
Reviewers' comments:  

 

 

Reviewer #1 (Remarks to the Author):  

 

The manuscript entitled "Chemical fluctuation theorem governing gene expression." provide an 

equation (without proof) that relates variability in copy number of molecules for a general birth 

and death process, in which the production rate can fluctuate. The authors then use this 

expression to produce analytical results for mRNA noise in few models of transcription. The most 

complete model includes, promoter switching, variation in the number of genes and fluctuations in 

the transcription rate. They then analyse three recently published E Coli datasets and provide 

some novel explanations for the dependence of non-poisson mRNA noise and mean mRNA. The 

manuscript in its current format has a fundamental problem in its aim. The title promises to be 

about the "Chemical fluctuation theorem", however, the authors do not provide proof and sufficient 

insight on the validity and novel aspects of the formula (see below). Instead, they mostly focus on 

the application of the theorem to existing data. While this is potentially interesting, we have some 

concerns about the robustness of the conclusions drawn (see below). Overall, this is a potentially 

interesting work, but in its current format it is too long and not very clear.  

 

Please see below some specific comments:  

 

1 - A derivation needs to be included. Alternatively, the paper about the derivation should be 

published first. It is hard to judge the novelty of the new Theorem given that the authors do not 

provide a derivation of this result. The authors note that the theorem “cannot be easily derived 

from the chemical master equation or its extensions”. Such a statement and the enormous amount 

of references to unpublished material in the supplement render the assumptions of the theorem 

opaque. Therefore, it is impossible to assess the generality of the result and to which situation the 

theorem applies.  

 

2- It remains unclear to me what the advantage of the theorem is compared to  

existing methods? Since the theorem “cannot be easily derived from the chemical master equation 

or its extensions”, it is interesting to note that the authors exclusively make use of models that 

can be formulated in terms of Master Equations or variants with distributed delays, see for 

instance Leier, Marquez-Lago. "Delay chemical master equation: direct and closed-form solutions." 

Proc. R. Soc. A. 471. Interface 2015, or processes described by master equations with time-

varying rate constants as in Voliotis, Thomas, Grima, Bowsher (2016). Stochastic simulation of 

biomolecular networks in dynamic environments. PLoS Comput Biol, 12, e1004923. Moreover, the 

mRNA transcription and degradation process in which both rate constants are arbitrary stochastic 

processes, including in the case of static variations, has recently solved exactly for the full 

distributions and variances: Dattani, Barahona. "Stochastic models of gene transcription with 

upstream drives: exact solution and sample path characterization." (2017) Interface 14:20160833. 

I do not see any advantage of using the newly derived theorem over the existing methods for the 

examples presented.  

 

3- A nice application of the theory is that it allows extracting correlation functions of transcription 

rates from experimental data. An important conclusion drawn from the first data set (Fig 2) is that 

the transcription rate must be an oscillatory function with an extremely short period. However, few 

aspects of this procedure remained unclear to me. How is the function Delta(x) calculated from the 

experimental data? How accurately the method represents the data and how well it supports the 

conclusions? Clearly, there must remain uncertainty in the parameters used.  

The authors assume a particular non-monotonic form of Delta(x) to fit the data. Most of its non-

monotonic shape relies on two data points obtained for very small induction levels. It should 

certainly be possible to reconstruct the correlation function directly from the raw data of Delta(x), 

computing their inverse Laplace transform and compare the results of different methods used. 



Non-parametric interpolation could also be used avoiding additional assumptions on the data. 

Comparing the results of both methods should give a more reliable estimate of whether the 

experimental data supports the conclusions.  

In this context, it appears surprising to me that variations in the transcription on the timescale of 

seconds (Fig. 2) can be inferred from dynamics measured on timescales of minutes (mRNA decay). 

Intuitively, one would assume that any fast transcription dynamics should be averaged out by 

downstream processes. Can the authors give provide more explanation on this success?  

 

4- An important source of noise considered in the manuscript is the gene copy number and the 

induced correlation in the expression levels. Gene copy number is assumed to vary on timescales 

longer than all other processes, and thus they effectively vary only from cell to cell. Typical 

timescales of gene copy number variations should be on the order of the cell cycle, however. I 

wonder how the results of the authors compare to dynamical models of replication as previously 

presented including analytical results in Peterson, Cole, Fei, Ha, Luthey-Schulten (2015). Effects of 

DNA replication on mRNA noise. PNAS 112, 15886-15891 and Swain, Elowitz, Siggia (2002). 

Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS 99, 12795-12800.  

 

5. In the model in Figure 3, the authors do not consider the possibility of multiple RNAPS 

transcribing genes at the same time. However, this is a likely possibility, highlighted by the 

common TASEP models of transcription (and translation). How sensitive are the results to this 

assumption.  

 

6. The authors assume, all genes have the same gene expression parameters in figure 4, which 

sounds a very unrealistic assumption. Could they motivate this assumption better.  

 

6. The work seems highly related to reference 46. The connection and novelty of the results should 

be better discussed.  

 

 



Overview: This paper presents the Chemical Fluctuation Theorem (CFT), a theorem
stating the relationship between cellular environment and gene expression variability. The
authors derive the predictions that this theorem makes about mRNA variability and its
associated noise sources, given set of transcriptional models. They then check how these
predictions fit data from three existing experimental datasets, which are:

1. E. coli cell-to-cell variability in number of mRNA expressed from lacZ, for various
IPTG concentrations (Reference 41).

2. mRNA and protein number statistics for a comprehensive set of E. coli genes (Reference
42).

3. mRNA copy number distribution of a library of synthetic promoters driving lacZ, in E.

coli (Reference 26). Here the di↵erences in promoter sequences have clear interpreta-
tions in terms of the molecular parameters underlying transcription (e.g., transcription
factor unbinding rate, basal transcription rate). This allows the researches to link the
molecular events underlying transcription with the observed variability in gene expres-
sion.

Recommendation : The paper hinges completely on one equation (i.e. equation
(1) in the paper) which states the CFT. Even though this equation is explained in detail,
without a proper mathematical proof it is hard to ascertain the conditions under which
this equation holds and examine the scientific claims made by the paper. For example,
it is di�cult to see if the equation will remain valid if there is feedback from mRNA to
the gene-switching rates. The analysis of existing experimental data based on CFT reveals
interesting conclusions on the sources contributing to mRNA variability. However, it is not
checked whether the conclusions hold for data that has not been used to fit the models.
For instance, it is mentioned that RNAP binding activity fluctuates at a rate � 100 Hz for
constitutive promoters. This conclusion is extracted from analyzing the data in Reference
26, but without any other cross-checks, it is hard to assess the generality of this claim.

Overall, the paper is hard to assess in terms of its scientific contributions. The central
result CFT is not presented with enough detail in this work. The paper would gain consider-
ably if more mathematical details about how CFT is derived and its underlying assumptions
is provided. The other important issues that need to be addressed are mentioned below.

Reviewer #2 (Remarks to the Author): 



1 Major Issues

1. Gene-expression variability comes from both transcription and translation steps. The
paper focuses extensively on transcriptional variability but how this variability is fil-
tered through the translation step is not properly analyzed.

2. It seems that the main advantage of CFT is that it produces a noise factorization

of mRNA variability (like equation (2) in the paper), from which Poisson and non-
Poisson part of the variability can be evaluated and the non-Poisson part can be further
analyzed in terms of its contributing factors. However such factorizations are likely
to fail if mRNAs, or its proteins, somehow influence the transcription rate (�) or
the gene-activity fluctuations ⇠ (see lines 231-234 in the text). This appears to be
a major limitation of the usefulness of the analysis presented in this paper as many
gene-expression networks consist of transcriptional feedbacks. Please discuss this issue
in the paper in detail.

3. The paper cites two key papers (references 33 and 63) that quantitatively analyze the
contributions to noise from intrinsic and extrinsic sources. Are these noise decompo-
sition results related to the noise factorizations present in this paper? This issue must
be investigated in detail.

4. While checking the CFT-predictions with the three existing experimental datasets, the
authors estimate certain parameters of their model by fitting them to the data and
use values from the literature for the other parameters. Here it is important for the
authors to provide some comments on the model-fitting process and the accuracy of the
estimated parameters. It would additionally be very interesting to see how the resulting
model fits data it has previously not seen. These comments are needed to assess the
generality of the conclusions exposed (whether the match between experimental data
and theoretical CFT-based predictions is not simply due to model overfitting).

2 Minor comments

1. Please explain terms like non-Poisson transcription, sub-Poisson transition in the in-
troduction.



Reviewer #3 (Remarks to the Author):  

 

In its current form, the article under review presents results that are derived from Equation (1). 

This equation is presented without proof, but instead proclaimed with a promise that "a rigorous 

derivation of equation will be presented elsewhere shortly."  

 

For publication in Nature journals multiple criteria need to be met, but the most basic one is that a 

manuscript must present "strong evidence for its conclusion" as explicitly stated by the publisher. 

Without presenting a proof of Equation (1) the conclusions presented in this manuscript cannot be 

deemed to have sufficient evidence. The paper in its current form can thus only be rejected.  



Response to Reviewer 1 

We are grateful to Reviewer 1 for his comments that have greatly helped us 

improve our manuscript. The following are our responses to each comment by 

Reviewer 1: 

1. A derivation needs to be included. Alternatively, the paper about the derivation should be 

published first. It is hard to judge the novelty of the new Theorem given that the authors do 

not provide a derivation of this result. The authors note that the theorem “cannot be easily 

derived from the chemical master equation or its extensions”. Such a statement and the 

enormous amount of references to unpublished material in the supplement render the 

assumptions of the theorem opaque. Therefore, it is impossible to assess the generality of the 

result and to which situation the theorem applies.  

 

Response: As Reviewer 1 requested, we present the mathematical derivation of the 

chemical fluctuation theorem (CFT) in Supplementary Method 1. The derivation of 

the CFT presented in Supplementary Method 1 requires no assumption regarding 

the stochastic properties of the product creation process and the lifetime 

distribution of product molecules. This means that the CFT holds even when the 

product creation process is subject to a feedback regulation or other regulation 

mechanisms and when the product decay process is an arbitrary non-Poisson 

process. The only assumption we make in the derivation is that the lifetimes of 

product molecules are identically distributed, independent random variables. It is 

possible to extend the CFT to encompass a more general situation, but CFT would 

then lose its concise form.  

