Supplementary Table 1: Table with background information of the patients used for the isolation and RNA sequencing. (M=male; F=female; ASH=alcoholic steatotic hepatitis; Y=yes; N=no) | | Gender | Age at
transplantation | Transplantation
date | Diagnosis | Stopped
drinking
since | Child-
Pugh
score | MELD
score | Pathology | Smoker | Medical non-
hepatology
background | |-----------|--------|---------------------------|-----------------------------------|-----------|------------------------------|-------------------------|---------------|--|---------------------------------------|--| | Patient 1 | M | 70 | 14 th March 2011 | ASH | 2010 | B9 | 7 | Micronodular cirrhosis,
Lymphocyte
infiltration, sinusoidal
dilatation, Steatosis | Y (46PY/
stopped
since 2006) | Diabetes mellitus
since 2008 | | Patient 2 | F | 65 | 18 th December
2013 | ASH | 2012 | В9 | 14 | Cirrhosis, sinusoidal dilatation, cholate stasis | Y (50PY/
stopped
since 2013) | Diabetes mellitus
type 2 | | Patient 3 | M | 47 | 24 th April 2014 | ASH | October
2013 | C12 | 28 | Micro and macronodular cirrhosis, Steatosis | N | / | | Patient 4 | M | 48 | 27 th October
2014 | ASH | March
2013 | C10 | 18 | Micronodular cirrhosis,
Lymphocyte
infiltration, sinusoidal
dilatation, Steatosis | Y (stopped
since
March
2013) | / | ## Supplementary Table 2: List of the common top upregulated pathways. | Pathways | TROP-2 | EpCAM | SP | |---|----------|----------|----------| | PI3K/AKT Signaling | 3.61E-05 | 2.47E-04 | 3.47E-08 | | ILK Signaling | 3.45E-05 | 1.99E-04 | 1.78E-06 | | HMGB1 Signaling | 4.80E-04 | 3.00E-03 | 1.87E-08 | | RAR Activation | 6.75E-05 | 3.45E-04 | 3.86E-06 | | ERK5 Signaling | 1.78E-05 | 6.86E-04 | 9.35E-06 | | PPAR Signaling | 6.44E-04 | 1.07E-04 | 3.65E-05 | | Toll-like Receptor Signaling | 1.35E-04 | 8.15E-05 | 2.53E-04 | | IL-6 Signaling | 9.51E-04 | 1.29E-02 | 7.27E-06 | | iNOS Signaling | 8.71E-04 | 1.06E-03 | 1.34E-04 | | PTEN Signaling | 4.80E-04 | 3.00E-03 | 8.83E-05 | | IL-8 Signaling | 5.25E-04 | 1.02E-02 | 9.84E-05 | | IL-10 Signaling | 6.10E-04 | 4.35E-03 | 3.63E-04 | | NRF2-mediated Oxidative Stress Response | 6.51E-04 | 6.93E-03 | 2.92E-04 | | AMPK Signaling | 2.85E-03 | 1.63E-03 | 6.56E-04 | | | | | | Supplementary figure 1: Overview of the used FACS isolation strategy of the liver samples. Supplementary figure 2: Overview of the used analysis strategy of the RNA sequence data. Supplementary figure 3: Overview of the used workflow in this study. Supplementary figure 4: Evaluation of TROP-2, EpCAM and K19 expression in the FACS isolated groups (TROP-2 positive, EpCAM positive groups and SP), resp. compared with the TROP-2, EpCAM negative population and main population (MP). Supplementary figure 5: Comparison of the fold expression (qPCR) and the median gene expression (TPM, RNA-seq) of some selected cell markers of the same samples, indicating a correlation between qPCR and RNA sequencing data. qPCR was done on the same samples of the RNA-seq after amplification and conversion into cDNA with the WT-Ovation™ Pico RNA amplification System (NuGEN Technologies, Bemmel, The Netherlands). qPCR assays were performed using Fast SYBR Green Master Mix (Applied Biosystems, Foster City, CA, USA). Data were analysed using the comparative cycle threshold method with normalisation of the raw data to reference genes glyceraldehyde-3-phosphate dehydrogenase and ribosomal protein L19 were used to normalise the cycle threshold data and fold expression was calculated based on the 2^(- ΔΔCt) method. p<0.05; mean±SEM) Supplementary figure 6: Median gene expression (TPM±SEM) of CCL5, CXCL10 and CXCL11. (*p<0.05; mean±SEM)