Role of METTL20 in regulating beta-oxidation and heat production in mice under fasting or ketogenic conditions

Tadahiro Shimazu¹, Tamio Furuse², Shabeesh Balan³, Ikuko Yamada², Shuzo Okuno⁴, Hiroko Iwanari⁵, Takehiro Suzuki⁶, Takao Hamakubo⁵, Naoshi Dohmae⁶, Takeo Yoshikawa³, Shigeharu Wakana², Yoichi Shinkai^{1§}

¹Cellular Memory Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
 ²Japan Mouse Clinic, RIKEN BRC, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.
 ³Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
 ⁴Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8507, Japan.
 ⁵Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
 ⁶Biomolecular Characterization Unit, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan

Table S1

						Protein	Transcript		Allele		Number of	Allele
Chrom	Position	RSID	Reference	Alternate	Consequence	Consequence	Consequence	Annotation	Count	Allele Number	Homozygotes	Frequency
12	31814952	rs138402033	G	A	p.Arg22Gln	p.Arg22Gln	c.65G>A	missense	31	121408	1	2.55E-04
12	31815167	rs61736289	G	Т	p.Ala94Ser	p.Ala94Ser	c.280G>T	missense	4521	121018	102	3.74E-02
12	31815202	rs138229541	G	А	c.314+1G>A		c.314+1G>A	splice donor	465	119920	6	3.88E-03
12	31820653		Т	G	p.Ile173Ser	p.Ile173Ser	c.518T>G	missense	5	121186	1	4.13E-05
12	31820697	rs143179970	G	A	p.Asp188Asn	p.Asp188Asn	c.562G>A	missense	15	121324	1	1.24E-04
12	31820752		G	A	p.Cys206Tyr	p.Cys206Tyr	c.617G>A	missense	10	121384	1	8.24E-05
12	31820796	rs151164668	С	Т	p.Arg221Trp	p.Arg221Trp	c.661C>T	missense	38	121398	1	3.13E-04
12	31820856	rs115438422	С	Т	p.Leu241Phe	p.Leu241Phe	c.721C>T	missense	381	121384	5	3.14E-03

Homozygote mutation in the ExAC database.

Figure S1. Validation of monoclonal anti-diMeLys antibodies, c4930 and c5123

The specificity of two monoclonal antibodies (c4930 and c5123) was analyzed by ELISA using ARTKQTARKSTGC, histone H3 H4 peptides (H3K4: H3K9: and ARTKQTARKSTGGKAPRKQC, GKGGAKRHR<u>K</u>VLRDNIQGIC) H4K20: containing different modifications. Methylated K is underlined. Microtiter plates coated with the peptides (indicated on the right) were incubated with 3-fold dilutions of each antibody (starting from 1:3000 dilution). After incubation with peroxidase-conjugated secondary antibody and washing, the colorimetric signal of tetramethylbenzidine was detected by measuring the absorbance at 405 nm (Abs) using a plate reader.

Figure S2. Identification of ETFB as a METTL20 Substrate in mitochondria

(a) FLAG-tagged ETFB or recombinant Histone H3 were incubated with or without His-METTL20 in the presence of ProSeAM for 2 h at 20°C. Modified proteins were biotinylated and detected with streptavidin-HRP (left) or anti-FLAG antibody and anti-Histone H3 antibody for the loading control (right).

(b) FLAG-tagged ETFB were incubated with or without His-METTL20 in the presence of 14C-

labeled AdoMet. Proteins were separated with SDS-PAGE and stained with Coomassie blue (right), the autoradiography was detected with the image analyzer BAS-5000 (left).

(c) Recombinant ETF complex (ETFA WT/ ETFB K200/203R) and His-METTL20 were incubated with 14C-labeled AdoMet for 2 h at 30°C. The autoradiography was detected as in E.
(d) Indicated FLAG-tagged ETFB mutants were incubated with His-METTL20 in the presence of 14C-labeled AdoMet for 2 h at 30°C. The autoradiography was detected as in E.

(e) Recombinant ETF complex and His-METTL20 were incubated with AdoMet for 0 - 180 min at 30°C. The reaction was stopped by adding Laemmli SDS-sample buffer. ETFB were separated with SDS-PAGE, and their methylation were detected with anti-triMeLys antibodies (top), antidiMeLys antibodies (middle), and anti-ETFB antibodies (bottom, as loading control).

(f) Recombinant ETF complex were incubated with His-METTL20 in the presence of AdoMet for indicated time. After the reaction, ETFB were separated with SDS-PAGE, digested with Asp-N, and methylation of peptides containing K200/203 were analyzed with MALDI-TOF-MS. Relative amount of methylation in ETFB were calculated from the intensity of peptides with 0 to 6 methyl-group.

Figure S3. Calorimetric analysis of Mettl20 KO mice under normal diet (ND)

Calorimetric analysis of Mettl20 KO mice fed with ND. ANOVA, effect of genotype, ns; not significant. N = 10 male mice for each genotype at 12 weeks of age.