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ABSTRACT We measured the effect of intrinsic lipid curvature, J0, on structural properties of asymmetric vesicles made of
palmitoyl-oleoyl-phosphatidylethanolamine (POPE; J0 < 0) and palmitoyl-oleoyl-phosphatidylcholine (POPC; J0 � 0). Electron
microscopy and dynamic light scattering were used to determine vesicle size and morphology, and x-ray and neutron scattering,
combined with calorimetric experiments and solution NMR, yielded insights into leaflet-specific lipid packing and melting
processes. Below the lipid melting temperature we observed strong interleaflet coupling in asymmetric vesicles with POPE inner
bilayer leaflets and outer leaflets enriched in POPC. This lipid arrangement manifested itself by lipids melting cooperatively in
both leaflets, and a rearrangement of lipid packing in both monolayers. On the other hand, no coupling was observed in vesicles
with POPC inner bilayer leaflets and outer leaflets enriched in POPE. In this case, the leaflets melted independently and did not
affect each other’s acyl chain packing. Furthermore, we found no evidence for transbilayer structural coupling above the melting
temperature of either sample preparation. Our results are consistent with the energetically preferred location of POPE residing in
the inner leaflet, where it also resides in natural membranes, most likely causing the coupling of both leaflets. The loss of this
coupling in the fluid bilayers is most likely the result of entropic contributions.
INTRODUCTION
Lipid asymmetry is a hallmark of biological membranes
(1,2). In particular, prototypical mammalian plasma mem-
branes are known to be composed of an outer leaflet
enriched in high-melting lipids, such as sphingomyelin
(SM) and phosphatidylcholine (PC), whereas phosphatidyl-
serine (PS) and phosphatidylethanolamine (PE) lipids are
predominantly located in the inner leaflet (3,4). However,
the preferred location of cholesterol—the most abundant
lipid of mammalian plasma membranes—is still a matter
of dispute (5–7).

One of the enduring questions concerning plasma mem-
brane architecture and lipid asymmetry is the possibility
of bilayer leaflets coupled to each other. This coupling
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may influence a number of physiological processes that
require communication between, for example, receptors
secreted to the exoplasm and components of signal trans-
duction pathways in the cytoplasm (8). It is particularly
intriguing that the lipid composition of the outer leaflet
favors the formation of raft-like domains (9,10), whereas
that of the inner leaflet does not (11). Theoretical treatments
have considered a coupling related to intrinsic lipid curva-
ture (12,13), headgroup electrostatics, cholesterol flip-flop,
and dynamic chain interdigitation (14,15), or thermal mem-
brane fluctuations (16), implying that interleaflet coupling
does not require (nor does it exclude) contributions from
proteins.

About a decade ago, experimental evidence of transbi-
layer domain coupling was obtained using planar bilayers,
where domains in one leaflet induced lipid ordering and
the formation of domains in the apposing leaflet (17–19).
Furthermore, the coupling strength increased with the chain
melting temperature of the lipids in the distal leaflet (18), a
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finding that was reproduced by MD simulations (20). A
coarse-grained lipid simulation also found that transbilayer
coupling affects rotational and lateral lipid diffusion
dynamics (21).

In symmetric, solid supported membranes with coexisting
fluid lipid domains, a significant threshold for shear stress
was reported for moving like domains out of register. This
finding is an indication of strong transbilayer coupling of
the domains (22). However, no dependence on the hydrocar-
bon length was observed in similar experiments (23), sug-
gesting that dynamic (partial) chain interdigidation does
not provide a significant contribution to interleaflet
coupling. Other reports on solid supported asymmetric bila-
yers did not find domain registration (24,25). However, this
may be partially related to subtleties in the preparation of
planar membranes that can lead to a rapid loss of asymmetry
(26,27). Hence, free-floating asymmetric lipid vesicles ex-
hibiting slow lipid flip-flop (28), which can reliably be fabri-
cated (29,30), appear to be excellent systems for the study of
transbilayer coupling mechanisms.

Asymmetric lipid vesicles with their outer leaflets en-
riched in SM and with inner leaflets composed of monoun-
saturated PC, PS, disaturated PC, and PS/PE mixtures
melted independently of one another (29,31). However,
increased order of the inner fluid monolayer in the presence
of a gel outer leaflet showed a weak coupling (31). In the
case of asymmetric vesicles with mixed-chain lipids in
one leaflet, it was noted that there was a slowing down of
lateral diffusion in the apposing leaflet due to partial chain
interdigitation (32). Interestingly, this did not affect the
overall lipid chain order.

Recently, we performed small-angle neutron and x-ray
scattering (SANS and SAXS, respectively) experiments on
asymmetric vesicles made of PCs, and observed significant
changes in the packing of outer-leaflet gel domains enriched
in dipalmitoyl-phosphatidylcholine (DPPC), as a result of
the fluid inner leaflet composed of palmitoyl-oleoyl-phos-
phatidylcholine (POPC) (30). This effect disappeared
when both leaflets were in the fluid phase (33).

This work focuses on the ‘‘sidedness’’ of transmembrane
coupling in asymmetric large unilamellar vesicles (aLUVs).
In particular, we fabricated aLUVs composed of POPC and
palmitoyl-oleoyl-phosphatidylethanolamine (POPE) with
either POPCout/POPEin, or POPEout/POPCin asymmetry,
where the superscripts ‘‘in’’ and ‘‘out’’ refer to the inner
and outer bilayer leaflet, respectively. Combining the data
from different techniques, i.e., SAXS, SANS, wide-angle
x-ray scattering (WAXS), differential scanning calorimetry
(DSC), dynamic light scattering (DLS), and cryo-transmis-
sion electron microscopy (TEM), we observed strongly
coupled leaflets when the inner leaflet was made up of
only POPE. This coupling was manifested by a single
melting transition and a similar acyl chain packing in both
leaflets. In turn, aLUVs with reversed asymmetry (i.e.,
POPC in the inner leaflet) exhibited a broad melting transi-
tion, indicative of largely decoupled monolayers. These data
provide evidence for an intrinsic curvature-mediated mech-
anism that energetically favors POPE—a lipid which has a
significant negative intrinsic curvature—to be located in
the inner leaflet. Further, we found no evidence for transbi-
layer coupling in fluid-phase bilayers regardless of
POPE’s sidedness, indicating that the loss of coupling is
most likely due to entropic contributions, and that neither
intrinsic curvature nor partial chain interdigitation play a
significant role.
MATERIALS AND METHODS

Sample preparation

POPC, POPE, and palmitoyl-phosphatidylglycerol (POPG), including chain

perdeuterated POPE-d31 and POPG-d31, were obtained from Avanti Polar

Lipids (Alabaster, AL) and used without further purification. D2O was pur-

chased from Euroiso-top (Saarbr€ucken, Germany) and methyl-b-cyclodex-

trin (mbCD) from Sigma-Aldrich (Vienna, Austria). Purified water

(18 MU/cm) was obtained using Purelab UHQ (Elga Labwater, Woodridge,

IL). Lipid stock solutions were prepared by dissolving weighed amounts of

dry lipid powder in chloroform and assayed for lipid concentration to within

1% uncertainty using standard procedures (34). Appropriate volumes were

taken from stock solutions, dried under a stream of nitrogen, and then placed

under vacuum for at least 12 h to remove residual organic solvent.