 



2. It remains unclear to me what the advantage of the theorem is compared to existing 

methods? Since the theorem “cannot be easily derived from the chemical master equation or 

its extensions”, it is interesting to note that the authors exclusively make use of models that 

can be formulated in terms of Master Equations or variants with distributed delays, see for 

instance Leier, Marquez-Lago. "Delay chemical master equation: direct and closed-form 

solutions." Proc. R. Soc. A. 471. Interface 2015, or processes described by master equations 

with time-varying rate constants as in Voliotis, Thomas, Grima, Bowsher (2016). 

Stochastic simulation of biomolecular networks in dynamic environments. PLoS Comput 

Biol, 12, e1004923. Moreover, the mRNA transcription and degradation process in which 

both rate constants are arbitrary stochastic processes, including in the case of static 

variations, has recently solved exactly for the full distributions and variances: Dattani, 

Barahona. "Stochastic models of gene transcription with upstream drives: exact solution 

and sample path characterization." (2017) Interface 14:20160833. I do not see any 

advantage of using the newly derived theorem over the existing methods for the examples 

presented. 

 

Our response: We thank the reviewer for this insightful comment. In response to 

this comment, we now discuss these methods in detail in the revised manuscript;  

we mention these papers as references 62, 63, and 64, and additionally present a 

brief review of each of them in Supplementary Note 4.  

In particular, our Chemical Fluctuation Theorem (CFT) is applicable to 

intracellular network models more general than the transcription network models 

used in these works. For example, it is applicable to the cases where the product 

creation process is under various types of regulation processes and the lifetime 

distribution of product molecule is an arbitrary non-exponential distribution. To 

the best of our knowledge, none of the previously reported theories yields exact 

results for the more general cases that are frequently encountered in reaction 



networks in living cells. In this work, we use models where the mRNA lifetime 

distribution is a simple exponential, not because the range of our theory is limited 

to the case where the product lifetime distribution is an exponential distribution, 

but because the experimental data presented in reference 44 show that the mRNA 

lifetime distribution can be well approximated within experimental errors by such 

a distribution. Although, in this paper, we apply CFT only to the transcription 

systems where the mRNA lifetime distribution is exponential, we believe that the 

greater application range of our result is more of a merit than a drawback; our 

result provides exact results for reaction networks producing product molecules 

with non-exponential lifetime distributions, which cannot be accurately described 

by the master equation or its variants.  

In the delay chemical master equation (DCME) introduced by Leier and 

Marquez-Lago (reference 62 in the revised manuscript), a complex chemical 

process is modeled as a single-delay reaction. Here, the single delay reaction is 

characterized by the distribution of time delays or elapsed times taken to complete 

a product creation event after the reaction is initiated, so that DCME is more 

general than the conventional chemical master equation in the sense that the single 

delay reaction can represent a non-Poisson reaction process. However, the 

derivation of a solvable DCME for general networks including feedback loops 

remains a difficult task, though the stochastic simulation of the single delay 

reaction is possible. Voliotis, Thomas, Grima, and Bowsher suggested different 

simulation algorithm for reaction networks in dynamically fluctuating 

environments (reference 63 in the revised manuscript). This method simulates 

trajectories that can be obtained from the chemical master equation with time-

dependent, stochastic rates. However, the authors’ simulation method is not 

directly applicable to regulatory networks containing feedback regulation. Neither 

of these approaches gives the general analytical result for second-order chemical 



fluctuation, which is the central result of our work.  

Extending Gardiner and Chaturvedi’s Poisson mixture ansatz into the case 

where the mean of a Poisson distribution is governed by the first-order differential 

equation with time-varying, stochastic creation and degradation rates, Dattani and 

Barahona obtained the general relationship between the product (mRNA) number 

moments and Poisson mean moments (reference 64 in the revised manuscript). 

Among them, the second-order moment equation is comparable to our CFT, but 

the application range of their equation is essentially limited to the case where the 

degradation rate is a constant or a deterministic function of time. When the rate of 

the product degradation process is constant, the second-order moment equation 

reduces to the result in reference 53 in the steady state. One can consider a more 

general case with a stochastic degradation rate, for which an explicit analytic result 

is missing in reference 64. Taking the approach in ref. 64, one can derive a formal 

expression of the second moment of the product number (Supplementary reference 

36 in the revised manuscript). However, to obtain an explicit analytic result from 

the formal expression, one must have the analytic expressions for the multi-time 

correlations between stochastic rates governing the time evolution of the Poisson 

means up to the infinite order, which makes the practical application of this 

approach infeasible when the product lifetime distribution is an arbitrary non-

exponential function. To the best of our knowledge, the CTF, equation (1), reported 

in this work cannot be obtained by taking the previously reported approaches.  

It is remarkable that, as demonstrated in reference 64, the analytic result of the 

time-dependent mRNA number distributions can be obtained for simple models by 

solving the time-evolution equation of the distribution of the Poisson mean. This 

equation conforms to the generalized Fokker-Planck equation describing general 

vibrant reaction networks considered in ref. 53. These equations, however, are not 

applicable to reaction networks with a feedback regulation. Even for the gene 



expression network without any feedback regulation, it is not feasible to provide a 

quantitative explanation of the experimental data for gene expression statistics 

with use of the models considered in ref. 64.  

As far as we are aware, a unified, quantitative understanding of the 

experimental results obtained for various transcription systems, which we achieve 

in the present work, is unprecedented. This was made possible because we have 

used a new type of transcription model, which involves implicit but complete 

modeling for the environmental variable dependent rate factors, and because we 

take into account gene-copy number variation, the correlation between the mRNA 

levels transcribed from different gene copies, and the non-Poisson transcription 

dynamics of each gene copy. This model has not been considered in any of the 

references mentioned in this comment. We believe our model and the new 

analysis method introduced in this work are novel and remarkably useful.   



3A. A nice application of the theory is that it allows extracting correlation functions of 

transcription rates from experimental data. An important conclusion drawn from the first 

data set (Fig 2) is that the transcription rate must be an oscillatory function with an 

extremely short period. However, few aspects of this procedure remained unclear to me. 

How is the function Delta(x) calculated from the experimental data? How accurately the 

method represents the data and how well it supports the conclusions? Clearly, there must 

remain uncertainty in the parameters used. The authors assume a particular non-

monotonic form of Delta(x) to fit the data. Most of its non-monotonic shape relies on two 

data points obtained for very small induction levels. It should certainly be possible to 

reconstruct the correlation function directly from the raw data of Delta(x), computing their 

inverse Laplace transform and compare the results of different methods used. Non-

parametric interpolation could also be used avoiding additional assumptions on the data. 

Comparing the results of both methods should give a more reliable estimate of whether the 

experimental data supports the conclusions. 

 

Our response: In response to the Reviewer 1’s comment, we present a clearer 

explanation of the fitting procedure for ( )xΔ  in Supplementary Methods 3 

(previously 2). We have performed new analysis to assess the standard errors of 

the extracted parameter values and present the result in Table S1-S3. As Reviewer 1 

suggested, we have also carefully repeated our analysis with the use of the non-

parametric interpolation of the raw data version of ( )xΔ  and we present the 

results in Supplementary Figure S2.  

In the newly added analysis, we have used the Durbin-Crump method for the 

numerical inverse-Laplace transform in extracting the time correlation function 

(TCF) of the active gene transcription rate from the non-parametric interpolation of 

the raw data version of ( )xΔ . The resulting TCF shows an oscillatory feature in 



qualitative agreement with the result of our analysis that relies on the smooth 

function version of ( )xΔ  representing a global trend in the data.  

We have also used the Stehfest method for the numerical inverse Laplace 

transform to extract the TCF of the transcription rate from the non-parametric 

interpolation of the raw data version of ( )xΔ . In contrast with the TCF obtained 

from the Durbin-Crump method, the TCF extracted from the Stehfest method has a 

noisy shape and the details of the shape depend on which options are chosen for 

the numerical inverse Laplace transform routine in use. However, we find that the 

noisy TCF extracted from the Stehfest method also show the oscillatory feature in 

qualitative agreement with the TCF extracted with use of the Durbin-Crump 

method, or the result of our analysis that relies on equation (M3-13), the smooth 

function version of ( )xΔ , which are presented in Figure S2 and Figure 2, 

respectively. However, we do not present the unnaturally irregular TCFs extracted 

using the Stehfest method in the figure because it does not reflect an inherent 

property of the transcriptional system. Given that the variance in the copy number 

of mRNA is a slowly varying function of the mean mRNA number, ( )xΔ  and 

hence the TCF of the transcription rate should be smooth functions.  

.  

 

 

  



3B. In this context, it appears surprising to me that variations in the transcription on the 

timescale of seconds (Fig. 2) can be inferred from dynamics measured on timescales of 

minutes (mRNA decay). Intuitively, one would assume that any fast transcription 

dynamics should be averaged out by downstream processes. Can the authors give provide 

more explanation on this success? 

 

Our response: As Reviewer 1 noted in this comment, in the limit of the fast 

transcription rate fluctuation, the mRNA noise approaches the Poisson noise 

independent of the transcription dynamics. Figures 2a in the main manuscript 

show a significant deviation of the steady-state mRNA noise from the Poisson 

noise. These experimental data indicate that, for the transcription systems 

investigated in the present work, the effects of the non-Poisson transcription 

dynamics are not negligible and cause mRNA noise to deviate from the Poisson 

noise to the extent that it can be quantitatively measured.  

The successful quantitative explanation of the stochastic transcription in 

terms of transcription dynamics could be achieved, in part, by focusing on the 

analysis of the non-Poisson mRNA noise component rather than the analysis of the 

entire mRNA noise. This is because the non-Poisson noise component is far more 

sensitive to the transcription dynamics. If the fluctuation in the active gene 

transcription rate, the TCF of which is shown in Figure 2b, were the only source of 

the non-Poisson mRNA noise, the value of non-Poisson mRNA noise would have 

been far smaller than the experimentally measured values. However, the non-

Poisson mRNA noise is also contributed from the transcription rate fluctuation 

caused by the gene-state switching process. As shown in Supplementary Figure 

S14b, the mRNA noise, 2
nξ ξχ η , originating from the gene-state switching process 

and the mRNA noise, 2 2
, , )n κ ξ κ ξχ η η( , from the bilinear coupling term make far greater 



contributions to the non-Poisson mRNA noise than the mRNA noise, 2
nκ κχ η , from 

the fluctuation in the active gene transcription rate.  

