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SUMMARY

We previously developed a mass spectrometry-
based method, dynamic organellar maps, for the
determination of protein subcellular localization and
identification of translocation events in comparative
experiments. The use of metabolic labeling for quan-
tification (stable isotope labeling by amino acids in
cell culture [SILAC]) renders the method best suited
to cells grown in culture. Here, we have adapted the
workflow to both label-free quantification (LFQ) and
chemical labeling/multiplexing strategies (tandem
mass tagging [TMT]). Both methods are highly effec-
tive for the generation of organellar maps and capture
of protein translocations. Furthermore, application of
label-free organellar mapping to acutely isolated
mouse primary neurons provided subcellular localiza-
tion and copy-number information for over 8,000 pro-
teins, allowing a detailed analysis of organellar orga-
nization. Our study extends the scope of dynamic
organellar maps to any cell type or tissue and also
to high-throughput screening.
INTRODUCTION

Spatial proteomics is an emerging field that promises to chart the

location of all proteins within cells, allowing a systems view of

cellular organization (Boisvert et al., 2012; Christoforou et al.,

2016; Foster et al., 2006; Hesketh et al., 2017; Itzhak et al.,

2016; Jadot et al., 2017; Jean Beltran et al., 2016; Mardakheh

et al., 2016; Rhee et al., 2013; Weekes et al., 2014; reviewed in

Aebersold and Mann, 2016; Drissi et al., 2013; Jean Beltran

et al., 2017; Larance and Lamond, 2015). We have previously

developed a profiling method for the generation of highly repro-

ducible organellar maps (Itzhak et al., 2016) that also allows

dynamic mapping of induced changes in protein localization.

The method combines rapid subcellular fractionation with quan-

titative mass spectrometry (MS). Because it relies on metabolic

labeling (stable isotope labeling by amino acids in cell culture
2706 Cell Reports 20, 2706–2718, September 12, 2017 ª 2017 The A
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[SILAC]; Ong et al., 2002) for profile quantification, it is mostly

suited to cells in culture. To expand the range of applications,

here we have developed workflows for label-free quantification

using MaxLFQ (Cox et al., 2014) and tandem mass tag (TMT)-

based quantification using the MS3/multi-notch approach

(McAlister et al., 2012, 2014). We provide a comparison of the

advantages of each method for generating dynamic organellar

maps and apply the label-free workflow to neurons, deriving a

high-resolution quantitative spatial proteome from primary cells.

RESULTS AND DISCUSSION

Adaptation of the Dynamic Organellar Maps Workflow
The principle of subcellular proteomic profiling is to partially

separate organelles by biochemical means and then to quantify

the distributions of proteins across the differentially enriched

subfractions. Organelle-specific profiles are derived from the

distributions of known marker proteins, enabling subcellular

assignment of proteins without known location. Importantly,

complete isolation of individual organelles is not required; over-

lapping profiles can be de-convoluted and resolved by subse-

quent cluster analysis, provided they are sufficiently different.

In the original dynamic organellar maps workflow, cell lysate is

separated by differential centrifugation into six fractions (Itzhak

et al., 2016). Each of the five post-nuclear pellets is mixed 1:1

with a SILAC heavy ‘‘reference’’ membrane fraction, followed

by MS analysis (Figure 1A). Quantification of heavy to light ratios

in each fraction yields abundance profiles across the gradient.

For label-free quantification (LFQ) implementation, the SILAC

workflow was replicated, omitting the heavy-labeled reference

(Figure 1B, left). Profiling was then achieved by direct compari-

son of protein intensities across fractions using the MaxLFQ

algorithm for quantification (Cox et al., 2014). With a five-fraction

workflow (LFQ5), some organelles showed overlapping profiles.

Inclusion of the sixth (nuclear-enriched) fraction (LFQ6) and

re-normalization substantially enhanced the resolution of these

profiles (Figure 1B, center and right). For a chemical labeling

profiling approach, following fractionation and protein digestion,

peptides were conjugated with TMT reagent (McAlister et al.,

2012, 2014). Each tag has the same mass but, upon fragmenta-

tion, gives rise to reporter ions with different masses; these are
uthors.
commons.org/licenses/by/4.0/).

mailto:borner@biochem.mpg.de
http://dx.doi.org/10.1016/j.celrep.2017.08.063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.08.063&domain=pdf
http://creativecommons.org/licenses/by/4.0/


D

E

A

B

C

Figure 1. Workflow for Dynamic Organellar Maps Using Fractionation Profiling

(A) In all workflows, whole-cell lysate was subjected to differential centrifugation to generate fractions enriched in different organelles. Note that the nuclear-

enriched 1K fraction also contains a proportion of non-nuclear material. For the SILAC workflow, heavy-labeled post-nuclear supernatant was subjected to a

single centrifugation step to generate a reference membrane fraction. Each of the fractions, excluding the 1K nuclear fraction, was combined 1:1 with the

(legend continued on next page)
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used to quantify the abundance of the parent peptides across

samples. For maximum accuracy, reporter ions were analyzed

with a synchronous precursor selection MS3 approach to avoid

ratio compression effects (McAlister et al., 2014).The recent

development of 10-plex TMT enabled combination of two

maps of five fractions in a singleMS run (Figure 1C).With all three

profiling strategies, median profiles of major organelles were

clearly resolved (Figure 1D). Furthermore, comparing profiles of

the same organelle across methods revealed that they were

closely matched (Figure 1E).

Evaluation of SILAC, LFQ, and TMT Map Performance
Map performance for the different quantification strategies was

assessedwith twoMS protocols, a ‘‘fast’’ method that minimizes

measuring time and a ‘‘deep’’ method that maximizes protein

coverage. These reflect run parameters we anticipate will be em-

ployed by users. The MS measurement requirements for SILAC

and LFQ5 were identical (12.5 hr/fast map, 37.5 hr/deep map),

and substantially lower for TMT (1.5 hr/fast map, 19 hr/deep

map) because of the multiplexing of samples.

It was expected that the LFQ implementation would be most

challenging because of the noisier quantification relative to

SILAC or TMT (Figure 2A); hence, the LFQ approach was opti-

mized most extensively. Six independent LFQ maps were pre-

pared from HeLa cells with the fast MS protocol. Data transfor-

mation and quality filtering were adjusted for LFQ profiles as

detailed in the Supplemental Experimental Procedures. Organel-

lar predictions were generated using supervised learning (sup-

port vector machines [SVMs]) of a set of approximately 1,000

marker proteins covering 12 subcellular localizations (Itzhak

et al., 2016). The proportion of accurately assigned markers

was scored (global prediction accuracy; Figure 2B). The average

map performance for LFQ5 (fast) was 87.3%. Inclusion of the

sixth fraction led to a consistent and substantial boost in predic-

tion accuracy, taking performance to an average of 91.1% for

LFQ6. For reference,SILAC (fast)mapsaverage�94%accuracy.