Fabrication of aLUVs followed a previously established protocol

involving CD-mediated lipid exchange between acceptor and donor vesi-

cles (30) (for details, see the Supporting Material). For control experiments,

we prepared vesicles with the same, but symmetric lipid distribution (see

the Supporting Material), which we denote as ‘‘scrambled’’ vesicles

throughout this report. Further, we prepared symmetric LUVs with known

POPE/POPC composition for DSC andWAXS calibration experiments (see

below) by mixing appropriate amounts of organic lipid stock solution.

These samples also contained 10 mol % POPG, which is indicated by the

asterisk in the reported POPE/POPC* molar ratios. The protocol for obtain-

ing LUVs from these samples was identical to that applied for acceptor

vesicles.
Exchange efficiency and lipid distribution: DSC

DSC experiments were performed on a MicroCal VP-DSC high-sensitivity

DSC (MicroCal, Northhampton, MA) at a scan rate of 30�C/h. Data were

used: 1) to determine the total lipid exchange achieved; and 2) to measure

the thermotropic behavior of the aLUVs. Data were corrected for sample

concentration, and background was subtracted using a linear baseline

(MicroCal Origin).

Symmetric LUVs prepared at various POPE/POPC* molar ratios showed

thermograms typical for binary lipid mixtures with a liquidus peak at TM
and a solidus peak that became more prominent with increasing POPC

concentration (Fig. 1). Note that doping POPE with 10 mol % POPG lowers

the TM by �1.0�C (35). Throughout this work, only cooling scans were

considered. Furthermore, the lowest POPE fraction, cPOPE, measured was

0.3. These concentrations were arrived at by considering the low melting

transition of POPC (� �3:5�C (36)) and instrumental capability, which

did not allow us to measure below 2�C. Due to hysteresis effects, cooling

scans report a TM that is �1.2–2.0�C lower than for heating scans. The pre-

sented analysis was performed on the second cooling scan for each sample.

The obtained TM values were found to increase linearly with POPE con-

centration in the studied compositional range ðTM ¼ a0 þ a1cPOPEÞ, with
a0 ¼ 4:250:5�C and a1 ¼ 18:250:2�C (Fig. 1, inset). This allowed us

to determine lipid exchange from the DSC data of scrambled LUVs.
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FIGURE 1 DSC cooling thermograms of POPE/POPC* mixtures.

Numbers adjacent to the heat-capacity (cP) maxima indicate the given

c POPE . The inset shows the concentration dependence of the TM values

of LUVs and MLVs, which served as controls (Fig. S2). To see this figure

in color, go online.
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Exchange efficiency and lipid distribution: ultra-
performance liquid chromatography-mass
spectrometry

Alternatively, lipid exchange was determined by ultra-performance liquid

chromatography-tandem mass spectrometry (UPLC-MS) as described

previously (33). UPLC-MS measurements were conducted with an

AQUITY-UPLC system (Waters, Manchester, UK) equipped with a BEH-

C18-column (2.1 � 150 mm, 1.7 mm) (Waters) used for sample separation

(37). A SYNAPTG1 qTOF HD mass spectrometer (Waters) equipped with

an electrospray ionization source was used for analysis. Data acquisition

was done by MassLynx 4.1 software (Waters), and for lipid analysis, the

‘‘Lipid Data Analyzer’’ software (38) was used. For UPLC-MS, the mole

fraction, ci, of a single component can be determined directly using

ci ¼
PiP

i

Pi

; (1)

where Pi is the area of the ith lipid peak. This relationship is strictly valid

when the lipid peak area fractions vary linearly with mixture composition.

UPLC-MS data was corrected using a calibration curve of 1:1:1 molar ratio

of POPE/POPC/POPGmeasured at concentrations between 0.1 and 100 mg.

Parameter uncertainties were estimated to be <5%.
Exchange efficiency and lipid distribution:
solution NMR

1H-NMR was used to determine the degree of asymmetry following previ-

ously published protocols (30). Briefly, 1H-NMR spectra were collected on

the Avance III 300 or 400MHz spectrometers (Bruker, Billerica, MA) using

Bruker TopSpin acquisition software, and were processed with TopSpin 3.2.

A standard 1H pulse sequencewith a 30� flip angle and a 2 s delay timewere

used to collect 32 transients at 35 and 50�C. Data were processed with a

line-broadening parameter of 2 Hz.

The outer-leaflet fraction of POPC f outPC relative to the inner leaflet was

determined by quantifying the shifted versus the non-shifted choline reso-

nance intensities after addition of 1 mL of a 1 mM Pr(NO3)3 6H2O (Pr3þ)
solution (see Fig. S2 for further details). Data were averaged over three
148 Biophysical Journal 114, 146–157, January 9, 2018
consecutive measurements. Combined with the total fraction of POPC

ðcPOPCÞ, which was determined by the above detailed exchange efficiency

assay, the mole fraction of POPC in each leaflet is determined from

cout
PC ¼ f outPC cPOPC

Xout
; (2)

where Xout corresponds to the fractional number difference of outer- and

inner-leaflet lipids due to vesicle geometry (see the Supporting Material

for further details). Complementing POPE and POPC leaflet compositions

were derived from c
out=in
PE ¼ 1� c

out=in
PC and f inPC ¼ 1� f outPC .

Similar experiments allowed assessment of aLUV stability by following

the decay of shifted choline resonance intensity (28). Specifically, passive

lipid transbilayer diffusion rates were derived using

DC ¼ 2f outPC � 1

2f outPC;0 � 1
; (3)

where f outPC;0 is the fraction of POPC in the outer leaflet at time zero, i.e.,

immediately after aLUV preparation. Note that these measurements were

taken on aliquots of aLUVs incubated at a given temperature, where Pr3þ

was added immediately before each NMR scan.
Vesicle size and morphology: DLS

Vesicle size was measured by DLS using a ZetasizeNANO ZSP (Malvern

Instruments, Malvern, United Kingdom) equipped with a 10 mW laser

with l ¼ 632.8 nm. Measurements were conducted in glass cuvettes at a

fixed measurement angle of 173�. At each temperature, samples were

equilibrated for 5 min before the start of an experiment. We report averaged

values from three consecutive measurements, each consisting of 15

frames (exposure time, 10 s) as well as the polydispersity index

ðPDI ¼ ðwidth=sizeÞ2Þ.
Vesicle size and morphology: TEM

All TEM images were recorded with a Gatan system mounted on a

Tecnai12 electron microscope (FEI Company, Hillsboro, OR), equipped

with a LaB6 filament operating at 120 kV. Electron micrographs were

recorded on a Gatan Bioscan CCD 1 � 1 k camera. A Leica EM GP grid

plunger, which allowed temperature control between 4 and 60�C and a rela-

tive humidity of 99% was used to spot samples on EM support grids (holey

carbon film on copper grid). After carefully blotting the excess sample with

filter paper, TEM grids were plunged rapidly into liquid ethane to prevent

the formation of ice crystals. Samples were subsequently stored in liquid

nitrogen until needed.
Membrane structural parameters: gel domains/
leaflets—WAXS