In response to this comment by Reviewer 1, we have inserted Supplementary 

Figure 16 to make this content more accessible to readers. The transcription rate 

fluctuation due to the gene-state switching between the active and inactive gene 

states has a different stochastic property from the rate fluctuation of the active-

gene transcription that is a multi-step, consecutive reaction process. In general, the 

product noise of a multi-channel reaction, such as transcription with the gene-state 

switching process, is greater than the product noise of a single-channel reaction, 

even if one of the channels is inactive as is the case here. On the other hand, the 

product noise of a multi-step reaction is smaller than the product noise of a single 

step reaction, because the randomness in the time taken to complete a reaction 

process decreases as the number of the intermediate reaction steps composing the 

reaction increases.  

In terms of mathematics, the transcription rate fluctuation originating from 

the gene-state switching shows a monotonically decaying TCF, ( )tξφ , but the 

active gene transcription rate fluctuation shows an oscillating TCF, ( )tκφ . 

According to CFT or equation (2), the mRNA noise, 2
nξ ξχ η , originating from the 

gene-state switching process is related to its TCF by 2 2

0
( )t

n dte tγ
ξ ξ ξ ξχ η γ φ η

∞ −=  . 

Similarly, the mRNA noise, 2
nκ κχ η , originating from active gene transcription rate 

fluctuation is given by 2 2

0
( )t

n e tγ
κ κ κ κχ η γ φ η

∞ −=  . As shown in Supplementary Figure 

S1b, 2
nκ κχ η  including the integration of the oscillating TCF, ( )tκφ , is far smaller 

than 2
nξ ξχ η , including the integration of the monotonically decaying TCF, ( )tξφ . 

This can be the case even when 2
κη  is far greater than 2

ξη . The non-Poisson mRNA 

noise contributed from the bilinear coupling term is given by 



2 2 2 2
, , ) 0

( ) ( )t
n dte t tγ

κ ξ κ ξ κ ξ κ ξχ η η γ φ φ η η
∞ −

( =  , which can be either super-Poisson or sub-

Poisson noise depending on the shape of ( ) ( )t tξ κφ φ 2 2
κ ξη η .  



4. An important source of noise considered in the manuscript is the gene copy number and 

the induced correlation in the expression levels. Gene copy number is assumed to vary on 

timescales longer than all other processes, and thus they effectively vary only from cell to 

cell. Typical timescales of gene copy number variations should be on the order of the cell 

cycle, however. I wonder how the results of the authors compare to dynamical models of 

replication as previously presented including analytical results in Peterson, Cole, Fei, Ha, 

Luthey-Schulten (2015). Effects of DNA replication on mRNA noise. PNAS 112, 15886-

15891 and Swain, Elowitz, Siggia (2002). Intrinsic and extrinsic contributions to 

stochasticity in gene expression. PNAS 99, 12795-12800. 

 

Our response: We are grateful to Reviewer 1 for informing us of these interesting 

papers. The non-Poisson mRNA noise, equation (3), accounting for the effect of 

gene copy number variation is obtained by combining equations (M2-7a) and (M2-

7b). For convenience, both equations are reproduced below: 

1n g n  =     (M2-7a) 

2 2 2 2
1 ,1 ( 1)nn g n g g g cσ  =    +   +  −         (M2-7b) 

These equations are valid irrespective of the explicit time dependence of the slow 

gene copy number variation. When the gene copy number, g, is either 1 or 2, Jones 

et al. in reference 29 obtained the following equations for g   and 2g  : 

1g f  = +   (R1)  

2 1 3g f  = +   (R2) 

where f denotes the fraction of cell cycle after gene duplication. Later, Peterson et al. 

(now reference 67) found the extended version for equations (R1) and (R2) with 

dynamic correction accounting for the effect of mRNA degradation: 



1
1

fe
g f

γτ

γτ

− −
  = + +  (R3) 

2
2 8 2 7

1 3
2

f fe e
g f

γτ γτ

γτ

− −− −
  = + +  (R4) 

where γ and τ denote the inverse lifetime of mRNA and cell doubling time, 

respectively. The dynamic correction explicitly indicates the third term on the 

right-hand side of either equation (R3) or equation (R4). In the large γτ limit, 

equations (R3) and (R4) reduce to equations (R1) and (R2). In other words, 

equations (R1) and (R2) are valid for large γτ, which is usually the case. Before this, 

Swain et al. (reference 66) also developed a time-dependent theory but the authors 

estimated the dynamic correction to be negligible, which can be attributed to the 

fact that the values of the relevant parameters they used fall into the case of large γτ.  

Although we used the time-independent theory in reference 29 in the 

calculation of the mean and variance of the gene copy number, this issue does not 

pose a problem because the value of γτ is suitably large. For example, the value of 

γτ is estimated to be 30 with 1γ − = 2 min and τ = 60 min for the constitutive 

expression data in Fig. 5. In this case, the relative deviations of equations (R1) and 

(R2) from equations (R3) and (R4) are estimated to be 2% and 4%, respectively. For 

the inducer-controlled expression data we used in Fig. 2, where g is either 2 or 4, 

none of equations (R1)-(R4) is not directly available, because these equations are 

derived for the case where g  is either 1 or 2. However, we could still estimate the 

values of g   and 2g   for the experimental data in Fig. 2 as shown in 

Supplementary Note 13.  

In response to the Reviewer 1’s comment, we have added Supplementary 

Note 7 detailing the above content. 

 



5. In the model in Figure 3, the authors do not consider the possibility of multiple RNAPS 

transcribing genes at the same time. However, this is a likely possibility, highlighted by the 

common TASEP models of transcription (and translation). How sensitive are the results to 

this assumption. 

 

Our response: In response to the Reviewer 1’s comment, we have revised the 

caption of Figure 3 to present a more detailed account of our transcription model.  

Our transcription model takes into account the situation where multiple 

RNAPs transcribe a single gene at the same time. This is described in 

Supplementary Method 7 in the revised manuscript, where we present the 

simulation algorithm of our transcription model represented by the scheme in Fig. 

3a. At the transcriptional initiation step of the RNAP-promoter complex, the next 

round of RNAP binding to the promoter is not allowed before the preceding RNAP 

leaves the promoter DNA to complete successful initiation. During the 

transcription elongation by a RNAP, other RNAP can associate with the promoter 

and proceed to the next step. In the steady state, a battery of RNAPs 

simultaneously undergoes transcriptional elongation along each gene copy.  

 

  



6. The authors assume, all genes have the same gene expression parameters in figure 4, 

which sounds a very unrealistic assumption. Could they motivate this assumption better. 

 

Our response: As noted by Reviewer 1, gene expression parameters differ from 

gene to gene. However, the genome-wide data shown in Figure 4 clearly show the 

global trend in the dependence of the mRNA noise on the mean mRNA. Gene-

specific deviations from the global trend also exist because of gene-to-gene 

variation in the regulation mechanism and gene-expression parameters. However, 

the gene-specific deviations are not so large that the global trend in the 

transcription statistics is easily noticeable.  

The purpose of our analysis in Fig. 4 is not to show that we can explain the 

entire genome-wide data for mRNA noise vs. mean mRNA using the same gene 

expression parameters. As mentioned in the last paragraph in Analysis 2 on page 

19, our analysis in Fig. 4 shows that the offk  modulation mechanism is not the 

universal transcription-control mechanism of E. coli genes as suspected in refs. 44 

and 72.  

Quantitative analysis of a global trend in gene expression statistics with use 

of a single gene expression model has been of interest in the previous literature, for 

example, in references 45, 53, and 72.  



7. The work seems highly related to reference 46. The connection and novelty of the results 

should be better discussed. 

 

Our response: In response to comment 7, we present a more detailed discussion 

about the novelty of the present work and its relationship to reference 53 

(previously 46) in Supplementary Note 3.  

 The chemical fluctuation theorem (CFT), equation (1), in the present work has a 

greater application range over the key result in ref. 53, which can be 

summarized as follows: 

1) CFT in the present work is applicable to biological networks with an 

arbitrary regulation mechanism on the product creation process, whereas the result 

in ref. 53 is not. The result in ref. 53 is only applicable to those biological networks 

in which the product creation process is not dependent on the product number. 

2) CFT in the present work is applicable to both a non-stationary product 

creation process as well as a stationary process, whereas the result in ref. 53 is only 

applicable to the latter. 

3) CFT in the present work is applicable to the case where the lifetime 

distribution is a non-exponential function, to which the result in ref. 53 cannot be 

applied. 

 

 In the present work, we apply CFT to the quantitative analysis of mRNA 

variability among a clonal population of cells for three different experimental 

data, namely those published in refs. 29, 44, and 45. In contrast, the authors of 

ref. 53 mainly focused on the application of their result to the quantitative 

analysis of protein level variability in the dual reporter system, reported in ref. 



52. Since researchers in each experiment employed a different control variable, 

we use different models accordingly in the present work. These models are also 

different from the model used in ref. 53. 

 

 In the present analysis, the effect of gene copy number variability is explicitly 

modelled with the use of information extracted from experimental data reported 

in refs. 29, 44, and 45. By doing so, we take great strides in achieving a separate 

estimation of mRNA noise originating from gene copy number variation and 

various other sources. In contrast, in ref. 53, the effects of gene copy number 

variability were implicitly taken into account with gene copy number treated as 

a hidden variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer 2 

We are grateful to Reviewer 2 for his or her criticisms and questions that have 

helped us improve our manuscript as well as for assessing our work as interesting.  

The following is our response to each comment made by Reviewer #2: 

Recommendation 

1. For example, it is difficult to see if the equation will remain valid if there is feedback from 

mRNA to the gene-switching rates. 

 

Our response: In response to the Reviewer 2’s comment, we present the detailed 

derivation of the chemical fluctuation theorem (CFT) in Supplementary Method 1 

in the revised manuscript. As shown in the derivation, the correctness of CFT does 

not rely on particular properties of the product creation process. This means that 

CFT holds regardless of any regulation mechanism on the product creation process.  

 

2. For instance, it is mentioned that RNAP binding activity fluctuates at a rate ≥100 Hz 

for constitutive promoters. This conclusion is extracted from analyzing the data in 

Reference 29, but without any other cross-checks, it is hard to assess the generality of this 

claim. 

