15 72 D 55 118 G 95 160 I 135 200 K Act. Loop 175 242 Y

16 73 A 56 119 F 96 161 V 136 201 V Act. Loop

17 74 D 57 120 F 97 162 L 137 202 E Act. Loop

18 75 T 58 121 E 98 163 G 138 205 G Act. Loop

19 76 K 59 122 D 99 164 C 139 206 E Act. Loop

20 77 E 60 123 N 100 165 Q 140 207 R Act. Loop

21 78 V 61 124 D 101 166 Y 141 208 K Act. Loop

22 80 A 62 125 F 102 167 L 142 209 K Act. Loop

23 81 G 63 126 V 103 168 H 143 210 T Act. Loop

24 82 K β-3 Lysine 64 127 F 104 169 R 144 211 L Act. Loop

25 83 I 65 128 V 105 170 N 145 212 C Act. Loop

26 84 V 66 129 V 106 171 R 146 213 G Act. Loop

27 85 P 67 130 L Gatekeeper 107 172 V 147 214 T Act. Loop

28 86 K α-C Helix 68 131 E Hinge 108 173 I 148 215 P Act. Loop

29 87 S α-C Helix 69 132 L Hinge 109 174 H H 149 216 N Act. Loop

30 93 H α-C Helix 70 133 C Hinge 110 175 R R 150 217 Y Act. Loop

31 94 Q α-C Helix 71 134 R Hinge 111 176 D D 151 218 I Act. Loop

32 95 R α-C Helix 72 135 R Hinge 112 177 L 152 219 A Act. Loop

33 96 E α-C Helix 73 136 R Hinge 113 178 K 153 220 P

34 97 K α-C Helix 74 139 L Hinge 114 179 L 154 221 E

35 98 M α-C Helix 75 140 E 115 180 G 155 222 V

36 99 S α-C Helix 76 141 L 116 181 N 156 223 L

37 100 M α-C Helix 77 142 H 117 182 L 157 224 S

38 101 E α-C Helix 78 143 K 118 183 F 158 225 K

39 102 I α-C Helix 79 144 R 119 184 L 159 226 K

40 103 S α-C Helix 80 145 R 120 185 N 160 227 G

TABLE S2. Mapping from MSA alignment position to PDB
residue index for PDB 2YAK.
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