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Appendix A: TRANSPOSING INDIRECT COMPARISONS TO OTHER TARGET 

POPULATIONS 

Under the assumption of shared effect modifiers for a set of treatments , we have the relation on the 

population-specific relative treatment effects from equation (9): 

 
( ) ( ) ,tu P tu Qd t ud     

which holds for any two populations P  and Q . 

Proof 

Using additivity on an appropriate linear predictor scale, we write the transformed conditional absolute 

treatment effects  ,t X U  as 

      0 1 1 2, 2,, T T T EM T EM

t t t t AI t       X U X φ U X Uβ β φ ,  (10) 

where X  and U  are vectors of observed and unobserved covariates respectively (possibly with 

interactions or higher order terms), with corresponding subvectors of effect modifiers 
EM

X  and . 

Equation (10) represents the underlying (transformed) outcome model, which cannot be estimated 

directly as U  are unobserved. 

Using the shared effect modifier assumption on the set of treatments , which means that 
2, 2t β β  

and 
2, 2t φ φ  t   we rewrite the outcome model (10) for t  as 

      0 1 1 2 2, T T T EM T EM

t t I t A      X U Xβ β φ Uφ U X .  (11) 

We then write the relative effects between any two treatments ,t u  in any two populations P  and 

Q  using equation (11) as 
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Therefore ( ) ( )tu P tu Qd d  holds for all ,t u . 
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EXAMPLE 

To see the application of the shared effect modifier assumption in practice, consider an example 

where the following log odds ratios in the AC  population have been estimated to be ( ) 3ˆ 1.AB ACd   

and ( )
ˆ 0.8AC ACd  , and therefore ( )

ˆ
BC ACd ( ) ( ) 0.5ˆ ˆ

AC AC AB ACd d    . 

Furthermore, in a population P  the log odds ratio for treatment B  compared to A  is estimated to be 

( ) 0.7ˆ
AB Pd  . We make the shared effect modifier assumption for treatments  ,B C  . 

With the shared effect modifier assumption, we use relation (9) to see that ( ) ( ) 0.ˆ 5ˆ
BC P BC ACd d   , 

and the log odds ratio for treatment C  compared to A  in population P  is inferred to be 

( ) ( ) ( )
ˆ ˆ 0.ˆ 2AC P AB P BC Pd d d  . 
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Appendix B: REPORTING OF POPULATION-ADJUSTED ANALYSES 

When reporting population-adjusted analyses, the following themes should be considered and addressed 

explicitly: 

1. The variables available in each study should be listed, along with their distributions (e.g. through 

box plots or histograms). Sufficient covariate overlap between the populations should be assessed: 

for population reweighting methods (such as MAIC), the number of individuals assigned zero 

weight should be reported; for outcome regression methods (such as STC), the amount of 

extrapolation required should be considered. For anchored comparisons this applies only to effect 

modifiers (see point 2); for unanchored comparisons all variables relevant to outcome should be 

presented. 

2. Evidence for effect modifier status should be given, along with the proposed size of the interaction 

effect and the imbalance between the study populations. The resulting potential bias reduction 

compared with a standard indirect comparison may be calculated by multiplying the interaction 

coefficient by the difference in means.10 

3. The distribution of weights should be presented for population weighting analyses, and used to 

highlight any issues with extreme or highly variable weights. Presentation of the effective sample 

size may also be useful. ESS may be approximated using equation (7) – which is likely to be an 

underestimate – but provides clear warning where inferences are being made based on just a small 

number of individuals. 

4. Measures of uncertainty, such as confidence intervals, should always be presented alongside any 

estimates. Care should be taken that uncertainty is appropriately propagated through to the final 

estimates. For outcome regression methods, uncertainty is fully propagated for predictions into the 

aggregate population by the outcome regression model. For population reweighting methods, a 

robust sandwich estimator (as typical for MAIC) provides estimates of standard error which 

account for all sources of uncertainty.  Other techniques include bootstrapping and Bayesian 

methods. 