 

Our response: We are grateful for this comment by Reviewer 2. We have 

referenced other publications that further support the result of our analysis in the 

8th line from the bottom of page 6 in the main text and in Supplementary Note 1: 

Briefly, it was previously shown that the supercoiling state of DNA is coupled 

to the formation of the pre-initiation complex and subsequent initiation process 

[Gilbert and Allan, “Supercoiling in DNA and chromatin”, Current Opinion in 

Genetics & Development 25, 15 (2014) and Corless and Gilbert, “Effects of 

supercoiling on chromatin architecture”, Biophysical reviews 8, 245 (2016)]. Such a 

tendency differs from gene to gene or depends on the promoter sequence [Wagner, 

“Transcription regulation in prokaryotes”, (Oxford University Press, New York, 

2000) and Wang, “DNA supercoiling and gene expression” in Pullman, Ts’O, and 



Schneider, “Interrelationship among aging, cancer, and differentiation”, (Springer, 

Netherlands, 1985)]. The time scale associated to non-enzymatic supercoil 

dynamics amounts to 10 ms or less, which is consistent with our estimation of the 

RNAP-promoter binding affinity fluctuation time scale [Crut et al., “Fast dynamics 

of supercoiled DNA revealed by single-molecule experiments”, PNAS 104, 11957 

(2007) and Koster et al., “Cellular strategies for regulating DNA supercoiling: a 

single-molecule perspectives”, Cell 142, 519 (2010)]. 

 

3. The paper would gain considerably if more mathematical details about how CFT is 

derived and its underlying assumptions is provided. 

 

Our response: As Reviewer #2 suggested, we present a detailed mathematical 

derivation of CFT in Supplementary Method 1. As shown in the derivation, CFT is 

a general result that can be derived without any assumption about the property of 

the product creation process. This means that it holds exactly for any intracellular 

regulatory network in which the product creation rate is modulated by product 

number or any other environmental variables. The only assumptions involved in 

our derivation of CFT is that the lifetimes of product molecules are identically 

distributed, independent random variables and the product lifetime distribution 

does not change over time. It is possible to think of a more general product decay 

process, but CFT in this case would not have a concise form and would become far 

more complicated. We believe that the current form of CFT is already general 

enough to provide a quantitative explanation of the chemical fluctuation in most 

intracellular networks. 

 



Major Issues 

1. Gene-expression variability comes from both transcription and translation steps. The 

paper focuses extensively on transcriptional variability but how this variability is filtered 

through the translation step is not properly analyzed.  

 

Our response: As Reviewer #2 correctly noted, in the present work, we apply the 

CFT to quantitative analyses of the transcription level variability among a clonal 

population of cells for three different experimental systems. This is partly due to 

the fact that protein level variability data were missing for two of the three 

experimental systems. However, we agree that it is important to discuss how the 

mRNA level variability propagates into the protein level variability. Addressing 

this issue, we have added Supplementary Note 2. As discussed in Supplementary 

Note 2, CFT is applicable to the translation process as well. By applying CFT to the 

translation process, one can achieve a general understanding of how the variation 

in the mRNA level propagates into the variation in the protein level. 

We believe that a full quantitative analysis of translation would be out of the 

scope of this current paper. Instead, we have referred to reference 53 (previously 

46), where the authors applied an earlier, less general version of CFT to the 

translation process as well as to the transcription process in order to quantitatively 

analyze the dependence of the mean and variability of protein levels on the mean 

and variation in the RNAP level.  

 



2. However such factorizations are likely to fail if mRNAs, or its proteins, somehow 

influence the transcription rate ( )κ Γ  or the gene-activity fluctuations ξ. This appears to 

be a major limitation of the usefulness of the analysis presented in this paper as many gene-

expression networks consist of transcriptional feedbacks. Please discuss this issue in the 

paper in detail. 

 

Our response: Reviewer #2’s concern raised in this comment is actually relevant to 

the fluctuation theorem derived in reference 53 (previously 46). We believe that the 

derivation appended in Supplementary Method 1 in the revised manuscript will 

also resolve the issue raised in this comment. As clearly shown in the derivation, 

now included in our revised manuscript, our CFT holds exactly, regardless of the 

stochastic properties of and the regulation mechanism on the product creation 

process. This means that our result is correct, even if mRNAs, or their proteins, 
somehow influence the transcription rate, ( )κ Γ , or the gene-activity fluctuations, ξ.  

In response to the Reviewer #2’s comment, in Supplementary Note 10, we 

present a brief account explaining the validity of CFT for the transcription process 

under a feedback regulation. The mathematical structure of the CFT, given in 

equation (1), remains the same in the presence of a feedback regulation, 

independent of the detailed nature of the regulation mechanism. However, the 

transcription rate, R, which appears in CFT, can be dependent on the number of 

mRNAs or proteins, i.e.,  

( , )TX TXR R k m pθ= =  

where ( , )m pθ  is the transcription rate factor with a mathematical form dependent 

on the details of the regulation mechanism. For example, for a feedback 

transcription network, rate factor θ  can take the Hill-type form: 

( )

1 ( )
Rp

Rp

K p N

K p N
θ =

+
 

where the RNAP-promoter binding affinity, ( )K p , is dependent on the protein 

copy number, p, given by  



0( )
1 h h

p

K
K p

K p
=

+
 

Here, 0K , pK , and h denote the RNAP-promoter binding affinity in the small p 

limit, the binding affinity of protein to the operator site, and the Hill exponent, 

respectively. Due to coupling to the cell-state variables, 0K  and pK  are not just 

simple constants but stochastic variables. A positive h would then indicate negative 

feedback, and a negative h, positive feedback. 

In the actual application of the CFT to the quantitative analysis of the 

chemical fluctuation resulting from a regulatory network, it is necessary to 

calculate the time-correlation function of the product creation rate, which depends 

on the product number. To calculate the time-correlation function of the 

transcription rate under a feedback regulation, one can use various levels of 

mathematical methods. Finding the optimal mathematical model is a goal we leave 

to future research. 

 



3. The paper cites two key papers (references 33 and 63) that quantitatively analyze the 

contributions to noise from intrinsic and extrinsic sources. Are these noise decomposition 

results related to the noise factorizations present in this paper? This issue must be 

investigated in detail. 

 

Our response: The chemical noise in living cells is often written as the sum of two 

components, intrinsic noise and extrinsic noise, by researchers in this field. 

However, in the literature, there has been controversy regarding the most 

appropriate definition of intrinsic noise and extrinsic noise. This issue was 

thoroughly examined in references 37 and 53 (previously 46).  

According to the CFT, equation (1), the noise in the product number, or the 

product noise, can be separated into a Poisson noise component, the first term on 

the right-hand side of equation (1), and a non-Poisson noise component, the second 

term. Here, regardless of the details in the product creation network and its 

coupling to the cell environment, the Poisson noise component is always given by 

the inverse of the mean without fail, while, on the other hand, the dependence of 

the non-Poisson noise component on the mean is dependent on these details. The 

Poisson noise component can be thought of as universal “intrinsic noise”. The non-

Poisson noise component can then be thought of as “extrinsic noise” and any 

remaining, non-universal or system-dependent “intrinsic noise”. However, in CFT, 

equation (1), there is no distinction between extrinsic noise and the non-universal, 

system-dependent intrinsic noise, so that both are taken into account as a single 

term in a unified manner. A further separation of the non-Poisson noise component 

between extrinsic noise and non-universal, system-dependent intrinsic noise 

depends on one’s definition of intrinsic noise and extrinsic noise.  

In the present work, instead of separating product noise into intrinsic and 

extrinsic noise, we have factored the single gene transcription rate into two factors: 

the control variable dependent factor and the environmental variable dependent 

factor.  The former takes into account the rate of the chemical process that is 

coupled to the experimentally controlled variable and possibly to the 

environmental variable as well. On the other hand, the latter takes into account the 



rate of the remaining chemical processes in the network, which are coupled to the 

environmental variables, but not to the control variable. Using the factorized form 

of the product creation rate in CFT, we can obtain equation (2) for the relationship 

between the mRNA noise and the noise in both rate factors of the single gene 

transcription version of Model III. By further considering the multi gene 

transcription version of Model III, we obtain equation (3). As shown in equations (2) 

and (3), fluctuations in both the control variable and the environmental variable 

dependent rate factors contribute to the non-Poisson component of the product 

noise. However, the product noise is not given by the sum of the noise arising from 

fluctuation in the two rate factors, but is instead given by a bilinear function. This 

means that the product noise originating from each of the two rate factors does not 

represent either intrinsic or extrinsic noise, because the sum of the intrinsic and 

extrinsic noise yields the total product noise always.  

In response to the Reviewer #2’s comment, we have added Supplementary 

Note 5 detailing the above content. 

 



4A. While checking the CFT-predictions with the three existing experimental datasets, the 
authors estimate certain parameters of their model by fitting them to the data and use 
values from the literature for the other parameters. Here it is important for the authors to 
provide some comments on the model-fitting process and the accuracy of the estimated 
parameters.  

 

Our response: As Reviewer #2 suggested, we have provided a more detailed 

account of the model fitting process in Supplementary Methods 3-5 in the revised 

manuscript, and have noted the standard error to each of the extracted values of 

the parameters. The results are summarized in Supplementary Tables 1-3, where 

we have added more explanations about how the parameters are extracted or 

enumerated.  

 

4B. It would additionally be very interesting to see how the resulting model fits data it has 

previously not seen. 

 

Our response: We agree. It would be interesting to test and optimize our model of 

the transcription process against future experimental data. 

The general strategy in the application of the CFT to the quantitative analysis 

of biological noise is to identify the control variable and to construct an accurate, 

explicit model for the control variable dependent part of the product creation rate, 

while treating the uncontrollable or hidden environmental variable dependent part 

of the product creation rate as a general stochastic variable, as we demonstrate in 

the present work.  

 



Minor comments 

1. Please explain terms like non-Poisson transcription, sub-Poisson transition in the 

introduction. 

 

Our response: According to the reviewer’s comment, we have added an 

explanation of the non-Poisson transcription in the following sentence starting at 

the 7th line from the bottom of page 5 in the revised manuscript:  
‘This means that the transcription of an activated gene is not a Poisson process with a 

constant rate, but a non-Poisson process with a stochastic rate; in other words, the 

distribution of time between successive transcription events is not an exponential function.’     

We have replaced “sub-Poisson transition” with “multi-step transition 

process”, a more accessible term to general readers, in the revised manuscript.   