Organellar classification using the combined profiles of

several SILAC maps enhances performance (Itzhak et al.,

2016). To investigate this effect with LFQ, classification was per-

formed with one to six LFQ (fast) maps, combining them in order

of performance from worst to best (Figure 2C). Each additional

map improved the performance, plateauing at 5 maps (predic-

tion accuracy,�94% for LFQ6). Three maps of intermediate per-

formance were selected for more extensive MS analysis (deep

protocol). This revealed that two deep LFQ maps combined

had equivalent prediction accuracy as five fast maps (Figure 2C).

An equivalent analysis was performed for TMT maps (single

maps versus a combinations of maps, fast versus deep proto-
reference fraction and measured by MS. The SILAC ratios along the gradient gen

reference fraction was from cells treated to match the fractionated material.

(B) LFQworkflow. The same differential centrifugation as for SILAC light was used

of some organelles, as seen by comparing median organellar marker profiles (5 f

fraction also entails re-normalization of the profile to a sum of 1; this causes rela

(C) TMT workflow, which used identical fractions as the SILAC light workflow. Foll

mass tagging reagent and analyzed on an instrument capable of synchronous

measured in a single experiment.

(D) Median profiles for organellar marker proteins are shown for three organelles

(E) As for (D), except profiles for the same organelle obtained with the different q
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cols) as well as for SILAC (to serve as a reference; Figure S1).

In all cases, a combination of three maps provided high-accu-

racy organellar predictions (Figure 2D). Using the deep protocol,

SILAC provided the best global prediction accuracy at 97.1%;

LFQ5 and TMT maps had slightly lower accuracies (around

91%) but were still very good in absolute terms. The boost

from including the extra fraction placed LFQ6 performance close

to SILAC (94.7%). The number of profiled proteins was lowest

with SILAC (3,700), whereas that with LFQ exceeded 5,500 (Fig-

ure 2E). With TMT, 4,500 proteins were profiled; however, two of

three replicates covered more than 6,000 proteins, suggesting

that the depth should reach that of LFQ maps. The fast protocol

provided a slightly lower map accuracy in all cases, but it was

still very high for SILAC (95.8%) and LFQ6 (92.4%). TMT fast

also had good accuracy (91.3%), although this was calculated

for a smaller set of resolved clusters (Figure 2D; Figure S1G).

MS measuring time requirements were substantially lower

with TMT quantification, especially with the fast protocol (only

4.5 hr/three maps; Figure 2F).

For in-depth performance analysis of maps generated with the

different quantification methods, the predictions for individual

organellar clusters were evaluated.We calculated recall (the pro-

portion of marker proteins correctly assigned to the cluster) and

precision (the proportion of all assignments to this cluster that

are correct). A perfectly resolved cluster includes all relevant

marker proteins and no markers from any other clusters (recall

and precision = 1). The harmonic mean of recall and precision,

the F1 score, provides a single metric of cluster performance.

A comparison of the different methods revealed that some clus-

ters perform well irrespective of the MS acquisition method (Fig-

ure 2G); these included the largest clusters: plasma membrane,

mitochondrion, endoplasmic reticulum, and large protein com-

plex as well as endosome, lysosome, and actin-binding proteins.

Smaller clusters, including peroxisome, nuclear pore complex,

Golgi, and ER-Golgi intermediate compartment (ERGIC), per-

formed less well in TMT and LFQ5 compared with SILAC. The

benefit of LFQ6 relative to LFQ5 was also most evident for these

clusters. Defining an F1 score of > 0.7 as a well-resolved cluster,

both SILAC and LFQ6 resolved all 12 clusters, suggesting that

these are the preferred methods for the highest-resolution

maps; although not directly tested here, a TMT-based deep

analysis with 6 fractions would be likely to yield results similar

to LFQ6 (Figure 2G). Figures S1F–S1I show how the F1 scores

improve when using the deep protocol compared with the fast

protocol.

Organellar predictions of non-marker proteins were stratified

into four confidence classes based on SVM scores (high, me-

dium, low, and very low). Marker prediction accuracies within
erate profiles for each protein. In comparative experiments, the SILAC heavy

. Including the 1K nuclear-enriched fraction in the analysis increased separation

ractions, center, versus 6 fractions, right). Please note that inclusion of the 6th

tive shifts in all fractions.

owing protein digestion, peptides from each fraction were labeled with tandem

precursor selection-MS3 (SPS-MS3). TMT 10-plex permitted two maps to be

with the different methods: SILAC (left), LFQ (center), and TMT (right).

uantification strategies are shown.
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each class served as a proxy for the prediction accuracy of

non-markers (Figure 2H). SILAC had the greatest proportion of

high-confidence predictions, but TMT and LFQ also had high

proportions (Figure 2I). Overall, LFQ made the largest number

of high-confidence predictions because of the overall number

of proteins profiled (Figure 2J; Figures S1C–S1E show the equiv-

alent analyses for maps made with the fast protocol).

Finally, it was evaluated to what extent the organellar assign-

ments made with the different methods agree. Concordance

was calculated as the proportion of proteins with identical pre-

dictions between two quantification methods. For each compar-

ison, the SILAC (deep) set was used as reference. Importantly,

only non-maker predictions were included in the analysis. Base-

line concordance was very high in all cases (84%–87%; Fig-

ure 2K; Figure S1B). A stringency filter was then applied to

restrict comparisons to predictions above a given SVM score.

In all cases, concordance reached >96% for the majority of pre-

dictions, demonstrating that the three profiling methods yield

highly consistent results. Thus, we conclude that the SILAC,

LFQ, and TMTquantification strategies are all effective for gener-

ating accurate organellar maps.

TMT- and LFQ-Based Dynamic Organellar Maps
We next investigated the suitability of TMT and LFQ maps to

capture induced protein translocations. For optimum compari-

son, an identical set of samples, comprising three replicate ex-

periments of control cells or cells stimulated with epidermal

growth factor (EGF) for 20 min, was analyzed with all three

methods using both fast and deep protocols. These samples

were used previously to follow endocytic uptake of activated

EGF receptor (EGFR) but were analyzed only with the fast SILAC

protocol (Itzhak et al., 2016). Here, an additional deep MS

analysis was performed to determine the full capability of the

SILAC approach. To test LFQ maps for dynamic applications,
Figure 2. Performance Analysis of Organellar Maps Generated with TM

(A) To illustrate the relative precision of the different quantification methods appli

subunits, PSMA1–7, PSMB1–7, three independent measurements per protein) wa

TMT. Boxes indicate the interquartile range and whiskers 10th–90th percentile ra

(B) Organellar classification performance of six independent LFQ-based maps.

supervised learning. Performance was assessed for six-fraction profiles (LFQ6, g

(C) Combining several LFQ maps for organellar classification enhanced predicti

to highest performance. Addition of each map improved performance. Maps 3

classification.