WAXS experiments were performed using SAXSpace (Anton Paar, Graz,

Austria) equipped with an Eiger R 1 M detector system (Dectris, Baden-

Daettwil, Switzerland) and a 30 W-Genix 3D microfocus x-ray generator

(Xenocs, Sassenage, France) supplying Cu-Ka (l ¼ 1:54 �A) radiation.

WAXS was recorded by setting the sample-to-detector distance (SDD) to

180 mm.

All samples were taken up in m-cell glass capillaries (diameter, 1 mm;

Anton Paar) and equilibrated for 10 min at each temperature and to within

50.1�C using a Peltier stage (TC Stage 150, Anton Paar). The exposure

time was set to 1 h (six frames, each 10 min long). Data integration was per-

formed using SAXStreat (Anton Paar). Background scattering originating

from water and the glass capillary was subtracted after smoothing using

the ATSAS suite (39).
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WAXSdata analysiswas performed in the range q ¼ 1:3� 1:6 �A�1. In the

gel phase, the acyl chains of the studied lipid mixtures pack in a two-dimen-

sional hexagonal lattice, allowing us to calculate the area per lipid directly

from the position (q11) of the chain-chain correlation peak (40)

AL ¼ 16p2

ffiffiffi
3

p
q211

: (4)

To disentangle the POPE* and POPC* AL’s, a series of WAXS experiments

were performed on the same symmetric lipid mixtures studied by DSC (see

above). The resulting data (Fig. S3) can be collapsed on a single curve using

reduced temperatures (T � TM), where TM was determined from DSC data

(Fig. 2).

A linear regression (AL ¼ k � ðT � TMÞ þ ATM
POPE) yielded

k ¼ 0:06255 0:0002 �A2=�C and ATM
POPE ¼ 43:650:002 �A2. The latter value

corresponds to the area per lipid of POPE* at TM. Note that due to the pres-

ence of POPG, this value is�0.8 Å2 higher than that of pure POPE (35,41).

Assuming linear additivity, the apparent area per POPC*molecule at a given

temperature in the gel phase is then derived from

APOPC ¼ AL � cPOPEAPOPE

1� cPOPE

; (5)

where APOPE is the measured area per lipid of POPE* taken from the linear

regression (Fig. 2). This allowed us to calculate the average AL of any (sym-

metric) POPE/POPC* mixture below its TM.

Furthermore, the lateral correlation parameter of scattering domains, xD,

which is a measure for the size of gel domains, was estimated using the

Scherrer equation

xDx
l

bcosðqÞ; (6)

where b is the full width at half maximum of the chain correlation peak cor-

rected for instrumental broadening, and q is the Bragg angle.
Membrane structural parameters: fluid leaflets—
SAXS/SANS

SAXS experiments were performed at the P12 BioSAXS beamline located

at PETRA III (European Molecular Biology Lab/Deutsches Elektronen

Synchrotron) storage ring in Hamburg (42). Samples were exposed to a
FIGURE 2 Gel area-per-lipid (AL) calibration curve determined from

WAXS. Data on an absolute temperature scale are shown in Fig. S8.
total photon flux of 5 � 1012 s�1 at 20 keV with an x-ray beam focused

to 120 � 120 mm. Data were collected by a Pilatus 2 M detector (Dectris)

at SDD ¼ 3.1 m. For measurements, samples were transferred into temper-

ature-controlled multi-well plates and equilibrated for 10 min at a specified

temperature. A robot delivered 20–35 mL of the sample into a pre-heated

glass capillary. For each sample, 20 frames were recorded with an exposure

time of 0.045 s. Background was measured before and after each sample

exposure. To detect possible radiation damage, data collected in subsequent

frames were compared using a standard F-test (43). Primary data treatment

was performed using ATSAS (39).

Neutron-scattering experiments were performed at KWS-1 (FRM II,

Munich-Garching, Germany) (44,45) and at the BL-6 extended Q-range

SANS (EQ-SANS) instrument of the Spallation Neutron Source at Oak

Ridge National Laboratory. Samples were loaded into 1-mm path length

404,000-QX quartz cuvettes (Hellma, Jena, Germany) or 1 mm banjo

cells, and mounted in a temperature-controlled holder (DT � 51�C).
Typical measurement times were 30 min. At KWS-1, data were obtained

with a two-dimensional scintillation detector using neutrons of l ¼ 5 �A

(wavelength spread, Dl=l ¼ 0:1) at SDDs of 1.21 m and 7.71 m, yielding

a total q-range of 0.005–0.42 Å�1. Data were corrected for detector pixel

sensitivity, dark current, sample transmission, and background scattering

from D2O using the QTIKWS software from JCNS (Garching, Germany).

EQ-SANS data were measured at two SDDs, 1.3 and 4.0 m, using wave-

length bands of l ¼ 4.0–7.5 Å and l ¼ 10.0–13.5 Å, corresponding to a

q-range of 0.005–0.5 Å�1 Data were collected with a two-dimensional
3He position-sensitive detector and reduced to one-dimensional IðqÞ scat-
tering curves using the Mantid software (46).

Structural parameters of each leaflet were determined by a joint analysis

of SANS and SAXS data using the asymmetric scattering density (aSDP)

model (33). Briefly, the scattered intensity (SAXS or SANS) of aLUVs

IðqÞ can be well approximated for sufficiently dilute systems and for

q> 0:03 by

IðqÞzjFFBðqÞ j 2; (7)

where jFFB j 2 is the flat-bilayer form factor, which contains information

about the distribution of matter across the bilayer (47,48). The aSDP model

describes bilayer structure in terms of one-dimensional volume probability

profiles (VPPs) of quasi molecular lipid fragments. Specifically, each leaflet

was parsed into methyl (M), hydrocarbon (HC), carbonyl þ glycerol (CG),

and residual headgroups (RHs). The latter group contains the choline

methyl þ phosphate groups in the case of PC, and CH2CH2NH3 þ phos-

phate groups in the case of PE. To reduce the number of adjustable param-

eters, a single Gaussian was used to describe the RH group in each leaflet.