Response to Reviewer #3 

1. In its current form, the article under review presents results that are derived from 

Equation (1). This equation is presented without proof, but instead proclaimed with a 

promise that "a rigorous derivation of equation will be presented elsewhere shortly." For 

publication in Nature journals, multiple criteria need to be met, but the most basic one is 

that a manuscript must present "strong evidence for its conclusion" as explicitly stated by 

the publisher. Without presenting a proof of Equation (1) the conclusions presented in this 

manuscript cannot be deemed to have sufficient evidence. The paper in its current form can 

thus only be rejected. 

Our response: In response to the Reviewer #3’s comment, we have appended the 

mathematical derivation of the Chemical Fluctuation Theorem in Supplementary 

Method 1. 

 



Reviewers' comments:  

 

 

Reviewer #1 (Remarks to the Author):  

 

The revised manuscript as addressed several of my original concerns. As explained below some 

specific points remain unclear. However, at a general level, I am not sure if the manuscript is 

suitable for Nature Communications. The manuscript presents Chemical Fluctuation Theorem that 

is applicable to a broad class of birth-death processes (but not other forms of chemical reactions, 

such as binding). Then the authors apply their new theory to some datasets to provide new 

insight. However, the models they use can be also handled with existing methods, so the examples 

fail to show case the strength of the CFT (And why it is very different from other existing 

methods). The manuscript is also not easily accessible to a wider audience and is extremely long 

(150 pages of supplements). I think it maybe better to publish the CFT and relevant non-trivial 

examples in a separate paper and then write a separate paper on the biological examples.  

 

I have the following specific comments in response to the rebuttals.  

 

i) In their response, the authors mention that the CFT applies more generally to feedback 

regulation, which is an advantage over other methods in the literature. The authors, however, do 

not demonstrate such an application, and the advance seems to be irrelevant to explain the 

experimental data. Further, we foresee several issues with the CFT in the case of feedback 

regulation. Specifically, for feedback regulation, the transcription rate is a potentially nonlinear 

function of the product number or even of its history. In this case, however, the CFT cannot 

provide a closed-form characterization of the noise because the correlation terms on the RHS 

involve higher order moments or correlation functions. Thus the CFT does not lead to a closed 

system of equation and therefore has similar limitations compared to other methods, e.g. Dattani, 

Barahona. I cannot see that the simulation methods mentioned by the authors should suffer from 

the same issue, however.  

 

(ii) The authors also mention that the CFT applies more generally to non-exponential product 

lifetimes. In their derivation, they assume independent lifetimes. Non-exponential lifetimes should 

be observed when mRNAs compete for degradation or dependent on common factors. Non-

exponential lifetimes should, therefore, be generally correlated. However, as the authors 

emphasise, non-exponential lifetimes are not observed experimentally! Thus it the advantage of 

the CFT over other methods seems irrelevant to explain the experimental data.  

 

(iii) The authors point out that transcription rate fluctuations represent a small if not negligible 

contribution to the noise. This is in agreement with the intuition that fast oscillations in the 

production rate are integrated by the dynamics. The coupling term represents the biggest 

contribution to the noise. However, the expression for the coupling terms contains an oscillatory 

integrand and therefore the biggest contribution seems to stem from the integrand at zero, as 

shown in Fig S16. We are not convinced that this provides sufficient evidence for the existence of 

oscillations in the transcription rate. We wonder whether the observed oscillations could not as well 

be reproduced by white noise correlations of similar amplitude, at least this is what Fig S16 seems 

to suggest. Perhaps the fast oscillatory behaviour of the transcription rate correlation is an artefact 

from restricting Delta(x) to have finite support before computing the inverse Laplace transform? In 

summary, it has not become clear which feature of Delta(x) leads the authors to conclude on the 

presence of high-frequency oscillations and how this feature is represented in the data (Fig S1).  

 

 

 

 

 



Overview: The main object of the paper is to present the Chemical Fluctuation Theo-
rem (CFT) which describes a generic relationship between fluctuations in the transcription
rate and cell-to-cell variability in the mRNA copy-numbers. A mathematical derivation of
CFT is provided and this result is used to extract interesting biological insights from three
existing datasets on gene-expression systems.

Recommendation : The authors have revised their paper considerably and success-
fully addressed many issues that were raised on the previous version of their manuscript. In
particular, the paper now includes a mathematical derivation of CFT which makes it possible
to assess the generality of this relationship and properly examine the scientific contributions
of the paper.

As the whole paper hinges on the CFT relationship, it is important for me to ascertain
both the originality and the correctness of this relationship, before accepting the paper. In
this regard, I have some issues that I request the authors to address in a subsequent revision.
These issues only came to light after going through the authors’ proof of the CFT in detail.
I mention these issues now.

1 Major Issues

1. Basically CFT is derived from a simple model, where mRNAs arrive at a time-varying
stochastic rate R(t) and they are serviced (degraded) after a random time τ which is
related to the survival probability according to S(t) = P(τ > t). Essentially this is
a infinite-server queuing model with a stochastic time-varying arrival rate R(t) (see
[1] for example). If we ignore the stochasticity in R(t), then such a queuing model is
well-studied and the exact distribution of the queue-length (or mRNA copy-number)
can be computed in many cases (see Section 5.1 in [1]). In fact the formula for the
mean 〈n(t)〉 that the authors derive is simply the transient version of Little’s law which
is well-known in queuing theory.

Once we know the variability of mRNA with time-varying (deterministic) R(t), then
we can add the variance contribution due to stochasticity in R(t) by simply using
the law of total variation. I believe this will provide a proof of CFT which is much
simpler than the proof given in the supplementary material. Please explain if that is
not true. In any case it would be useful to explore the queuing theory literature to
find connections with CFT.

1

Reviewer #4 (Remarks to the Author): 



2. The formula for CFT (Equation 1) given on page 8 seems incorrect as it does not
match the formula derived in the supplementary material (Equation M1-19). These
two formulas will coincide if S(ti) is replaced by S(t− ti) in equation 1 for i = 1, 2.

3. I have some concerns with the derivation of CFT that is provided in Supplementary
Method 1:

• In deriving Equation M1-16 from M1-15 the authors take average over {τi, τj}.
But these are deterministic dummy variables of integration and so I’m not sure
what the authors mean here.

• The definition of the Time-Correlation function (TCF) used in the derivation
(Equation M1-17) in not the standard definition as the diagonal terms are ignored.
This non-standard definition is not mentioned anywhere in the Main Paper which
will mislead the readers. This must be clarified right after the CFT statement.
Also the other specialized versions of CFT (Equations 2 and 3) seem to be derived
with the standard definition of TCF. Please elaborate on this issue.

4. It must be mentioned that CFT only holds for cell-to-cell mRNA variability in a clonal
population of cells, when the cells are assumed to be independent, i.e. there is no
inter-cellular communication. Also the degradation machinery for mRNAs must be
independent of the production machinery for CFT to hold. If you agree, please state
these limitations explicitly in the introduction.

2 Minor comments

1. Page 4, paragraph 2, line 4 “ystems” should be “systems”.

2. Page 9, end of paragraph 1. Please explain why CFT cannot be derived from CME.
Is it because CME only describes the evolution of probability-distribution at a single
time-point and so it cannot capture temporal correlations (TCF) which are needed for
the variance?

References

[1] D. Bertsimas and G. Mourtzinou. Transient laws of non-stationary queueing systems and
their applications. Queueing Systems, 25(1):115–155, 1997. 1
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We are grateful to Reviewer 1 for his or her critical but helpful comments on our 
manuscript. Reviewer 1’s remaining concern is that the advantages of our Chemical 
Fluctuation Theorem (CFT) over the existing methodologies are not fully demonstrated in our 
quantitative analysis of the experimental results in the previous version. In this revision, to 
address this important issue raised by Reviewer 1, we take advantage of our CFT to make a 
quantitative prediction for the dependence of mRNA noise on the mRNA lifetime distribution 
using the transcription model developed in this work. We also include a direct comparison 
between the prediction made by our CFT and accurate stochastic simulation results to 
confirm the correctness of the CFT’s prediction. From this investigation, we find that the 
mRNA noise is quite sensitive not only to the mean but also to the variance in the mRNA 
lifetime, and that there exists a general trend in the dependence of the mRNA noise on the 
variance of the mRNA lifetime distribution. To the best of our knowledge, no other existing 
theory is capable of making this kind of quantitative prediction. Thus, by addressing the issue 
raised by Reviewer 1 in our manuscript, we are able to demonstrate the unique advantages of 
the CFT over other existing methods, and on top of this, we further demonstrate that the CFT 
is not only able to provide a unified, quantitative explanation of the mRNA noise for various 
different systems but also that the CFT can make quantitative predictions for realistic systems 
that have yet to be investigated, which, we believe, are significant breakthroughs in this field. 
Our responses to each of Reviewer 1’s comments are as follows. 

 
  



General comments by Reviewer 1 
The revised manuscript as addressed several of my original concerns. As explained below 
some specific points remain unclear. However, at a general level, I am not sure if the 
manuscript is suitable for Nature Communications. The manuscript presents Chemical 
Fluctuation Theorem that is applicable to a broad class of birth-death processes (but not 
other forms of chemical reactions, such as binding). Then the authors apply their new theory 
to some datasets to provide new insight. However, the models they use can be also handled 
with existing methods, so the examples fail to show case the strength of the CFT (And why it 
is very different from other existing methods). The manuscript is also not easily accessible to 
a wider audience and is extremely long (150 pages of supplements). I think it may be better to 
publish the CFT and relevant non-trivial examples in a separate paper and then write a 
separate paper on the biological examples. 
 
Response: To address this important comment, we have performed a major revision of our 
manuscript to more effectively emphasize and demonstrate the strength of the CFT and to 
show why our CFT is significantly different from other existing methods. A summary of the 
important changes made in response to this comment is as follows: 
 
1) As shown in Figure 1 in the revised manuscript, we consider a more general transcription 
model in which the mRNA lifetime distribution is arbitrary. Accordingly, in equation (2), we 
present the analytic expression of the mRNA noise for the updated model. The susceptibility 
of the mRNA noise to the rate factor fluctuation appearing in equation (2) is not a function of 
the mean mRNA lifetime but a functional of the product lifetime distribution, which has not 
been reported elsewhere. To the best of our knowledge, the mRNA noise of this transcription 
model cannot be handled by any other existing method.  
 
2) We move the text and figure associated with the quantitative analysis of the genome-wide 
mRNA counting statistics in E. coli from the main text to Supplementary Information.  
 