(D) Marker prediction accuracy obtained with a combination of three replicate

predictions for only 10 of 12 clusters (see also Figure S1G).

(E) Number of profiled proteins quantified in all three replicates.

(F) MS measurement requirements (hours) for the generation of three replicate m

(G–K) In-depth analysis of the predictions obtained with a combination of three

obtained with the fast MS protocol is shown in Figures S1B–S1E).

(G) Detailed performance profiles ofmapsmadewith SILAC, LFQ5/6, and TMT. Pr

calculated as the harmonicmean of recall (true positives / [true positives + false ne

scores (> 0.7) denote clusters with a high predictive value.

(H) Stratification of non-marker organellar predictions. Each assignment was ma

defined, dividing the data into confidence classes. The prediction accuracy of ma

non-marker proteins. Generally, the first two classes had high accuracies with a

(I and J) Proportion (I) and absolute number (J) of non-marker predictions in each

(K) Concordance analysis. The predictions of non-marker proteins, obtained wi

SILAC. Concordance is the proportion of proteins with identical predictions. Res

compared maps reduces the overlapping dataset but increases concordance. In

See also Figure S1 and Table S1.
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a label-free experiment was simulated by reprocessing the

SILAC fast and deep datasets with the MaxLFQ algorithm,

ignoring any SILAC heavy-labeled peptides. For TMT dynamic

maps, peptides from the SILAC light fractions were TMT-labeled

and analyzed by MS (fast and deep protocols).

To identify proteins that show subcellular movement upon

EGF treatment, an improved version of our previously developed

outlier test was applied (Supplemental Experimental Proced-

ures). This combines metrics for movement distance (M score)

and reproducibility (R score) into an ‘‘MR’’ scatterplot analysis.

Significantly translocating proteins have both high M and R

scores. False discovery rate (FDR) control for cutoff selection

was achieved by comparison with a mock experiment (control

versus control). These plots revealed that SILAC, TMT, and

LFQ implementations of dynamic organellar maps correctly

identified the movement of EGFR together with SHC1 and

GRB2, two major binding partners of activated EGFR (Figures

3A, 3D, and 3G). The profiles of the EGFR, before and after treat-

ment with EGF (Figures 3B, 3E, and 3H), were remarkably similar

across all methods. Furthermore, when subjecting each of the

datasets to SVM analysis, all methods correctly classified

EGFR as localized to the plasma membrane in control cells

and to endosomes in EGF-treated cells (Figures 3C, 3F, and

3I). Importantly, almost identical results were obtained with the

corresponding fast analyses (Figure S2), also highlighting the

usefulness of all methods in this format.

Although all three approaches successfully identified major

translocations, they differed in the number of detected minor

movements (Figure S3). Here, SILAC performed best, identifying

a total of 66 significant translocations (with an estimated FDR <

10%). 42 of these have previously been linked to EGF signaling,

strongly supporting the high predictive value of the analysis;

the remaining proteins are hence likely candidate pathway com-

ponents or downstream targets of EGFR (see Figure S3 and
T, LFQ, and SILAC Quantification Strategies

ed in fractionation profiling, profile scatter within the 20S core proteasome (14

s analyzed (deepMS protocol). LFQmeasurements are ‘‘noisier’’ than SILAC or

nge.

Accuracy is the proportion of correctly classified organellar markers during

reen) and for the same maps with the sixth data point removed (LFQ5, yellow).

on accuracy. (Fast) maps shown in (B) were combined in the order of lowest

, 4, and 6 were then chosen for further deep MS analysis and combined for

maps by quantification strategy and MS protocol. TMT fast maps included

aps.

replicate datasets, deep MS protocol (an equivalent analysis for predictions

ediction performance was evaluated for each organellar cluster. F1 scores were

gatives]) and precision (true positives / (true positives + false positives]). High F1

de with a prediction confidence score. Four different SVM score cutoffs were

rker proteins within each class served as a proxy for the prediction accuracy of

ll methods.

confidence class.

th TMT, LFQ5, and LFQ6, were compared with the predictions obtained with

tricting the comparison to proteins with a minimum confidence score in both

all cases, over 85% of the predictions show > 90% agreement.
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Table S2 for complete annotation). TMT and LFQ maps both de-

tected sixteen movements but, in the case of LFQ, with a higher

FDR. Of note, the improved depth of LFQ maps enabled the

identification of UBASH3B movement, a protein absent from

the SILAC dataset. Conversely, TMT was the only method to

identify movement of EGF; this protein was not present in control

cells and, hence, was excluded from LFQ and SILAC analyses,

but, because of multiplexing of two maps, the TMT approach

can handle such cases.

Key metrics and characteristics for static and dynamic appli-

cations of each method are summarized in Figure 4.

Application of LFQ Organellar Maps to Mouse Neurons
The successful implementation of LFQ organellar maps opened

the possibility to investigate the spatial proteome of primary

cells. To test this, we prepared acutely isolated neurons from

embryonic mice (sacrificed at embryonic day 15 [E15]). At this

stage of development, neurons show relatively little neurite

arborization, which facilitates their isolation (Sciarretta and Mini-

chiello, 2010). In total, five independent replicates were prepared

on three separate days. Cells were lysed mechanically and sub-

jected to our standard differential centrifugation scheme (Fig-

ure 5A). In addition to the six membrane fractions (LFQ6), we

also collected the cytosol; this allowed us to capture the com-

plete spatial and quantitative proteome from a single workflow

despite very limited amounts of starting material (only 1–2 mg

of protein/preparation). Samples were analyzed with the fast

MS protocol (17.5 hr/preparation). In total, over 9,000 proteins

were identified (Table S3). The combined output from all five rep-

licates was then jointly processed to generate organellar maps;

3,894 proteins were profiled across all replicates. These were

annotated with the same set of organellar markers as for HeLa

cells, without any further cell-specific optimization (834 markers

matched across species). Application of SVM machine learning

showed a high overall marker prediction accuracy of 92.7%

(with full cross-validation; Figure 5B). For a more detailed perfor-

mance evaluation, we calculated F1 scores for each compart-

ment cluster (Figure 5C). 11 of 12 clusters showed high resolu-

tion, with the exception of the (rather minor) endoplasmic

reticulum (ER)-high curvature cluster. Stratification of the predic-

tion classes (Figure 5D) revealed a large proportion of high-con-

fidence predictions. Collectively, these data show that the per-

formance of the LFQ neuron maps is extremely similar to what

we had previously observed in HeLa cells (Figure 2; Figure S1)
Figure 3. Assessment of Dynamic Organellar Maps with Different Qua

(A) Three replicate SILAC experiments of cells left untreated or stimulated with E

resulting difference profiles were subjected to statistical analysis to identify mo

reproducibility scores for each protein are shown in an MR scatterplot; significa

contains proteins where the estimated false discovery rate (FDR) for translocatio

(B) Top: the proportion of EGFR in each fraction across the differential centrifugatio

EGF (black lines). Bottom: the difference in protein pelleting in the fractions in un

(C) Proteins in the shaded area of (A) were removed from the marker set, and all r

machine learning. The prediction scores for the plasmamembrane and endosome

in localization of the EGF receptor.