The corresponding scattering-length densities and volumes were derived

from molecular averages according to the leaflet composition using previ-

ously reported data (49,50). Further, the effect of rapid hydrogen/deuterium

exchange occurring in the primary amines of PE headgroups was taken into

account for SANS data analysis (50,51). Similar to the procedure for

RH, the VPPs of the M and CG groups were also modeled by Gaussians,

whereas smooth plateau-like functions were used to describe the HC

groups (33).

The lateral area per lipid in each leaflet was calculated using

Aout; in
L ¼ Vout; in

C

Dout; in
C

; (8)

where VC is the acyl chain volume including M and HC groups, and

DC is the hydrocarbon chain length given by the distance between the

bilayer center and the 50%-probability value of the HC group. All

SAXS/SANS data were analyzed jointly, i.e., using a single optimization

procedure. For further details of the aSDP model and data analysis proced-

ures, see (33).
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RESULTS

Characterization of aLUV composition

To address the ‘‘sidedness’’ question, we fabricated aLUVs
with POPE acceptor and POPC donor vesicles, denoted as
POPCout/POPEin, as well as POPC acceptor and POPE
donor vesicles, denoted as POPEout/POPCin. For each
system, two batches with different donor/acceptor (D/A) ra-
tios were prepared and assessed for their composition as
detailed in a previous section.

The resulting leaflet compositions are presented in
Table 1. Interestingly, we also found donor lipid in the inner
leaflet of aLUVs. This may be partially due to the presence
of residual small unilamellar vesicles, as discussed previ-
ously (30). The increase of donor lipid in the inner mono-
layer with D/A for both systems indicates that this is
related to the CD-mediated exchange process. To obtain a
measure for the degree of asymmetry, we define
Sas ¼ cout

don � cin
don, where c

out; in
don are the mole fractions of

donor lipid in the outer and inner bilayer leaflets, respec-
tively. The resulting values show small differences for the
two different D/A ratios for both systems. This suggests
that all systems display a similar degree of asymmetry.
The agreement of lipid composition determined by UPLC-
MS on independently prepared aLUVs also shows good
sample reproducibility.
Stability of asymmetric vesicles

Due to the different melting temperatures of POPE and
POPC, the stability of lipid asymmetry is of some concern,
particularly due to increased lipid flip-flop in the phase tran-
sition region (28) and the differential area expansivities of
the gel and fluid phases (41,49,50).

Our 1H-NMR experiments revealed a 14% decrease of
lipid asymmetry when incubated at 35�C for nearly 5 days
(Table S1). When equilibrated at 10�C, the observed change
of asymmetry was insignificant within the uncertainty of the
measurement. All experiments (DSC, DLS, TEM, and
TABLE 1 Leaflet Composition of Studied aLUVs

Component cin
POPC cin

POPE cout
POPC cout

POPE Sas

POPCout/

POPEin a
0.06b

(0.10c)

0.94b

(0.90c)

0.54b

(0.68b)

0.46b

(0.32b)

0.48b

(0.58c)

POPCout/

POPEin d
0.11b 0.89b 0.64b 0.36b 0.53b

POPEout/

POPCin a
1.00b

(1.00c)

0.00b

(0.00c)

0.40b

(0.33c)

0.60b

(0.67c)

0.60b

(0.67c)

POPEout/

POPCin d
0.81b 0.19b 0.24b 0.76b 0.57b

aD/A ¼ 2.
bLeaflet component mole fraction determined using DSC for lipid

exchange.
cLeaflet component mole fraction determined using UPLC-MS for lipid

exchange.
dD/A ¼ 3.
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WAXS) were performed within less than a day of sample
preparation, and all SAXS/SANS experiments were
completed after three days of sample preparation. Hence,
we expect no significant changes of lipid distribution in
our samples.

Stability was further assessed by DSC, a highly sensitive
technique for detecting changes in lipid composition. Only
small changes in the thermograms of three consecutive cool-
ing scanswere observed (Fig. S4), indicating that therewas no
significant lipid scrambling across the melting transition of
aLUVs. We further performed cryo-TEM experiments on
aLUVs incubated in the phase-transition regime.No evidence
for vesicle invagination or rupture was observed (Fig. S5).
Size and morphology

Temperature-induced changes in POPCout/POPEin aLUV
size were measured by DLS. Data revealed a linear change
of vesicle size between 5 and 35�C (Fig. 3 A). The polydis-
persity in turn did not exhibit any temperature dependency.
In general, PDI increased from <0:1 for acceptor vesicles to
PDI � 0:1� 0:2 for aLUVs. The linear increase of vesicle
size with temperature is interesting, since the melting
transition of symmetric bilayers is usually associated with
significant changes in lipid volume and area (see, e.g.,
(52)). Indeed, DLS measurements of POPE* LUVs showed
vesicle-size changes consistent with a melting at
TM ¼ 22 �C, as determined by DSC (Fig. 3 A).

To gain further insight, we determined the surface area
expansion coefficient, aT

S ¼ 1=S� vS=vT, assuming spher-
ical vesicles with an outer surface area S. For POPE* LUVs,
aT
S is about two times smaller in the gel phase than in the

fluid phase, with a significant jump in the melting region
(Fig. 3 A). In turn, aT

S monotonically increases throughout
the studied temperature range for aLUVs, with an end value
close to that of fluid POPE*. This indicates an overall fluid-
like behavior of the aLUVs, a notion further substantiated
by the excellent agreement of the lipid area expansion coef-
ficient, aT

AL
, reported for fluid POPE from SANS/SAXS ex-

periments (50).
Comparing POPE* and POPE/POPC* vesicle diameters

on an absolute scale reveals an �10% increase in vesicle
size during lipid exchange. This could be due to a change
in vesicle morphology, e.g., aLUVs could become non-
spherical, or due to a residual osmotic pressure as a result
of an imbalance in the concentration of NaCl between the
inner- and outer-vesicle aqueous phases. To resolve
this, we performed cryo-TEM experiments at selected tem-
peratures. Data revealed a majority of spherical aLUVs at
both low and high temperatures (Fig. 3 B). This is in contrast
to the faceted shaped vesicles displayed by POPE* LUVs in
the gel phase (Fig. S6 A) and previously reported gel-phase
giant unilamellar vesicles (53).