3) As shown in the newly added Figure 5a-d, we use our CFT to investigate the mRNA noise 
for three different models of the mRNA degradation process: the sub-Poisson Michaelis-
Menten enzyme process, the 1-state Poisson process, and the 2-state super-Poisson process. 
An exact model study of this type cannot be easily done by other existing methods. The CFT 
makes it clear that, when transcription is a Poisson process, the mRNA noise becomes a 
Poisson noise regardless of the mRNA lifetime distribution. However, through our exact 
model studies, we clearly show that the mRNA noise is sensitive to both the mean and 
fluctuation in the mRNA lifetime in the case where transcription is a non-Poisson process. 
 
4) In the newly added Figure 5e and f, we present a quantitative prediction of our theory for 
the dependence of the non-Poisson mRNA noise on the mean and variance in the mRNA 
lifetime for the following two cases: the mRNA lifetime fluctuation caused by the non-
Poisson mRNA degradation dynamics in each cell in Figure 5e and the mRNA lifetime 
fluctuation caused by the cell-to-cell heterogeneity in the mRNA degradation dynamics in 
Figure 5f. To make the prediction in Figure 5f, we generalized the CFT to encompass gene 
expression systems with cell-to-cell heterogeneity in the mRNA degradation dynamics. As 
shown in Figure 5e and f, the prediction made by the CFT and the generalized CFT is in 
excellent agreement with accurate stochastic simulation results.  
 
 



Because no other existing model or method is capable of making this kind of quantitative 
prediction and explanation of the non-Poisson mRNA noise in living cells, and because our 
prediction for these systems can be easily compared with experiments, we believe our revised 
manuscript would be of great interest to experimentalists in this field as well as to 
theoreticians.  
 
We also believe that the impact of this manuscript is greatest when it includes the 
fundamental theory, the quantitative analyses of various experiments, and the prediction for 
new models and experimental systems all together. The only purpose of Supplementary 
Information is to present the full details of our new theory and models, the mathematical 
methods, and the quantitative analysis of the experimental results, and to make this 
information more accessible to interested scholars and students. However, we can adjust the 
length of the Supplementary Information, upon request.  
 
  



Comment 1: In their response, the authors mention that the CFT applies more generally to 
feedback regulation, which is an advantage over other methods in the literature. The authors, 
however, do not demonstrate such an application, and the advance seems to be irrelevant to 
explain the experimental data. Further, we foresee several issues with the CFT in the case of 
feedback regulation. Specifically, for feedback regulation, the transcription rate is a 
potentially nonlinear function of the product number or even of its history. In this case, 
however, the CFT cannot provide a closed-form characterization of the noise because the 
correlation terms on the RHS involve higher order moments or correlation functions. Thus 
the CFT does not lead to a closed system of equation and therefore has similar limitations 
compared to other methods, e.g. Dattani, Barahona. I cannot see that the simulation methods 
mentioned by the authors should suffer from the same issue, however. 
 
Response:  
 
We agree with Reviewer 1 that the CFT is applicable to more complex experimental systems 
than the systems already considered in the previous version of our manuscript, and we are 
currently working on an application of our CFT to the quantitative analysis of gene 
expression systems with feedback regulation. We feel that this on-going work would be more 
appropriately published in a separate manuscript, because, as Reviewer 1 notes, the length of 
the current manuscript is already quite extensive.  
 
However, we do not believe that the lack of such application nullifies the advances made by 
the CFT for the quantitative analysis of experimental systems with feedback regulation. We 
believe it is an important advance in both fundamental theory and practical analysis to have 
discovered the general CFT, whose mathematical form is in no way affected by the presence 
of feedback regulation or other types of complication in the product creation process. With 
this knowledge, one can directly exploit the CFT to obtain a more explicit equation enabling 
a quantitative analysis of any given gene expression system with feedback regulation.  
 
We also agree with Reviewer 1 in that the product creation rate is a nonlinear function of the 
product number for systems with feedback regulation. However, even in this case, there are a 
number of methods that allow one to obtain analytically tractable or numerical solutions from 
the CFT. In response to this comment by Reviewer 1, we have inserted one paragraph before 
Summary and present a description of a simple and general procedure to apply the CFT to a 
gene expression system with feedback regulation in Supplementary Note 10 in the revised 
manuscript.  
 
 
 
 
.  
 
 
 
  



Comment 2: The authors also mention that the CFT applies more generally to non-
exponential product lifetimes. In their derivation, they assume independent lifetimes. Non-
exponential lifetimes should be observed when mRNAs compete for degradation or dependent 
on common factors. Non-exponential lifetimes should, therefore, be generally correlated. 
However, as the authors emphasise, non-exponential lifetimes are not observed 
experimentally! Thus it the advantage of the CFT over other methods seems irrelevant to 
explain the experimental data. 
 
Response: To address this comment, we have inserted a new section, Prediction: mRNA 
noise dependency on the mRNA lifetime distribution, before Discussion in our revised 
manuscript. It is true that the lifetime distribution of lacZ mRNA in E. coli, whose cell-to-cell 
variability is analyzed in the present work, are reported to be approximately an exponential 
lifetime distribution in refs. 44 and 66. However, in general, the mRNA degradation process 
is not a simple Poisson process. For example, the lifetime distribution of mRNA transcribed 
from atoS, fabB, and ykgE in E. coli is a super-Poisson distribution, as reported in refs. 73, 74 
and 75. To address the issue raised in this comment, we demonstrate the advantage of the 
CFT over other existing methods by investigating the dependence of the mRNA noise on the 
mRNA degradation dynamics using three different models of mRNA degradation: the sub-
Poisson Michaelis-Menten enzyme process, the 1-state Poisson process, and the 2-state 
super-Poisson process. Through these exact model studies suggest that the mRNA noise 
decreases with an increase in the mRNA lifetime fluctuation originating from the non-Poisson 
mRNA degradation dynamics.  
 
We also present the prediction of the CFT and Model III, optimized by our analysis of the 
experiments, for the dependence of the non-Poisson mRNA noise on the mean and the 
randomness in the mRNA lifetime for the two different cases where mRNA lifetime 
distribution is a bi-exponential distribution. In Figure 5e, we investigate the case where the 
mRNA decay process in each cell is the 2-state super-Poisson process without any cell-to-cell 
heterogeneity. In Figure 5f, we investigate the other case where the bi-exponential mRNA 
lifetime distribution is contributed from two cell groups each with their own differing 
exponential mRNA lifetime distribution. According to the prediction, the mRNA noise 
increases with the cell-to-cell heterogeneity in the mRNA degradation dynamics, but 
interestingly, decreases as the mRNA lifetime fluctuation caused by non-Poisson mRNA 
degradation dynamics increases. The correctness of these predictions is confirmed against 
accurate stochastic simulation results.  

When the mRNA degradation process is strongly coupled to the cell environment, the mRNA 
lifetime distribution can significantly differ from cell to cell, and the cell-to-cell variation in 
the mRNA lifetime distribution serves as an additional source of the mRNA noise. A simple 
generalization of the CFT to encompass this case is presented in Supplementary Method 8, 
and the prediction of the generalized CFT for this case is also demonstrated in Figure 5f.  
  



Comment 3: The authors point out that transcription rate fluctuations represent a small if 
not negligible contribution to the noise. This is in agreement with the intuition that fast 
oscillations in the production rate are integrated by the dynamics. The coupling term 
represents the biggest contribution to the noise. However, the expression for the coupling 
terms contains an oscillatory integrand and therefore the biggest contribution seems to stem 
from the integrand at zero, as shown in Fig S16. We are not convinced that this provides 
sufficient evidence for the existence of oscillations in the transcription rate. We wonder 
whether the observed oscillations could not as well be reproduced by white noise correlations 
of similar amplitude, at least this is what Fig S16 seems to suggest. Perhaps the fast 
oscillatory behaviour of the transcription rate correlation is an artefact from restricting 
Delta(x) to have finite support before computing the inverse Laplace transform? In summary, 
it has not become clear which feature of Delta(x) leads the authors to conclude on the 
presence of high-frequency oscillations and how this feature is represented in the data (Fig 
S1).  
 

Response: In this comment, Reviewer 1 expresses a concern about the robustness of our 
quantitative analysis of the experimental data shown in Figure 2 and suspects that these data 
can be explained not only by our model but also by a white noise model of the transcriptional 
rate fluctuation. However, we believe we can alleviate Reviewer 1’s concern. As shown in 
equation (2) in the main text, the non-Poisson mRNA noise is dependent on the Laplace 
transform of the time correlation function (TCF) of the transcription rate, and not merely the 
integration of the TCF; in other words, the non-Poisson mRNA noise is sensitive to the 
detailed shape of the TCF. For example, as shown in Supplementary Figure S3, the model 
with a monotonically decaying TCF cannot explain the experimental data shown in Figure 2.  

To address the issue raised in this comment, we clearly show that the experimental 
results cannot be quantitatively explained by the white noise model of the transcription rate 
fluctuation, whose TCF is Dirac’s delta function, in Supplementary Figure S3 in the revised 
manuscript. In addition, as shown in Supplementary Figure S1 d, one can directly convert the 
experimental data for Delta (x) to the Laplace transform of the TCF of the transcription rate 
with use of equation (M3-12). A number of experimental data with negative values in 
Supplementary Figure S1 d can only emerge when the TCF of the transcription rate 
fluctuation is an oscillatory function, because the Laplace transform of a monotonically 
decaying function is always positive. These experimental data clearly show that the 
oscillatory TCF of the transcription rate fluctuation is not an artifact from representing Delta 
(x) as a particular mathematical function. To address this issue, in the second paragraph of 
Analysis in the main text of our revised manuscript, we explicitly mention that the 
experimental results shown in Figure 2 cannot be explained by assuming a model with a 
monotonically decaying TCF or a white noise model of the transcription rate fluctuation, 
referring the relevant supplementary information.  

  

 



The authors would like to extend our sincere thanks to Reviewer 4 for his or her careful 
review and inspiring comments on our manuscript. We feel that, by addressing the important 
issues raised by Reviewer 4, our manuscript has been brought much closer to perfection. Our 
response to each of Reviewer 4’s comments are as follows. 