(D–F) The same as (A)–(C), respectively, but for LFQ-based (deep) experiments.

(G–I) Also the same as (A)–(C), respectively, but using data from the TMT-based

cutoffs determined for the SILAC and LFQ experiments.

See also Figures S2 and S3 and Table S2.
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and demonstrate that the LFQ protocol is suitable for application

to primary neurons.

In addition to the organellar localization data, our analysis also

provided information on the global distribution across the mem-

brane, nuclear, and cytosolic fractions for over 6,000 proteins.

These included 1,120 proteins classified as mostly nuclear,

1,471 as mostly cytosolic, and 528 as nuclear and cytosolic

(Table S4). Finally, we derived absolute protein abundances

(i.e., copy numbers and cellular concentrations) for over 9,000

proteins using the proteomic ruler approach (Wi�sniewski et al.,

2014; Figure S4). Together, these data provide a comprehensive

account of the mouse cortical neuron spatial proteome

(Table S4).

A Quantitative Comparison of Mouse Neuron and HeLa
Organellar Organization
The combined knowledge of protein abundance and subcellular

localization data allows the reconstruction of cellular anatomy,

as we have shown previously for HeLa cells (Itzhak et al., 2016).

We prepared an equivalent analysis for primary mouse neurons

(Figure 6). We derived a quantitative total proteome (Table S4),

the contribution of every organelle to the whole cell protein

mass, and also determined the protein composition of individ-

ual organelles. The availability of two spatial proteomes, HeLa

and mouse neurons, prepared with the same approach and

comparable depth of analysis, offered a unique opportunity

for a systematic comparison of two very different cell types at

the organellar level. HeLa cells are fast-growing immortal cells

derived from a cervical carcinoma and are maintained in cul-

ture, whereas the neurons were differentiated mouse primary

cells freshly isolated from the brain and had never been

exposed to culture conditions. We sought to determine to

what extent these differences are reflected at the compositional

level.

At the qualitative proteome level, 78% (6,700) of all proteins

detected in the neurons were also expressed in HeLa cells

(assuming that proteins with the same name have orthologous

functions in both organisms; Figure 6A). Our proteomic ruler

data estimated that HeLa cells were approximately six times

larger than the neurons. Factoring in relative protein abundance

(copy numbers weighted by protein molecular weight and

scaled by cell size), the composition overlap by protein mass

drops to around 61%, demonstrating that quantitative and

qualitative differences in protein expression both contribute
ntification Strategies Using the Deep MS Protocol

GF for 20 min were analyzed in a dynamic organellar maps experiment. The

ving proteins (see Experimental Procedures for details). The movement and

ntly moving proteins have high scores in both dimensions. The shaded area

n is < 10% based on a mock control experiment.

n gradient for three replicates in control cells (gray lines) or cells stimulatedwith

treated compared with EGF-treated cells for three replicates.

emaining proteins were subjected to organelle classification using SVM-based

are shown before and after treatment with EGF, correctly capturing the change

Note that the shaded area corresponds to a translocation FDR of < 20%.

(deep) experiments. Note that the shaded area is not FDR-controlled but uses



(legend on next page)

Cell Reports 20, 2706–2718, September 12, 2017 2713



substantially to cellular identity. Conversely, the perhaps sur-

prisingly large degree of overlap suggests that, regardless of

cell type, a considerable proportion of the proteome is relatively

invariant. Similarly, in both cell types, the 100 most abundant

proteins contribute over 30% of the total protein mass

(Figure 6B).

We next compared the relative abundance of individual organ-

elles (Figure 6C). In both cell types, mitochondria and the

ER were the predominant organelles. For mitochondria, the

contribution to total cell protein mass was almost double in

HeLa cells (6.6% versus 3.4%), perhaps reflecting their

increased need for energy to support continuous growth. In

contrast, the ER contributed very similarly in both cells (3.7%

in neurons and 4.4% in HeLa cells). The Golgi, endosomes,

and lysosomes all made relatively minor overall contributions

(all < 1%), although each of these organelles contributed �23

greater mass to HeLa cells compared with neurons. The levels

of ribosomes (approximately 5%–6%) and proteasomes

(approximately 1%–1.5%) were remarkably similar (Figure 6D).

To facilitate the analysis of individual organelles, we identified

the ten most abundant proteins in neuron organelles, which, in

each case, make up a large proportion of the total organelle

mass. We then compared the compositional overlap (by

percent protein mass) with the corresponding HeLa cell organ-

elles (Figures 6E–6I). As expected, the plasma membrane

composition was radically different, both qualitatively and

quantitatively, supporting the notion that the cell surface is a

key factor in determining cellular identity (Sharma et al.,

2015). Lysosomes also have very different compositions, but

the differences are mostly quantitative; the neuronal lysosome

is predominated by two cathepsins (Ctsb and Ctsd) that

contribute 25% of the proteome, suggesting a specialized

role for this compartment. In contrast, the ER has an almost

identical composition in both cell types, suggesting that abun-

dant ER constituents are indeed ‘‘housekeeping’’ proteins

with similar concentrations across cell types. Of note, peroxi-

somes are also extremely similar in both cell types and domi-

nated by the same protein, HSD17b4 (beta-hydroxysteroid de-

hydrogenase), which contributes 25% of the protein mass.

Mitochondria show considerable compositional overlap but

with specific metabolic adaptations (e.g., complete lack of

CPS1 in neurons, a key component of the urea cycle and a ma-

jor mitochondrial protein in HeLa cells; Itzhak et al., 2016).