To check the influence of NaCl osmotic imbalance, we
prepared POPE* LUVs with a 25 mM NaCl core and



FIGURE 3 (A) Vesicle size (symbols) as a function of temperature and

corresponding aT
S , and aT

AL
(dashed lines) for POPEout/POPCin (D/A ¼ 2)

aLUVs (filled symbols) and POPE* LUVs (open symbols), as determined

from DLS. The dash-dotted gray line represents aT
AL

values reported from

scattering experiments (50). (B) Corresponding cryo-TEM images of

POPEout/POPCin (upper) and POPCout/POPEin (lower) measured at 4�C
(left column) and 35�C (right column). To see this figure in color, go online.
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observed spherical vesicles by TEM (Fig. S6 B). The
osmotic pressure resulting from NaCl in the core of aLUVs
can be estimated by the Laplace equation, DP ¼ 2g=R,
where g represents the surface tension and R is the vesicle
radius. Using R ¼ 65 nm and g ¼ 41 mN=m (54), we calcu-
late DPx0:01 bar, which is too small to induce any detect-
able change to the nanoscopic leaflet structure—consistent
with previous reports (30,33). However, defect lines in
gel-phase vesicles can be expected to increase their flexi-
bility, rendering them spherical even at low osmotic
pressures.
FIGURE 4 DSC cooling scans of POPCout/POPEin (A) and POPEout/

POPCin (B) aLUVs (D/A ¼ 3) (solid lines). Transitions of the correspond-

ing scrambled LUVs are shown as gray dashed lines. (Insets) Schematics of

leaflet structure. See Fig. S7 for the corresponding D/A¼ 2 data. To see this

figure in color, go online.
Leaflet structure and thermotropic behavior

Melting of asymmetric leaflets

Phase transitions in POPEout/POPCin and POPCout/POPEin

aLUVs were studied by DSC. Comparison of cooling scans
from the two types of aLUVs reveal different behavior
(Fig. 4). A single, but broad, melting transition was
observed when POPE forms the inner leaflet. However,
the melting of aLUVs with POPE comprising the major
component in the outer leaflet is significantly broader,
with two distinct melting transitions. Similar trends were
observed for D/A ¼ 2 aLUVs (Fig. S7).

It therefore seems that POPEout/POPCout aLUVs display
an extended range of gelout/fluidin coexistence, whereas
POPCout/POPEin aLUVs melt cooperatively, indicating
strong interleaflet coupling. Moreover, the high-tempera-
ture melting transitions (T

PE=PC
M ) of POPEout/POPCin

aLUVs can be compared to the TM for symmetric LUVs
with the same outer-leaflet composition. For both D/A
ratios, T

PE=PC
M was � 2� 5 �C higher than the expected

TM. This indicates lipid domain formation (gel-fluid phase
coexistence) within the outer monolayers, consistent with
the occurrence of several heat capacity maxima—features
Biophysical Journal 114, 146–157, January 9, 2018 151
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that are particularly pronounced for aLUVs prepared at
D/A ¼ 2 (Fig. S7 B).

Lipid packing in gel-phase leaflets

Lipid lateral areas were determined from WAXS measure-
ments. The most distinct difference in WAXS signals be-
tween aLUVs and scrambled LUVs was the width of the
chain-chain correlation peak being much broader in the
case of aLUVs (Fig. 5 A). This signifies a smaller gel-phase
domain size for aLUVs, which can be also expressed in
terms of the average chain-chain correlation length, xD. In
general, xD ranged between 200 and 300 Å, and averaged
over all temperatures, xaLUVD < xLUVD (Fig. 5 A, inset). This
is good evidence that gel-phase lipids are less well packed
in aLUVs. Moreover, no additional peaks or shoulders
were observed. Hence, acyl chain packing on a two-dimen-
sional hexagonal lattice (with non-tilted hydrocarbons) is
dominated by POPE in aLUVs, i.e., they form an Lb phase.

To determine the effect of lipid packing density in the
bilayer leaflets, we compared the AL values determined
directly from WAXS of aLUVs to those calculated from
FIGURE 5 Wide-angle scattering and lipid packing of gel-phase aLUVs. (A

(dashed line) fitted by Gaussians. The inset compares the average cD of aLUV

and POPCout/POPEin (solid line; T ¼ 5�C) WAXS data fitted by Gaussians. Th

fluid hydrocarbons (inset). (C and D) AL values for POPC
out/POPEin (C) and POP

correspond to theoretical AL values of the outer leaflet and the dashed line to th

sition. See Fig. S8 for the corresponding D/A ¼ 2 data. To see this figure in co
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their known monolayer composition (see Materials and
Methods).

In the case of POPCout/POPEin, both leaflets form a gel
phase in the temperature range shown in Fig. 5 C. Interest-
ingly, theoretical AL values show that lipids, on average,
pack in aLUVs more tightly than in decoupled monolayers
of equal outer-leaflet composition, but less so in decoupled
monolayers of same inner-leaflet composition. That is, the
observed lipid packing in aLUVs is a compromise between
inner- and outer-leaflet lipids, and neither leaflet dominates
over the other.

In the case of POPEout/POPCin aLUVs, WAXS data show
coexistence of an inner POPC fluid leaflet and an outer leaflet
dominated by POPE-enriched gel domains (Fig. 5 B). In
particular, we observed an additional broad peak centered
at q � 13:8 nm�1 , typical for hydrocarbons in the La phase
(see, e.g., (55)). Note that fluid patches in the outer leaflet
will also contribute to this peak. If we calculate themolecular
averaged AL using Eq. 5, according to the outer-leaflet
composition and assuming that all POPC in the outer leaflet
is in the gel phase, we find good agreementwith experimental
) Comparison of WAXS data for aLUVs (solid line) and scrambled LUVs

s and LUVs. (B) Comparison of POPEout/POPCin (dashed line; T ¼ 10�C)
e POPEout/POPCin data contain an additional broad peak originating from

Eout/POPCin aLUVs (D) as a function of temperature (symbols). Solid lines

eoretical AL values of the inner leaflet calculated for a given leaflet compo-

lor, go online.
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data (Fig. 5 D). This provides additional proof that the two
leaflets are not coupled. Note that if one assumes that
POPC in the outer leaflet forms fluid domains, the calculated
AL value would decrease by �0.2 Å2. In reality, however,
the amount of fluid POPC changes in the temperature range
studied, and this is beyond the scope of this study.

Lipid packing in all-fluid leaflets

In the fluid phase, acyl chain-chain correlations are weak,
and WAXS data do not allow for an unambiguous analysis
of lipid packing in each leaflet. We therefore applied a joint
analysis of SANS/SAXS data as detailed in the Materials
and Methods.