5. For an unanchored comparison, estimates of systematic error before and after population 

adjustment should be presented.10 

6. Present estimates for the appropriate target population using the shared effect modifier assumption 

if appropriate, or comment on the representativeness of the aggregate population to the true target 

population. 

7. In order to convey some clarity about the impact of any population adjustment, the standard 

indirect comparison estimate should be presented alongside the population-adjusted indirect 
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comparison if an anchored comparison is formed; for an unanchored comparison, a crude 

unadjusted difference should be presented alongside the MAIC/STC estimate.  
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Appendix C: PROCESS FOR POPULATION-ADJUSTED INDIRECT COMPARISONS 

Figure 1:  Anchored methods for population-adjusted indirect comparisons 

 

  

Propensity score reweighting Outcome regression 

1. Provide evidence for effect modifier status on a suitable transformed scale. 

2. Provide evidence that effect modifiers are in substantial imbalance between studies. 

3a. Create a logistic propensity score model, 

which includes all effect modifiers but no 

prognostic variables. This is equivalent to a 

model on the log of the weights: 

  0 1log T EM

it itw   α X  

 
3b. Estimate the weights using the method of 

moments to match effect modifier distributions 

between trials. This is equivalent to minimising 
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4. Predict outcomes on treatments A  and B  

in the AC  trial by reweighting the outcomes of 

the AB  individuals: 
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3. Fit an outcome model in the AB  trial, 

which includes all effect modifiers in 

imbalance and any other prognostic variables 

or effect modifiers that improve model fit: 
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4. Predict transformed outcomes on 

treatments A  and B  in the AC  trial using the 

outcome model: 
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5. Form the anchored indirect comparison in the AC  population as: 

        ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ

BC AC C AC A AC B AC A ACg Y g Y g Y g Y      

6. Calculate standard errors using a robust 

sandwich estimator, bootstrapping, or Bayesian 

techniques. 

7. If justified, use the shared effect modifier assumption to transport the ( )
ˆ

BC AC  estimate into the 

target population for the decision. Otherwise, comment on the representativeness of the AC  population 

to the true target population. 

6. Calculate standard errors using the outcome 

model. 

8. Present the distribution of estimated 

weights, and effective sample size. 

8. Present standard model fit statistics. 
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Figure 2:  Unanchored methods for population-adjusted indirect comparisons 

 Propensity score reweighting Outcome regression 

1a. Create a logistic propensity score model, 

which includes all effect modifiers and 

prognostic variables. This is equivalent to a 

model on the log of the weights: 

  0 1log T

i iw   α X  

 

1b. Estimate the weights using the method of 

moments to match effect modifier distributions 

between trials. This is equivalent to minimising 
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2. Predict outcomes on treatment B  in the C  

trial by reweighting the outcomes of the B  

individuals: 

( )

( )

( )1
( )

1

ˆ
ˆ

ˆ

B B

B B

N

i B ii
B C N

ii

w
Y

Y

w









 

1. Fit an outcome model in the B  trial, which 

includes all effect modifiers and prognostic 

variables: 
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2. Predict transformed outcomes on 

treatments A  and B  in the C  trial using the 

outcome model: 
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3. Form the unanchored indirect comparison in the C  population as: 

   ( ) ( ) ( )
ˆ ˆ

BC C C C B Cg Y g Y    

4. Calculate standard errors using a robust 

sandwich estimator, bootstrapping, or Bayesian 

techniques. 

6. If justified, use the shared effect modifier assumption to transport the ( )
ˆ

BC C  estimate into the 

target population for the decision. Otherwise, comment on the representativeness of the C  population 

to the true target population. 

4. Calculate standard errors using the outcome 

model. 

7. Present the distribution of estimated 

weights, and effective sample size. 

5. Provide evidence that absolute outcomes can be predicted with sufficient accuracy in relation to 

the relative treatment effects, and present an estimate of the likely range of residual systematic error. 

If this evidence cannot be provided or is limited, then state that the amount of bias in the indirect 

comparison is likely to be substantial, and could even exceed the magnitude of treatment effects which 

are being estimated. 

 

7. Present standard model fit statistics. 
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