Although the levels of heat shock proteins are very similar in

the ER (both approximately 20%), they are substantially lower

in the mitochondria of neurons (approximately 9% versus

14% total); this may again relate to the high biosynthetic load

imposed by rapidly growing HeLa cells. Thus, our analysis re-

veals qualitative and quantitative differences between neuronal
Figure 4. Visual Map Representation of 941 Marker Proteins Common

teristics for Both Fast and Deep MS Protocols of the SILAC, LFQ5, LFQ

Plots for the SILAC, LFQ5, and TMTmethods were generated from a single princip

one for each of the methods, and each entry had fifteen data points corresponding

for each map, an independent PCA was used to generate this plot; it was then s

similar separation and orientation of marker protein clusters, with increased cluste

cluster. Furthermore, note that each plot is a 2D representation of a 15-dimension

resolved in higher dimensions not illustrated here. TMT fast maps include predic
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and HeLa organelles but also a remarkable set of conserved

features.

Outlook
Here we have established that SILAC, LFQ, and TMT are all high-

ly effective for generating dynamic organellar maps through frac-

tionation profiling, widely extending the scope of this method

(summarized in Figure 4; Table S5). LFQ- and TMT-based

profiling allow application to primary cells and tissues. As

demonstrated formouse neurons, the LFQ6 format is particularly

useful is this regard because of its excellent prediction accuracy.

We expect that a sixth fraction would also improve the prediction

accuracy for TMT (using, for example, TMT 6-plex) but at the

expense of the ability to place two maps in a single TMT

10-plex experiment. Conversely, using the protocols illustrated

here, TMT maps required only �50% (deep) or 12% (fast) of

MS time compared with their SILAC or LFQ equivalents. Multi-

plexing is the biggest advantage of the TMT approach; with

the fast protocol, a triplicate comparative analysis can be per-

formed in as little as 9 hr of total MS measurement time, paving

the way for high-throughput spatial proteomics experiments.

For cells amenable to metabolic labeling, the SILAC approach

offers exceptional performance both for organellar classification

and for capture of translocation events. As reported previously

(Itzhak et al., 2016) and as shown here, protein copy numbers

estimated from the map data can be assigned to organellar pro-

teomes to provide global cellular anatomy; all map formats are

equally compatible with this approach.

EXPERIMENTAL PROCEDURES

Please refer to the Supplemental Experimental Procedures for complete details.

Analyzed Samples

For this study, we prepared multiple organellar maps from new samples but

also re-analyzed several previously generated samples (Itzhak et al., 2016),

either with new labeling and MS or new processing (see Supplemental Exper-

imental Procedures for a complete description).

Cortical Neuron Preparation

Mice (C57BL/6 background) were housed in a specific pathogen-free (SPF)

facility with a 12:12 hr light/dark cycle and food and water available ad libitum.

All animal experiments were performed in compliance with institutional pol-

icies approved by the government of upper Bavaria. For preparation of cortical

neurons from embryonic mice (E15), the procedure described in Meberg and

Miller (2003) was adapted. This method yields fairly pure neuronal populations

(Xu et al., 2012) because glial cells have not developed at this stage (Qian et al.,

2000). Furthermore, these neurons have not yet formed extensive dendritic or

axonal arbors and can therefore be isolated with relatively little cell damage

(Sciarretta and Minichiello, 2010). In total, five independent preparations

were analyzed by organellar mapping.
to All Triplicate Deep Datasets (Left) and Key Metrics and Charac-

6, and TMT Methods (Right)

al-component analysis, where each marker protein had three different entries,

to three replicates of five fractions. Because LFQ6 has an additional data point

caled for optimum comparison with the other methods. All maps show highly

r density of SILAC relative to other methods, most evident with the peroxisomal

al dataset (18-dimensional for LFQ6); many seemingly overlapping clusters are

tions for only 10 subcellular localizations; all other maps include 12.
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Figure 5. Application of Label-free Organellar Mapping to Mouse Neurons

(A) Schematic workflow. Cortical neurons were acutely isolated from embryonic mice, lysed mechanically, and subjected to a series of differential centrifugation

steps: 1, nuclear-enriched fraction; 2–6, membrane fractions; 7, cytosol. All fractions were analyzed by label-free quantitative mass spectrometry. Fractions 1–6

were used to generate organellar maps. Fractions 1, 2–6 combined, and 7were used to quantify proteins’ nuclear, membrane-associated, and cytosolic pools. All

fractions, 1–7 combined, were used to calculate protein copy numbers per cell.

(B) Summary of neuron map performance (combined output from five independent replicates).

(C) Detailed performance profiles of neuron maps. F1 scores were calculated as the harmonic mean of recall and precision, for each compartment, as in Figure 2G.

(D) Stratification of non-marker organellar predictions as in Figure 2H. The prediction accuracy of marker proteins within each class served as a proxy for the

prediction accuracy of non-marker proteins. The first two classes had very high accuracies. Proportion and absolute number of non-marker predictions in each

confidence class are shown in the center and on the right, respectively.

See also Figure S4 and Tables S3, S4, and S5.
Subcellular Fractionation Procedure for Label-free Organellar Maps

Cell lysis and subcellular fractionation were performed as reported previously

(Itzhak et al., 2016) and as shown in Figure 1 but omitting any steps relating to

the SILAC heavy-labeled reference sample. Each map was prepared from a

single, �70% confluent 15-cm dish of HeLa cells.

MS

Mass spectrometric analysis of LFQ and SILAC samples was performed with a

Q Exactive HF (Thermo Fisher Scientific, Germany), as described previously

(Itzhak et al., 2016). For samples in the TMT workflow, MS was performed

with an Orbitrap Lumos or an Orbitrap Fusion instrument (Thermo Fisher Sci-

entific, San Jose, CA).
Processing of MS Data

Raw files were processed with MaxQuant version 1.5 (Cox and Mann, 2008;

Tyanova et al., 2016a) using the human or mouse reference protein datasets

downloaded from UniProt (SwissProt canonical and isoforms database).

Statistical Methods

Generation of Organellar Maps

Each map experiment generated an abundance distribution profile across the

subcellular fractions for every quantified protein; typically, several thousand

proteins were profiled in an experiment. To allow cluster analysis, established

marker proteins of various subcellular compartments were then identified from

a previously defined set (Itzhak et al., 2016). For unsupervised clustering and
Cell Reports 20, 2706–2718, September 12, 2017 2715
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data visualization, profiles were subjected to principal-component analysis

(PCA) (Figure 4). For unbiased and rigorous organellar assignments, the

SVM-based supervised learning approach described in Itzhak et al. (2016), im-

plemented in Perseus software (Tyanova et al., 2016b), was then applied.

Conceptually, SVMs derive non-linear boundaries between multivariate data

clusters. The SVMs were first trained with the marker protein profiles (using

cross-validation to prevent overfitting). Non-marker proteins were then as-

signed to compartments based on the boundaries defined by the markers.