Three scattering contrast conditions were analyzed for
POPCout/POPEin aLUVs and their scrambled analogs
(Figs. 6 and S9). Application of the aSDP model yielded
reasonable agreement with experimental data. Note that
these fits were constrained by lipid compositions detailed
FIGURE 6 Joint analysis of SAXS (upper) and SANS (lower) data for

POPCout/POPEin aLUVs at 35�C. Solid lines show best fits using the

aSDP model (dashed line, POPCout/POPEin; solid line, POPCout/POPE-

d31in). (Insets) Corresponding electron and neutron scattering-length den-

sity profiles. To see this figure in color, go online.
in Table 1. Deviations between fits and data are observed
for the first scattering-intensity minimum. This ‘‘lift-off’’
may have several origins and can, for example, be accounted
for assuming a small variation in membrane thickness.
Although the introduction of an additional parameter to
describe a thickness distribution resulted in a better fit, it
did not affect the final structural parameters. We therefore
chose to use the simpler model for the analysis presented
here. For details of the obtained parameters, see Table S2.
AL values are reported in Table 2 and show, on average, a
lower packing density of lipids in the outer leaflet compared
to those in the inner leaflet (DAL � 4 �A2). However, this
relates to the leaflet’s lipid composition, as demonstrated
by the AL values calculated from molecular averages of
pure POPE (50), POPC (49), and POPG (56) (Table 2).
The remarkable agreement between measured and calcu-
lated AL values shows that the lipid areas in each leaflet
result from averaging the molecular packing properties of
POPE and POPC lipids, and not from adjusting to the lipid
packing in the apposing leaflet. Analysis of POPEout/
POPCin aLUVs yielded comparable results (Fig. S10;
Table 2), with the difference that the average packing of
lipids in the inner leaflet is less dense than those in the outer
leaflet. The good agreement with the calculated AL value
again demonstrates that the structural differences between
the two leaflets relate to their compositional differences
and not to any transbilayer coupling mechanism. Further,
DAL was similar for POPCout/POPEin aLUVs. Conse-
quently, we conclude that fluid leaflets POPCout/
POPEin and POPEout/POPCin aLUVs behave independently
of each other. We note, however, that the experimental
uncertainty of the WAXS data analysis (<0:1%) is signifi-
cantly smaller than that of the joint SANS/SAXS data fits
(<3%). Moreover, the observed changes in lipid packing
densities of gel phase lipids due to the transbilayer coupling
is <1% (Fig. 5). Hence, subtle features of transbilayer
coupling in all-fluid POPE/POPC aLUVs may not be
detectable.
DISCUSSION

We studied POPCout/POPEin and POPEout/POPCin aLUVs
over a range of temperatures using a complementary array
of experimental techniques. This resulted in a comprehen-
sive picture of membrane structure, from the microscopic
to nanoscopic length scales. Cryo-TEM and DLS reported
on the overall morphology and size of the vesicles, whereas
TABLE 2 Leaflet-Specific Lipid Areas of Fluid aLUVs

Ain
L (Å2) Aout

L (Å2)

POPCout/POPEin 59.7 (59.3a) 64.7 (63.0a)

POPEout/POPCin 64.7 (64.9a) 59.9 (60.7a)

D/A ¼ 2. Experimental uncertainties are within 3%.
aValues calculated from leaflet composition using data reported in (49–51).

Biophysical Journal 114, 146–157, January 9, 2018 153



Eicher et al.
DSC combined with WAXS and SAXS/SANS experiments
yielded insight into layer-specific structural details.

We found significant inter-leaflet coupling in POPCout/
POPEin aLUVs in the gel phase. In the case of fluid
POPCout/POPEin aLUVs, and also for POPEout/POPCin

aLUVs at all temperatures, no transbilayer coupling was de-
tected (Fig. 7). We will first discuss POPCout/POPEin at low
temperatures. Here, our DSC experiments showed a single
transition peak around 16.5�C (Fig. 4), indicating coopera-
tive melting of the two leaflets. Our WAXS data analysis
demonstrated that this coupling leads to a partial fluidization
of the inner leaflet combined with a more densely packed
outer leaflet, as compared to uncoupled leaflets of same lipid
composition (Fig. 5). The average lipid packing in the outer
and inner leaflets of this system therefore appears to be a
compromise between the individual-leaflet properties. Inter-
estingly, lateral positional correlations between acyl chains
were less evident in aLUVs when compared to their sym-
metric counterparts (Fig. 5), suggesting an increase in de-
fects in aLUVs (Fig. 7 A).
FIGURE 7 Schematic lipid distribution and transbilayer coupling in

POPCout/POPEin (A) and POPEout/POPCin aLUVs (B). To see this figure

in color, go online.
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In the case of POPEout/POPCin aLUVs (Fig. 7 B), bilayer
leaflets melted independently (Fig. 4), and acyl chain pack-
ing of gel domains in the outer leaflet resembled a normal Lb

phase—also in terms of AL values (Fig. 5, B and D). This is
in contrast to our previous observations for DPPCout/POPCin

aLUVs at low temperatures, where a significant disordering
of the gel-like domains in the outer leaflet was observed,
whereas the inner POPC layer did not differ from a pure
POPC bilayer in terms of structure (30). Hence, POPEout/
POPCin leaflets are uncoupled even at low temperatures.
Due to the different lateral expansivities of the gel and fluid
phases, this leads to significant strain within the vesicle,
which may result in aLUV invagination or even rupture
with increasing temperature. Area expansion is particularly
pronounced across the melting transition, with an area
increase of � 16 %, whereas a fluid membrane over the
same temperature range expands by only 5% (estimated
fromWAXS data and literature (49,50)). However, TEM ex-
periments yielded no evidence of significant morphological
changes to the vesicles in the phase-transition region
(Fig. S5), consistent with the high aLUV stability seen in
repeated DSC scans (Fig. S4) and the slow lipid flip-flop
(Table S1). Instead, our DLS data showed a fluid-like
expansion of the vesicle surface area over the temperature
range studied, including the gel-fluid coexistence region
(Fig. 3 A). This can be rationalized by taking into account
the increased number of defects present in the gel-phase re-
gions of the outer leaflet, as evidenced in a smaller xD,
compared to symmetric vesicles (Fig. 5 A). Further, the
fact that cP never reaches baseline (Figs. 4 B and S7 B) in-
dicates that melting of gel domains in the outer leaflet oc-
curs continuously throughout the gel-fluid coexistence
regime. We therefore speculate that gel-domain melting at
the boundaries of the defect zones occurs with similar
high expansivities, as observed in the phase transition
regime of POPE* LUVs (Fig. 3 A). This would yield an
overall fluid-like aLUV expansion, which avoids any
vesicle-shape changes across the melting region.

Mechanisms of transbilayer coupling have been described
using molecular models (partial hydrocarbon chain inter-
digitation, cholesterol flip-flop (14,15)), and continuum
models (intrinsic curvature, electrostatic coupling, and
entropic membrane undulations (12–16)). Due to the signif-
icant negative J0 of POPE, as compared to POPC (57),
an intrinsic curvature-mediated coupling appears to be
the most likely explanation for the current system.
This would energetically favor placing POPE in the inner
leaflet of lipid vesicles. This can be further tested by chang-
ing the aLUV size, as the effect should be more pronounced
for highly curved small vesicles, and would eventually
disappear at larger vesicle sizes—this will be the subject
of future work.