 

Reply to Major Comments 
Comment 1: 
Basically CFT is derived from a simple model, where mRNAs arrive at a time-varying 
stochastic rate R(t) and they are serviced (degraded) after a random time _ which is related 
to the survival probability according to S(t) = P(τ > t). Essentially this is a infinite-server 
queuing model with a stochastic time-varying arrival rate R(t) (see [1] for example). If we 
ignore the stochasticity in R(t), then such a queuing model is well-studied and the exact 
distribution of the queue-length (or mRNA copy-number) can be computed in many cases (see 
Section 5.1 in [1]). In fact the formula for the mean hn(t)i that the authors derive is simply 
the transient version of Little's law which is well-known in queuing theory.  
Once we know the variability of mRNA with time-varying (deterministic) R(t), then we can 
add the variance contribution due to stochasticity in R(t) by simply using the law of total 
variation. I believe this will provide a proof of CFT which is much simpler than the proof 
given in the supplementary material. Please explain if that is not true. In any case it would be 
useful to explore the queuing theory literature to find connections with CFT. 
 

Response:  

We thank Reviewer 4 for this inspiring comment. It is true that the analytic expression of the 
mean product number given in equation (M1-6) in Supplementary Information (SI) is the 
same as the transient version of Little’s law in queueing theory. In our revision, after the 
derivation of this equation in Supplementary Method 1.2, we have added a new paragraph, 
explicitly mentioning that equation (M1-6) is the same as the transient version of Little’s law 
derived by Bertsimas and Mourtzinou. However, to the best of our knowledge, the key result 
of this work, the Chemical Fluctuation Theorem (CFT) given in equation (1) in the main text 
for the variance in the product number has not been yet reported in any previous work.  

In this comment, Reviewer 4 suggests an alternative derivation of the CFT, which relies 
on the transient version of Little’s law and the law of total variance. Taking this approach, 
one can obtain equation (M1-27) in Supplementary Method 1 of the revised manuscript, 
which indeed conforms to our CFT. However, it is our belief that this derivation cannot 
replace our derivation of the CFT, because the time correlation function (TCF) of the product 
creation rate appearing in equation (M1-27) cannot be related to microscopic reaction 
dynamics because of how the TCF in equation (M1-27) is defined. Only through our 
derivation of the CFT can the definition of the TCF of the product creation rate be obtained as 
equation (M1-17), which enables us to relate this TCF to the microscopic reaction dynamics 
as demonstrated in equations (M6-11), (M6-12), or (M6-13). Conversely, in the derivation of 
equation (M1-27) from the law of total variance, it is not clear whether the TCF appearing in 
equation (M1-27) has the same definition as the TCF appearing in our CFT or how the TCF 
appearing in equation (M1-27) is related to the microscopic reaction dynamics. As Reviewer 
4 noted in his or her third comment, the definition of the TCF, equation (M1-17), in our 



derivation of the CFT does not contain the diagonal terms. However, our CFT is exact only 
when the TCF is defined by equation (M1-17).  

As Reviewer 4 mention in his or her third comment, it is tempting to define the TCF 
including the diagonal terms as the standard, which is the definition given in equation (M1-
28). However, were we to use equation (M1-27) with the TCF given by equation (M1-28) 
that includes the diagonal terms, equation (M1-27) would be incorrect, showing a great deal 
of deviation from the exact result, or the result of our CFT with the TCF defined by equation 
(M1-17). We present a clear discussion of this point in Supplementary Method 1.4 in the 
revised manuscript.  

To address this important issue raised by Reviewer 4, we explicitly mention that the 
CFT is consistent with the transient version of Little’s law and the law of total variance well 
known in queueing theory, near the end of page 9 in the revised main text, and present 
detailed, relevant discussion in Supplementary Method 1.4. In addition, we refer to the 
precise definition of the TCF of the transcription rate fluctuation and mention that only 
through this definition can the TCF of the product creation rate fluctuation be related to the 
microscopic dynamics of a reaction network model in the paragraph below equation (1). 

An additional advantage of our derivation of the CFT presented in Supplementary 
Method 1.1-1.3 is that the derivation procedure can be extended to obtain the analytic 
expressions of various statistical measures including the TCF of the product number, while 
the law of total variance cannot be extended in such a way and only provides the variance. 
For these reasons, we believe our derivation of the CFT is unique and worthy of publication. 
In the last paragraph before Summary in the revised manuscript, we have explicitly 
mentioned this point, noting that the TCF of the protein number is crucial information 
required to apply the CFT to gene networks with feedback regulation.  

Addressing this comment on page 9 in the main text, we refer to “D. Bertsimas and G. 
Mourtzinou. Transient laws of non-stationary queueing systems and their applications. 
Queueing Systems, 25(1):115, 1997”, which was kindly cited by Reviewer 4 in this comment.  

 

  



Comment 2: The formula for CFT (Equation 1) given on page 8 seems incorrect as it does 
not match the formula derived in the supplementary material (Equation M1-19). These two 
formulas will coincide if S(ti) is replaced by S(t - ti) in equation 1 for i = 1; 2. 
 
Response:  
We are grateful to Reviewer 4 for his or her careful reading of our manuscript. Equation (1) 
in the previous manuscript is correct only when the product creation is a stationary process. 
In the revised manuscript, we present the most general form of the CFT in equation (1), as 
Reviewer 4 suggested.  
 
 
 
 
  



Comment 3-1: I have some concerns with the derivation of CFT that is provided in 
Supplementary Method 1: In deriving Equation M1-16 from M1-15 the authors take average 
over { , }i jτ τ . But these are deterministic dummy variables of integration and so I'm not sure 

what the authors mean here. 
 
Response: There was a typographic error in equation (M1-15). In the revised manuscript, we 
clearly distinguish the deterministic dummy variables 1 2{ , }t t  from the lifetime, ( )i jτ , of the 

i(j)-th product in equation (M1-15). The definition of ( )i jτ  is also presented below equation 

(M1-15).  
 

 

Comment 3-2: The definition of the Time-Correlation function (TCF) used in the derivation 
(Equation M1-17) in not the standard definition as the diagonal terms are ignored. This non-
standard definition is not mentioned anywhere in the Main Paper which will mislead the 
readers. This must be clarified right after the CFT statement. Also the other specialized 
versions of CFT (Equations 2 and 3) seem to be derived with the standard definition of TCF. 
Please elaborate on this issue. 

 
Response:  
In this comment, Reviewer 4 raises a very important issue regarding the precise definition of 
the TCF of the product creation rate fluctuation. As Reviewer 4 correctly notes, the TCF 

0( ) ( )R t R t  defined in equation (M1-17) does not include the diagonal terms. However, it is 

only when we use this definition that we are able to show 0( ) ( )R t R tδ δ  vanishes at all 

times for a Poisson product creation process with a constant rate, as it must vanish. In 
contrast, if we define the TCF by equation (M1-28), which includes the diagonal terms, the 
corresponding 0( ) ( )R t R tδ δ  does not vanish, even for a Poisson product creation process, 

but it instead diverges when 0t t= . Adopting the commonly accepted notion that 

0( ) ( )R t R tδ δ  vanishes for the Poisson process with a constant rate, we believe that our 

definition of the TCF given in equation (M1-17) is, in fact, consistent the standard definition 
of the TCF of the product creation rate.  
 
 
In response to this comment, we refer to the precise definition of the TCF of the product 
creation rate below equation (1) in the revised manuscript. In addition, in Supplementary 
Information 1.4., we insert four paragraphs after the derivation of equation (M1-27) from the 
transient version of Little’s law and the law of total variance, discussing the correct 
microscopic definition of the TCF appearing in this equation.  
 
  



Reviewer Comment 4: It must be mentioned that CFT only holds for cell-to-cell mRNA 
variability in a clonal population of cells, when the cells are assumed to be independent, i.e. 
there is no inter-cellular communication. Also the degradation machinery for mRNAs must be 
independent of the production machinery for CFT to hold. If you agree, please state these 
limitations explicitly in the introduction. 

 
Response: As suggested by Reviewer 4, we more clearly define the application range of our 
CFT in the first paragraph on page 9 and the first paragraph on page 10 in the revised 
manuscript.  
 
The correctness of our CFT is dependent on only one condition: the product decay process 
must be a renewal process. Under this condition, our CFT is exact, regardless of the 
stochastic properties of the product creation process. That is to say, the CFT holds exactly 
even in the presence of inter-cellular communication or other types of complication in the 
product creation process, which is explicitly mentioned in the paragraph before Summary in 
the revised manuscript.  
 
In Supplementary Method 8, we present a generalization of the CFT to the case where the 
product degradation process is strongly heterogeneous among the cells and use this result to 
make a quantitative prediction for the dependence of mRNA noise on the mRNA lifetime 
fluctuation in Figure 5f. In Supplementary Method 1.3, we present another generalization of 
the CFT to encompass the case where the product lifetime distribution is dependent not only 
on the product survival time but also on the time at which a product molecule is created. As 
Reviewer 4 noted in this comment, the CFT does not exactly hold when the product 
degradation process is correlated with the product creation process. It is possible to generalize 
equation (1) into this case, however, we leave it as a topic for future research. 
 
 
 
  



Response to Minor Comments 
 
1. Page 4, paragraph 2, line 4 “ystems" should be “systems". 
  
Response: We have corrected the typographic error noted by Reviewer 4. We are grateful to 
Reviewer 4 for his or her meticulous reading of our manuscript.  
 
 
2. Page 9, end of paragraph 1. Please explain why CFT cannot be derived from CME. 
Is it because CME only describes the evolution of probability-distribution at a single 
time-point and so it cannot capture temporal correlations (TCF) which are needed for 
the variance? 
 
Response: Reviewer 4 makes a good point, and we now explain why the CFT cannot be 
derived from the chemical master equation or its variations in the second paragraph on page 9 
of the revised manuscript. When the product decay process is a Poisson process, one can 
obtain the CFT by taking the generalized master equation approach introduced in ref. 53. 
However, even this approach is not applicable to the case where the product decay process is 
a general renewal process. This is mainly because the rate of change in the product number 
distribution caused by the product degradation process differs from product molecule to 
product molecule, except for the case where the product decay process is a simple Poisson 
process. We believe, for this reason, the master equation and its modern generalizations 
cannot provide an exact description for the product molecules with a general non-Poisson 
lifetime distribution.  



Overview: The main object of the paper is to present the Chemical Fluctuation Theo-
rem (CFT) which describes a generic relationship between fluctuations in the transcription
rate and cell-to-cell variability in the mRNA copy-numbers. A mathematical derivation of
CFT is provided and this result is used to extract interesting biological insights from three
existing datasets on gene-expression systems.

Recommendation: I sincerely thank the authors for all their effort in addressing all
the issues I had raised in my last review. I strongly feel that connections with queuing
theory provides more insight into CFT and its biological relevance. However I still have
some doubts that I mention below. Unless these doubts are satisfactorily addressed, I won’t
be able to support publication of this paper in Nature Communications.