Detection of Dynamic Changes between Organellar Maps

The detection of protein translocations followed the procedure established in

Itzhak et al. (2016), with several improvements and adaptations for the LFQ

and TMT workflows (refer to the Supplemental Experimental Procedures for

complete details). Briefly, the analysis is based on a two-tiered statistical

test and fully FDR-controlled. First, for each protein, the two five-point profiles

obtained from a pair of control and EGF treatment maps are subtracted to

obtain a delta profile. All delta profiles are collected in a matrix, and for each

delta profile, the robust Mahalanobis distance to the matrix center is calcu-

lated. The Mahalanobis distance approximately follows a chi-square distribu-

tion with five degrees of freedom and can therefore be converted into a p value

(the likelihood to observe a profile as far or farther from the center). In total,

three replicate pairs of control and EGF treatments were analyzed. For each

protein, three p values for profile shifts were thus obtained. For a stringent

analysis, the highest p value from the three replicates was chosen (corre-

sponding to the smallest observed shift). This value was then cubed (because

there were three independent replicates, each with a p value smaller or equal

to the chosen one) and corrected for multiple hypothesis testing using the Ben-

jamini-Hochberg method. The negative log10 of the corrected p value was the

protein’s M score (‘‘magnitude’’ of movement). Large M scores correspond to

large profile shifts. Second, the reproducibility of profile shifts was assessed.

For each protein, the Pearson correlation between the delta profiles of repli-

cates 1 versus 2, 1 versus 3, and 2 versus 3 was calculated. Of the three ob-

tained R values, the lowest one was chosen and represents the R score

(‘‘reproducibility’’ of movement). Large R scores correspond to reproducible

profile shifts. Genuinely translocating proteins have high M and R scores.

To achieve FDR control, data from a previous ‘‘mock’’ experiment (Itzhak

et al., 2016) were used. Six control maps were split into three pairs and

analyzed as described above. No genuine translocations were expected

here. Applying the same M and R score cutoffs to the EGF treatment data

and the mock data yielded the FDR, as the number of hits observed in the

mock experiments divided by the number of hits in the EGF treatment exper-

iments (scaled by the relative sizes of the datasets).

Software for Statistical Analysis and Graphics

Statistical analyses, data transformation, and filtering were performed in

Perseus (Tyanova et al., 2016b), Prism 6 (GraphPad), and Microsoft Excel.

Principal component analysis was performed in SIMCA 14 (Umetrics/MKS).

Copy-Number Determination and Organellar Composition Analysis

Copy numbers per cell, protein concentrations, and cell volumes were esti-

mated with the proteomic ruler approach (Wi�sniewski et al., 2014), imple-
Figure 6. Comparative Organellar Anatomy of Mouse Neurons and He

(A) Full proteome overlap analysis. Top: qualitative overlap; the proportion of p

Bottom: quantitative overlap (protein IDs and abundance considered).

(B) Proteins detected in neurons (black) or HeLa cells (gray) were ordered by abun

y axis. In both cases, the 100 most abundant proteins contribute over one-third

(C) Relative contribution of individual organelles to total cell protein mass. Pleas

neurites, and, hence, parts of the plasma membrane, are lost (see Supplemen

membrane contribution (which is not shown here for this reason) but is unlikely t

(D) Abundant protein complexesmake remarkably similar contributions to the tota

TRiC.

(E–I) Compositional analysis of major organelles: (E) ER, (F) peroxisome, (G) mi

abundant proteins of the neuronal organelle were determined; the y axis show

contributions of the same proteins to the corresponding HeLa organelles are show

peroxisome), others differ qualitatively (plasma membrane) or quantitatively (i.e.

membrane, only integral membrane proteins were considered. Although many sy

observe a separate cluster corresponding to synapses.
mented in Perseus software (Tyanova et al., 2016b). Organelle composition

analysis was performed essentially as described in Itzhak et al. (2016).

Webpage

We have improved the web interface for our database of human subcellular

localization predictions (http://www.MapOfTheCell.org).

SUPPLEMENTAL INFORMATION
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Figure S1. Further performance analyses of organellar maps generated with TMT, LFQ and SILAC 
quantification strategies. Related to Figure 2. A) Global prediction accuracy of maps made with TMT and 
SILAC workflows. Accuracy is the proportion of correctly predicted marker proteins; combining maps for 
classification increases prediction accuracy. *Please note that for TMT fast, classification was only performed 
on 10 clusters (see also G)). B) Concordance analysis for predictions made with the ‘fast’ MS protocol (three 
replicates combined). Predictions from the SILAC, TMT, and LFQ fast MS workflows were compared to the 
predictions obtained with the SILAC deep MS workflow, as in Figure 2K. C-E) Stratification of organellar 
predictions into confidence classes, as in Figure 2H-J, but for data obtained with the fast MS workflow. F-I): 
Detailed performance profiles of maps made with SILAC, LFQ5/6, and TMT, three replicates combined, 
comparing fast and deep MS protocols for each method. F1 scores are the harmonic mean of precision and recall 
of marker protein predictions for individual compartments. Clusters with F1 scores >0.7 have high predictive 
value.* For TMT fast maps, ‘Nuclear pore complex’ and ‘ER high curvature’ clusters had too few proteins to 
make SVM models, and were not included in the classification analysis; average F1 scores were hence 
calculated for only 10 clusters in this case. Peroxisomes were included, but not resolved (F1 = 0).  
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Figure S2. Assessment of Dynamic Organellar Maps with different quantification strategies using the fast 
MS protocol. Related to Figure 3. This figure is laid out exactly as Figure 3, except that data were generated 
with the fast MS protocol, which has reduced depth. Nonetheless, movement of EGFR from the plasma 
membrane to the endosome is captured with all methods.  
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Figure S3. Detailed view of EGF translocation analysis. Related to Figure 3. MR plot reproduced from 
Figure 3A with all 66 proteins identified as moving in response to EGF, based on the SILAC deep analysis, 
annotated with their gene names. Two shaded areas indicate two estimated FDRs based on a mock-control 
experiment; in the darker shaded area, less than 1% false positives are expected, while in the lighter shaded area 
<10% of false positives are expected. Inset, Venn diagram showing the overlap of moving proteins detected 
with the three methods (deep protocol), corresponding to Figure 3A, D, G; SILAC, blue, LFQ, yellow, and 
TMT, pink. Proteins that were present in the SILAC dataset but were identified as hits only in the TMT or LFQ 
method are coloured grey. Conversely, proteins not present in the SILAC dataset but identified as hits only in 
TMT or LFQ are shown in black. Furthermore, there were 8 proteins among the SILAC hits that were not 
present in the TMT dataset, and a further 2 proteins absent from the LFQ dataset, denoted by +10, in grey. 
 