Interestingly, the POPE J0 value decreases almost twice
as fast with temperature relative to that of POPC (57). The
intrinsic curvature strain stored within the aLUVs should
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therefore increase with temperature, leading to an expected
pronounced inter-leaflet coupling in the fluid phase. Yet,
regardless of the location of POPE, fluid aLUVs do not
exhibit any signs of coupling (Table 2).

This can be explained by considering the lipid acyl chain
structure. POPE is a monounsaturated lipid, which means
that its oleoyl chain is kinked even when in the gel phase
and occupies an area greater than all- trans palmitic
chains. This feature is also expressed by its AL, which is
� 3� 4 �A2 larger than that of dipalmitoyl phosphatidyleth-
anolamine (35,58,59). Hence, even gel-phase POPE can be
expected to display a significantly negative J0. Additionally,
lipids in the gel phase experience decreased motional en-
tropy. That is, intrinsic curvature strain is less easily
compensated by hydrocarbon chain dynamics. The latter
effect may explain the absence of leaflet coupling in the
fluid phase. Alternatively, experimental limitations in deter-
mining the AL of fluid-phase bilayers with an accuracy
comparable to that achieved in gel-phase bilayers may
also explain this result. Technical developments capable of
addressing this issue are currently taking place in our labo-
ratories. We further note that the presence of POPG might
affect the observed dependencies on POPE sidedness. Due
to its negligible J0 value, POPG should reduce the average
inner-leaflet intrinsic curvature for POPCout/POPEin by
� 10 %, and could therefore potentially cause a small
decrease in transbilayer coupling strength. One might also
expect that the differences in bending rigidities of gel and
fluid bilayers (for review, see, e.g., (60)) could contribute
to leaflet coupling. However, this should not depend on a
specific enrichment of PE in one of the bilayer’s leaflets,
and it would not explain the distinct differences between
POPCout/POPEin and POPEout/POPCin. Moreover, elastic
strain energy depends linearly on bending rigidity but
quadratically on J0 (61). Hence, J0 is more of a factor
than membrane flexibility in affecting leaflet-specific strain
energies.

Finally, the observed coupling for POPCout/POPEin may
be influenced by the greater intermolecular hydrogen-
bonding abilities of PE lipids (62). Differences in concentra-
tion of POPE in the inner/outer leaflets of POPCout/POPEin

and POPEout/POPCin (Table 1) keep us from completely
ruling out such contributions.
CONCLUSIONS

We presented experimental evidence for curvature-medi-
ated coupling in gel-phase POPCout/POPEin aLUVs, which
emphasizes the inner leaflet as being the energetically
preferred location of POPE in plasma membranes (1–4).
Interestingly, this leaflet coupling was not observed in the
physiologically relevant fluid phase. This finding is in
agreement with our recent report on DPPCout/POPCin

aLUVs (33) and aLUVs enriched in SM in the outer leaflet
(31,63). That is, the structure of fluid membranes is domi-
nated by layer-specific membrane properties and is not
influenced by that of the apposing leaflet. Consequently,
hydrocarbon chain interdigitation (14,23), even if present,
does not provide a sufficiently strong impetus to influence
the two bilayer leaflets. However, noting that hydrocarbon
chain asymmetry was recently reported to influence lipid
diffusion but not the order of an apposing leaflet (32), we
cannot exclude or comment on any effects on the lipid’s
lateral mobility, though we are planning to address this
issue in future work. Future experiments will also focus
on the role of cholesterol in the mechanical coupling of
fluid membranes. Cholesterol was deliberately excluded
from this study to keep the analysis tractable, but it is
known to exchange rapidly between the two leaflets (64);
it also has a significant negative intrinsic curvature (57),
which may contribute to the coupling of fluid asymmetric
membranes. The tools developed in the past couple of
years (28,30,33) will allow us to address these issues
in detail.
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1 Sample preparation

Acceptor vesicles were prepared in 25 mM NaCl solution to a lipid concentration of 10 mg/mL. All
acceptor vesicles were doped with 10 mol% POPG or POPG-d31 matching the isotopic composition
of the inner leaflet hydrocarbons. Doping vesicles with PG facilitates LUV formation (see below).
Throughout this work we report POPE/POPC* molar ratios, only, where the asterisk indicates the
presence of POPG. During hydration samples were incubated for one hour at ≥ 10°C above the lipid’s
melting transition (TM ) with intermittent vortex mixing, followed by 5 freeze/thaw cycles of the
hydrated vesicles using liquid nitrogen. Finally, LUVs were obtained by passing the lipid dispersions
31 times (T > TM + 10°C) through 100 nm pore-diameter polycarbonate filters using a hand-held
mini-extruder (Avanti Polar Lipids, Alabaster, AL, USA). In turn, donor vesicles (composed of outer
leaflet lipids) were prepared in the form of multilamellar vesicles (MLVs) by hydrating the dry films
in 20% (w/w) aqueous sucrose solution at a lipid concentration of 20 mg/mL, followed by an 1-hour
incubation at T > TM + 10�, with intermittent vortex mixing, and 3 freeze/thaw cycles. Finally,
donor MLVs were diluted by a factor of 20 with water and centrifuged for 30 min at 20,000 ×g to
remove extravesicular sucrose.

Lipid exchange was initiated by re-suspending the pellet containing donor vesicles in 35 mM mβCD
(lipid:mβCD = 1:8) followed by a 2 h incubation at room temperature while being gently stirred. Next,
acceptor LUVs were added to the mβCD/donor solution and stirred gently for 30 min (T > TM+10�
for POPE acceptor vesicles and T = room temperature for POPC acceptor vesicles). Two different
donor/acceptor molar ratios (D/A = 2 and D/A = 3) were applied yielding a different lipid exchange
(see below). Dispersions containing the final aLUVs were diluted by a factor of seven with water and
centrifuged at 20,000 ×g for 30 min. The supernatant (containing aLUVs, residual CD and sucrose)
was removed carefully and concentrated with a centrifugal ultrafiltration device (100 kDa cutoff) to
<0.5 mL. Finally, sucrose and CD were removed by repeated washing in either D2O for 1H-NMR and
SANS experiments, or in H2O for all other experiments.