1 Major Issues

1. Despite the several explanations provided by the authors, I am still not entirely con-
vinced that CFT cannot be derived simply by using existing queuing theory results and
the law of total variation. The authors use this approach and come up with Equation
M1-27 in the Supplementary Material. I believe this equation is correctly derived but
I cannot understand why it does not yield the same answers as CFT (Equation M1-27
in Supplementary Material). Note that CFT and Equation M1-27 are almost identical
up to the definition of the Time-Correlation function (TCF). However as these two
equations provide correct formulas for the product variance and they both hold for
arbitrary survival probability S(t), how can the definitions of TCF be different? In
general if the equality ∫

g(x)f1(x)dx =

∫
g(x)f2(x)dx (1.1)

holds for a large enough set of functions g, then we would expect that f1 ≡ f2.

2. I am not sure if the derivation of Equation M1-31 (Supplementary Material) from
Equation M1-27 is correct. In particular if one considers the constant production rate
situation, as described on page 17 of the Supplementary Material, then Equation M1-
31 would yield a Fano factor of 2 (as mentioned by the authors) but Equation M1-27
should yield Fano factor 1 because

〈R(τ2)R(τ1)〉′ − 〈R(τ2)〉〈R(τ1)〉 = 0.

1

 Reviewers' comments:

Reviewer #1 (Remarks to the Author):

The authors have addressed the comments. I have no further comments.

Reviewer #4 (Remarks to the Author):



2 Minor comments

1. Supplementary Material, Page 17, line 5. “...but equation (M1-30) yields...”. Do you
mean equation M1-31 here?

2. Supplementary Material, Page 17, line 6. “...this result with the CTF, one can...”.
Here CTF should be CFT.

3. Supplementary Material, Page 17, first line of the last paragraph. “We finish this
section with a simple derivation of equation (M1-32) from equation (M1-27)...”. Instead
of equation (M1-32) do you mean equation (M1-31) here?

2



We would like to thank Reviewer 4 for his or her acknowledgement of our achievement, 
appreciation of our effort in addressing the issues raised, and meticulous, careful reading of our 
manuscript. We agree with Reviewer 4 that the derivation of the Chemical Fluctuation Theorem 
(CFT), more specifically equations (M1-27) and (M1-28), from a transient version of Little’s 
law and the law of total variation is correct. Otherwise, we would not have presented it in 
Supplementary Method 1.4.  

 

In view of the major issues raised by Reviewer 4, our discussion below equation (M1-27) about 
the correct definition of the time correlation function (TCF) could have been misinterpreted as 
denying the correctness of equation (M1-27), which was not our intention. In the discussion 
we intended to show that the TCF defined in equation (M1-17) in Supplementary Method 1.3 
is correct and that equation (M1-27), or the CFT derived from a transient version of Little’s 
law and the law of total variation, would yield a correct result only if the TCF appearing in 
equation (M1-27) is identified as the TCF defined in equation (M1-17).  

 

To fully address Reviewer 4’s remaining concerns, in our current revision, we clearly mention 
that equation (M1-27) is correct and that the TCF defined in equation (M1-28) is equivalent to 
the TCF defined in equation (M1-17) because both derivations are exact. In addition, we have 
performed a major revision in our discussion below equation (M1-28) about the correct form 
of the TCF, addressing all the other issues raised by Reviewer 4. In the main text as well, we 
address this issue by revising the sentence at the third line from the bottom of page 9 as follows:  
 
“In Supplementary Method 1, we present two different derivations of equation (1) and connect 
equation (1) with well-established laws in probability theory, namely, a transient version of 
Little’s law and the law of total variation49.” 
 
We would like to take this opportunity to express our gratitude to Reviewer 4 for his or her 
truly inspiring and helpful comments throughout the review process, which has undoubtedly 
brought our work closer to perfection.  
 

Please find our direct responses to each of Reviewer 4’s comments below. 

  



Comment 1: 
1. Despite the several explanations provided by the authors, I am still not entirely convinced 
that CFT cannot be derived simply by using existing queuing theory results and the law of total 
variation. The authors use this approach and come up with Equation M1-27 in the 
Supplementary Material. I believe this equation is correctly derived but I cannot understand 
why it does not yield the same answers as CFT (Equation M1-27 in Supplementary Material). 
Note that CFT and Equation M1-27 are almost identical up to the definition of the Time-
Correlation function (TCF). However as these two equations provide correct formulas for the 
product variance and they both hold for arbitrary survival probability S(t), how can the 
definitions of TCF be different? In general if the equality 

1 2( ) ( ) ( ) ( )g x f x dx g x f x dx=∫ ∫  

Holds for a large enough set of functions g, then we would expect that 1 2f f= .  
 
Response: 

We agree with Reviewer 4 that equation (M1-27) with the TCF defined as equation (M1-28) is 
an alternative mathematical representation of the CFT given in equation (1) with the TCF 
defined as equation (M1-17), and we did not intend to deny this in our previous manuscript. 
The point we would like to make is that the simple derivation of equation (M1-27) and (M1-
28) in Supplementary Method 1.4 lacks the microscopic definition of the TCF that can be 
naturally obtained as equation (M1-17) in the derivation presented in Supplementary Method 
1.3. It is for this reason that the derivation of equation (M1-27) in Supplementary Method 1.4 
cannot replace the derivation of the CFT, equation (1) with equation (M1-17), in 
Supplementary Method 1.3.  

 

In response to this comment, we have revised our manuscript to present a clearer discussion 
about this issue below equation (M1-28).    

 “Since the derivation of equation (M1-27) only relies on two well-established laws, the 
transient version of Little’s law and the law of total variance, equation (M1-27) is exact. Note 
that equation (M1-27) has exactly the same mathematical structure as equation (1) or equation 
(M1-19). Since both equation (M1-27) and equation (1) are exact, the TCF defined in equation 
(M1-28) should be equal to the TCF defined in equation (M1-17), that is,  

2 1 2 2 1
1 1

( ) ( ) ( ) ( ) ( ) ( )c c
i j

i j
j i

R R R R t tτ τ τ τ δ τ δ τ
∞ ∞

= =
≠

′ = = 〈 − − 〉∑∑  (M1-29a)” 

 

  



Comment 2:  

I am not sure if the derivation of Equation M1-31 (Supplementary Material) from Equation 
M1-27 is correct. In particular if one considers the constant production rate situation, as 
described on page 17 of the Supplementary Material, then Equation M1-31 would yield a Fano 
factor of 2 (as mentioned by the authors) but Equation M1-27 should yield Fano factor 1 
because  

2 1 2 1( ) ( ) ( ) ( ) 0R R R Rτ τ τ τ′ − =  
 

 

Response:  
 

We agree with Reviewer 4 that equation (M1-27) yields the correct result when the TCF defined 

in equation (M1-28) is correctly identified as 2 1
1 1

( ) ( )c c
i j

i j
j i

t tδ τ δ τ
∞ ∞

= =
≠

〈 − − 〉∑∑ , the TCF defined in 

equation (M1-17). Equation (M1-31) in the previous manuscript was the result for the case 
where the TCF defined in equation (M1-28) is incorrectly identified as 

2 1
1 1

( ) ( )c c
i j

i j
t tδ τ δ τ

∞ ∞

= =

〈 − − 〉∑∑  with the diagonal terms included. In our current manuscript, to 

convey this point as clearly as possible, we have revised the relevant discussion as follows: 

 

“We emphasize that 2 1( ) ( )R Rτ τ ′  in equation (M1-27) is different from

2 1
1 1

( ) ( )c c
i j

i j
t tδ τ δ τ

∞ ∞

= =

〈 − − 〉∑∑  although ( )R t  is defined by equation (M1-3) or 

1
( ) ( )c

i
i

R t t tδ
∞

=

= −∑ . Should we choose to interpret 2 1( ) ( )R Rτ τ ′  by 

2 1
1 1

2 1 2 1
1 1 1

2 1 1 2 1

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c
i j

i j

c c c c
i i i j

i i j
j i

t t

t t t t

R R R

δ τ δ τ

δ τ δ τ δ τ δ τ

δ τ τ τ τ τ

∞ ∞

= =

∞ ∞ ∞

= = =
≠

〈 − − 〉

= 〈 − − 〉 + 〈 − − 〉

= − +

∑∑

∑ ∑∑  (M1-29b) 

equation (M1-27) would yield an incorrect result.  



We can show this for the simple case where the product creation process is a Poisson 

process. In Supplementary Method 6, we present the relationship between the TCF of the rate 

fluctuation and the reaction time distribution. As shown in Supplementary Method 6, when the 

product creation process is a stationary renewal process with the waiting time distribution, 

1( )tψ , the TCF defined in equation (M1-29a) can be related to 1( )tψ  by  

0 0 0 0( ) ( ) ( ) ( ) ( )R t t R t R t t R t t R′+ = + = R  (M1-30) 

with [ ]1 1
ˆ ˆ ˆ( ) ( ) 1 ( )s s sψ ψ= −R  (see equation (M6-13)). For a Poisson product creation process 

with a constant rate, 0R , we have 1 0 0ˆ ( ) ( )s R s Rψ = +  and 0( )t R R= =R  so that equation 

(M1-30) yields  

2
0 0( ) ( ) 0R t t R t R′+ − = . (M1-31a) 

On the other hand, if one were to mistakenly adopt equation (M1-29b) for the definition of 

0 0( ) ( )R t t R t ′+ , one would obtain a different result, namely, 

2
0 0 0( ) ( ) ( )R t t R t R t Rδ′+ − = . (M1-31b) 

Between equations (M1-31a) and (M1-31b), equation (M1-31a) is obviously the correct 

result for a Poisson product creation process with a constant rate. It is well known that, when 

product creation is a Poisson process, the product number distribution is the Poisson 

distribution with 2 ( ) ( )n t n tδ = . Equation (M1-27) yields the correct result only when we 

adopt the correct definition of 0 0( ) ( )R t t R t ′+  given in equation (M1-29a). This example 

clearly shows that equation (M1-17) or (M1-29a) is the correct definition for the TCF of the 

product creation rate, but equation (M1-29b) is not.” 



REVIEWERS' COMMENTS:  

 

 

Reviewer #4 (Remarks to the Author):  

 

The authors have successfully addressed all my remaining concerns. I recommend publication of 

this paper in Nature Communications.  
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