  



R² = 0.901

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Lo
g 2 c

op
y 

nu
m

be
rs

 c
om

po
un

d 
fu

ll 
pr

ot
eo

m
e

Log2 copy numbers standard full proteome

R² = 0.990

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30

S
ta

nd
ar

d 
no

rm
al

 d
is

tri
bu

tio
n

Log2 copy numbers standard full proteome

R² = 0.998

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30

Log2 copy numbers compound full proteome

S
ta

nd
ar

d 
no

rm
al

 d
is

tri
bu

tio
n



 
 

Figure S4. Deriving protein copy numbers/cell with two different strategies. Related to Figure 5. Protein 
copy numbers per cell were calculated with the Proteomic Ruler approach (Wisniewski et al., 2014). This 
requires determination of a whole cell proteome by mass spectrometry as input. Here, two approaches were 
compared: the ‘standard’ full proteome measured from whole cell lysates, and a ‘compound’ full proteome 
obtained by combining the mass spectrometric measurements of seven subcellular fractions (Figure 5A, and 
Supplemental Experimental Procedures). This figure shows that both yield very consistent results, but the 
compound data has greater depth. A) Copy numbers of proteins common to both datasets show high levels of 
correlation (R=0.949, R2=0.9), and very similar absolute values. B, C) Distribution of copy numbers obtained 
with the two methods. Data were log transformed, and analysed by QQ plots. Perfectly normally distributed data 
would follow a straight line. As can be seen, both datasets show excellent correlation with theoretical standard 
normally distributed data (R2>0.99). Copy numbers from compound proteomes in C) have an extended dynamic 
range at the lower end. 
 
  



 
 

Table S2, related to Figure 3: Literature search results on proteins that move significantly in response to 
stimulation with EGF, as annotated in Figure S3, related to Figure 3. 
 

Canonical 
ID Gene name M 

SCORE R SCORE Supporting reference for 
involvement in EGF signalling 

P29353 SHC1 395.9 0.996 (Sakaguchi et al., 1998) 
Q09666 AHNAK 14.7 0.992 No previous link identified 
P62993 GRB2 382.9 0.991 (Lowenstein et al., 1992) 
P00533 EGFR 105.4 0.990 (Sherrill and Kyte, 1996) 
Q15154 PCM1 31.3 0.989 (Akimov et al., 2011) 
Q14247 CTTN 5.1 0.988 (Mader et al., 2011) 
Q7KZI7 MARK2 2.9 0.984 No previous link identified 
Q16513 PKN2 35.0 0.982 (Vincent and Settleman, 1997)* 
O75116 ROCK2 18.6 0.980 (Julian and Olson, 2014) 
Q15907 RAB11B 3.4 0.974 (Watanuki et al., 2014) 
Q14847 LASP1 4.0 0.970 No previous link identified 
Q9UJU6 DBNL 19.6 0.967 No previous link identified 
P04626 ERBB2 22.7 0.962 (Karunagaran et al., 1996) 
O00750 PIK3C2B 11.5 0.957 (Wheeler and Domin, 2001) 
P98082 DAB2 2.7 0.956 (Eskova et al., 2014) 
Q9HBL0 TNS1 4.4 0.952 (Pai et al., 2001) 
O94875 SORBS2 6.5 0.952 (Soubeyran et al., 2003) 
O00592 PODXL 9.1 0.950 (Larsson et al., 2016) 
Q8IYS2 KIAA2013 4.0 0.948 No previous link identified 
P60903 S100A10 3.0 0.947 No previous link identified 
Q99959 PKP2 2.1 0.945 (Arimoto et al., 2014) 
Q9Y230 RUVBL2 2.3 0.934 (Kozik et al., 2013) 
Q8NEM2 SHCBP1 2.1 0.931 (Schmandt et al., 1999) 
Q9UQB8 BAIAP2 3.9 0.929 (Lewis-Saravalli et al., 2013) 
Q8TEW0 PARD3 5.2 0.922 (Wang et al., 2006) 
Q9NWS0 PIH1D1 2.7 0.922 (Fan et al., 2009; Kamano et al., 

2013) 
Q53EL6 PDCD4 4.2 0.917 (Matsuhashi et al., 2014) 
Q14126 DSG2 2.3 0.915 (Klessner et al., 2009) 
P35611 ADD1 7.1 0.915 (Fukata et al., 1999) 
Q15642 TRIP10 2.4 0.914 (Hu et al., 2009) 
Q9H4L5 OSBPL3 2.1 0.914 No previous link identified 
O75592 MYCBP2 2.1 0.914 (Holland et al., 2011) 
O14745 SLC9A3R1 3.4 0.911 Uniprot* 
P06865 HEXA 2.1 0.904 No previous link identified 
Q96HC4 PDLIM5 2.4 0.901 Uniprot 
Q8IZ83 ALDH16A1 18.9 0.900 No previous link identified 
Q92887 ABCC2 6.4 0.900 No previous link identified 
O00401 WASL 6.1 0.898 (Galovic et al., 2011) 
O95425 SVIL 5.5 0.895 (Fang et al., 2010) 
O60825 PFKFB2 4.7 0.888 (Novellasdemunt et al., 2013) 
Q13625 TP53BP2 8.9 0.885 (Liu et al., 2015) 
Q9HAK2 EBF2 3.2 0.879 No previous link identified 
Q9Y315 DERA 6.3 0.876 No previous link identified 
Q8NB49 ATP11C 11.0 0.862 Uniprot 
Q8IUD2 ERC1 14.2 0.852 No previous link identified 
Q8IV08 PLD3 2.4 0.851 (Tong et al., 2014) 
P15924 DSP 2.3 0.850 (Lorch et al., 2004) 
Q15418 RPS6KA1 16.1 0.847 (Zhang et al., 2015) 
O95817 BAG3 2.4 0.827 No previous link identified 
Q6WKZ4 RAB11FIP1 7.9 0.826 (Xu et al., 2016) 



 
 

Q9ULV4 CORO1C 3.6 0.825 (Hosseinibarkooie et al., 2016) 
Q13322 GRB10 9.3 0.811 (He et al., 1998) 
Q9UPN4 CEP131 3.7 0.810 No previous link identified 
Q8NFJ5 GPRC5A 2.6 0.803 (Zhong et al., 2015) 
P27448 MARK3 2.3 0.795 No previous link identified 
P10253 GAA 3.5 0.791 No previous link identified 
Q969G5 PRKCDBP 3.1 0.774 Uniprot 
Q8IXU6 SLC35F2 12.4 0.749 No previous link identified 
O00471 EXOC5 2.5 0.743 (Fogelgren et al., 2014) 
Q6IQ49 SDE2 2.8 0.733 No previous link identified 
P00568 AK1 2.1 0.730 No previous link identified 
Q86TC9 MYPN 2.8 0.726 No previous link identified 
Q9NZ53 PODXL2 14.3 0.722 No previous link identified 
P13797 PLS3 7.5 0.715 (Hosseinibarkooie et al., 2016) 
Q9UBE0 SAE1 5.9 0.714 No previous link identified 
O75531 BANF1 3.2 0.707 No previous link identified 

 
A primary literature search was conducted to identify links between EGF receptor signalling and the identified 
hits; references for these links are provided where possible. This search was not exhaustive; some links may 
have been missed, and apologies are made to those whose work was not cited. *a link between this protein and 
EGFR was not identified, but a link between this and a second hit in the list, which is linked to EGFR signalling, 
was identified.  