For control experiments, vesicles with the same but symmetric lipid distribution as aLUVs were dried
down to a film under reduced atmospheric pressure using a rotary evaporator (Heidolph, Germany)
with the water bath set to 40�. The dried lipid film was redissolved in chloroform and from that
point on prepared as acceptor vesicles including the extrusion step. The resulting LUVs are called
’scrambled’ vesicles throughout this report.
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2 Evaluation of bilayer asymmetry via 1H-NMR

The paramagnetic lanthanide ion Pr3+ interacts with choline protons, shifting their resonance down-
field as shown in (1), see Fig. S2. By adding Pr3+ to a vesicle suspension, the shift is selective for outer
leaflet protiated choline, leading to a separate resolution of the protiated choline resonances from the
inner and outer leaflet (2). The integrated area R of each resonance is proportional to the number of
molecules having protiated headgroups in the corresponding leaflet (Fig. S2). The outer leaf’s peak
fraction is defined as:

fout =
Rout

Rin +Rout
, (1)

where the superscripts ’out’ and ’in’ indicate the outer and inner leaflet. When all lipids posses
protiated headgroups, fout directly yields the mole fraction of all bilayer lipids found in the outer
leaflet:

Xout =

∑
j N

out
j∑

j Nj
≡ fout, (2)

where N and Nout denote the number of molecules in the whole bilayer and in the outer leaflet and
the summation is performed over all components of the mixture. For a bilayer with an equal number
of lipids in the leaflets Xout = 0.5. However, POPE and POPC have different AL (3, 4) which means
that Xout is defined by the area per lipid of the inner (AinL ) and of the outer leaflet (AoutL ):

Xout =
1/AoutL

1/AoutL + 1/AinL
∗ 1.06, (3)

where the factor 1.06 considers the slightly bigger surface of the outer to the inner leaflet (5) by
assuming a vesicle size of 130 nm and a bilayer thickness of 40 Å. As only one mixture component
possesses a protiated choline (POPC) we define the single-component outer leaflet peak fraction foutPC

as:

foutPC =
Nout
PC

NPC
=
XoutχoutPC

χPC
, (4)

where χoutPC stands for the outer leaflet mole fraction of POPC. Combining the two previous equations
gives the following expression for the outer leaflet mole fraction of POPC:

χoutPC =
foutPCχPC
foutPC

. (5)

For a two component POPC/POPE bilayer, all compositional parameters χout,inPC/PE can be expressed
as:

χoutPC =
foutPCχPC

Xout

χinPC =
(1−foutPC )χPC

(1−Xout) .

χ
in(out)
PE = 1− χin(out)PC

(6)
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3 Supplementary Figures

Figure S1: DSC cooling thermograms of POPE/POPC* MLV mixtures (numbers adjacent to
data give the molar fractions of POPE). Note that compared to LUV data (Fig. 1) no solidus
peak is visible. This relates to subtle differences in melting of LUVs and MLVs. Due to geometric
constraints MLVs typically exhibit a significantly higher cooperative melting transition (see
e.g. (6)). The solidus peak observed for LUVs indicates phase separation. The absence of
this peak in MLV data consequently suggests that these phases are not coupled across the
interstitial water layers. Note that these differences do not affect the position of the liquidus
peak. DSC scans on MLVs and LUVs yield within experimental error identical TM ’s (Fig. 1,
insert), signifying the robustness of the applied calibration.
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Figure S2: Upper panel : 1H-NMR shows the choline resonance (green Lorentzian) from POPC
acceptor lipids, while the red Lorentzian considers the contribution of residual mβCD. Lower
panel : 1H-NMR signal in the presence of the shift reagent Pr3+. The shifted population (blue
Lorentzian) relative to the unshifted population (green) reveals inner leaflet acceptor enrichment
in the aLUVs.
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Figure S3: Temperature dependence of areas per lipid for different POPE/POPC* mixtures.
The increase of POPC concentration leads to a progressive upshift of lipid areas (black line:
χPOPE = 1, green line: χPOPE = 0.3)
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Figure S4: Three consecutive heating scans of POPEout/POPCin (D/A = 3). Data were back-
ground subtracted, but not normalized for sample concentration.

Figure S5: Cryo-TEM images of POPEout/POPCin aLUVs at different temperatures. The mid-
dle panel corresponds to the phase transition regime.
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Figure S6: Cryo-TEM images of POPE* LUVs in the gel-phase without (panel A) and with a
25 mM NaCl core (panel B). Panel C shows the LUVs in fluid phase.
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Figure S7: DSC cooling scans of POPCout/POPEin (panel A) and POPEout/POPCin (panel B)
aLUVs (D/A = 2) (red lines). Transitions of corresponding scrambled LUVs are shown as gray
dashed lines. Insets show schematics of leaflet structure.
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Figure S8: Area per lipid for POPCout/POPEin (A) and for POPEout/POPCin (B) as a function
of temperature (symbols). Solid lines correspond to theoretical AL’s of the outer leaflet and the
dashed line to theoretical AL’s of the inner leaflet calculated from the given leaflet composition.
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Figure S9: Analysis of scattering data of scrambled POPE/POPC LUVs (T = 35�). Left
panel : SAXS (top) and SANS (lower) data of POPCdon/POPEacc LUVs. Right panel : SAXS
data of POPEdon/POPCacc LUVs. Solid lines correspond to best fits using the SDP model.
SANS data have been obtained at two contrasts (blue line: POPCdon/POPEacc, green line:
POPCdon/POPE-d31acc). Inserts show the corresponding scattering length density profiles.
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Figure S10: Joint analysis of SAXS (top panel) and SANS (lower panel) data of
POPEout/POPCin aLUVs at 35�. Solid lines show best fits using the aSDP model (blue line
POPEout/POPCin). Inserts show the corresponding scattering length density profiles.
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4 Supplementary Tables

Table S1: Decay of normalized bilayer asymmetry determined from 1H-
NMR.

POPEout/POPCin POPCout/POPEin

10� 35� 10� 35�
time (h) ∆C ∆C ∆C ∆C

0 1.00±0.04 1.00 ± 0.04 1.00 ± 0.09 1.00 ±0.08
20 1.07± 0.20 0.98 ± 0.04 1.00 ± 0.09 0.97 ± 0.07
70 1.00 ± 0.09 0.91 ± 0.05 0.94 ± 0.07 0.93 ± 0.08

118 0.96 ± 0.03 0.86 ± 0.03 0.98 ± 0.07 0.94 ± 0.05

Table S2: Structural parameters of asymmetric and scrambles
POPCout/POPEin and POPEout/POPCin vesicles 35 ◦C determined
with the aSDP-model.

POPCdon/POPEacc POPEdon/POPCacc

asym scram asym scram

out in out in
AL [Å2] 64.7 59.7 61.5 59.9 64.7 63.2
σRH [Å] 2.87 2.79 2.85 2.84 2.95 2.85
σCG [Å] 2.46 2.47 2.49 2.52 2.51 2.45
σM [Å] 2.00 1.99 2.04 2.03 2.01 1.97
σMN [Å] 5.01 5.01 5.01 5.01 5.01 4.95
|zRH | [Å] 19.62 20.04 19.69 20.13 18.92 19.36
|zCG| [Å] 16.35 17.56 17.12 17.02 15.88 16.21
|zM |∗ [Å] 1.00 1.00 1.00 1.00 1.00 1.00
|zMN | [Å] 14.37 15.58 15.13 15.52 14.38 14.71

∗fixed parameter
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