 
 

Table S5, related to Figure 5: Comparison of spatial proteomic profiling methods 

 

Method Dynamic Organellar Maps hyperLOPIT PCP Rat liver 
proteome 

Reference Itzhak et al., 2016 This Study Christoforou et al., 
2016 Foster et al., 2006 Jadot et al., 2017 

Organelle 
separation 
technique 

Differential centrifugation Density gradient 
centrifugation 

Velocity gradient 
centrifugation 

Combination of 
different 

centrifugation 
techniques 

Quantification 
approach 

Metabolic labelling 
(SILAC) 

Label free 
quantification (LFQ) 

or 
Isobaric labelling 

(TMT) 

Isobaric labelling Label free 
quantification Isobaric labelling 

Instrumentation Q Exactive HF  

Q Exactive HF  
(for LFQ) 
Orbitrap 

Fusion/Lumos 
(for TMT) 

Orbitrap Fusion Orbitrap* Orbitrap Velos 

Starting material 
per map 1E7 HeLa cells 

1 -2 mg protein  
(mouse neurons, for 

LFQ) 

1E8 mouse 
embryonic stem 

cells 
1 mouse liver 2 rat livers 

Number of  MS 
analysis runs per 
map 

24 7 (LFQ) 24 32 >200 

Number of 
mapped proteins 
 

>8,700 
(from 6 replicates) 

>8,000 
(from 5 replicates) 

>5,500  
(from 2 replicates) >1,400* 

>6,000 
(from 4 

replicates) 

Strengths of the 
method 

High organellar resolution 
 

High reproducibility allows  
comparative applications 

 
Quantitative organellar modelling 

High organellar 
resolution 

 
Comparative 

applications (Jean 
Beltran et al., 2016) 

Assignment of one  
protein to multiple 

organellar 
compartments 

possible 

Assignment of 
one  

protein to multiple 
organellar 

compartments, 
with quantification  

 

*The performance of mass spectrometers has substantially improved since the publication of PCP in 2006; a repeat analysis with 
current MS instruments would very likely show a depth of analysis comparable to the other methods. 

  



 
 

Supplemental Experimental Procedures 
 

Analysed samples - Overview 

In this study, we prepared maps from several new samples, but also re-analysed several previously generated 
samples (Itzhak et al., 2016), either with new labelling and new mass spectrometry (MS), or new processing 
(summarised in the table below). All analyses were performed with fast (short MS run time) and deep (extensive 
MS run time) protocols. 

The aim of the study was two-fold: firstly, to develop and evaluate workflows for Label-Free Quantification 
(LFQ) and Tandem Mass Tagging (TMT)-based organellar maps; and secondly, to compare the performance of 
different labelling strategies for comparative Dynamic Organellar Maps. To establish the label-free workflow, 
six maps were prepared from fresh samples (HeLa untreated). To ensure a fair comparison of SILAC, TMT, and 
LFQ approaches for dynamic applications, maps were prepared from the exact same set of samples, generated 
previously (HeLa untreated vs HeLa stimulated with EGF (Itzhak et al., 2016)). This published set was SILAC 
labelled, and analysed in a ‘fast’ format (Itzhak et al., 2016). Here, a ‘deep’ analysis of the same samples was 
added (i.e. a new in-depth MS analysis). For TMT maps, SILAC light subfractions were labelled with TMT 
reagent, and analysed by MS. For dynamic LFQ maps, SILAC RAW files were re-processed in MaxQuant 
software, ignoring the heavy channel, to simulate a label-free experiment (see ‘Processing of mass spectrometry 
data’ below for details). 

 
 
 
Samples analysed in this study 

Sample  
ID 

Sample, treatment (Reference), 
original labelling 

Labelling 
for this 
study 

Mass spec 
method 

Reprocessed or 
New Mass spec 

analysis 

Used for 

1 

3 x HeLa, untreated (Itzhak et 
al., 2016), SILAC light 
subfractions and heavy reference 
fraction 

SILAC Deep Reprocessed SILAC maps, static 

2 

3 x HeLa, untreated (Itzhak et 
al., 2016), SILAC light 
subfractions and heavy reference 
fraction 

SILAC Fast Reprocessed SILAC maps, static 
SILAC Fast Reprocessed SILAC maps, 

dynamic 
SILAC Deep New mass spec SILAC maps, 

dynamic 

3 

3 x HeLa, 20 min EGF treated  
(Itzhak et al., 2016), SILAC light 
subfractions and heavy reference 
fraction 

SILAC Fast Reprocessed SILAC maps, 
dynamic 

SILAC Deep New mass spec SILAC maps, 
dynamic 

1 

6 x HeLa, untreated (Itzhak et 
al., 2016), SILAC light 
subfractions and heavy reference 
fraction 

SILAC Deep Reprocessed SILAC maps, 
‘mock’ dynamic 
(for FDR control) 

4 
6 x HeLa, untreated (this study), 
no label (3 of them selected for 
additional deep analysis) 

Label free Fast New mass spec LFQ maps, static 
Label free Deep New mass spec LFQ maps, static 

2 

3 x HeLa, untreated (Itzhak et 
al., 2016), SILAC light 
subfractions and heavy reference 
fraction 

Process as 
label free 

Fast Reprocessed LFQ maps, dynamic 

Process as 
label free 

Deep New mass spec LFQ maps, dynamic 

3 

3 x HeLa, 20 min EGF treated 
(Itzhak et al., 2016), SILAC light 
subfractions and heavy reference 
fraction 

Process as 
label free 

Fast Reprocessed LFQ maps, dynamic 

Process as 
label free 

Deep New mass spec LFQ maps, dynamic 

1 

6 x HeLa, untreated (Itzhak et 
al., 2016), SILAC light 
subfractions and heavy reference 
fraction 

Process as 
label free 

Deep Reprocessed LFQ maps, ‘mock’ 
dynamic (for FDR 
control) 



 
 

 
 
 
Cell Culture 

For the generation of label-free organellar maps, HeLa cell cultures were maintained as described (Itzhak et al., 
2016), but using regular Dulbecco’s Modified Eagle’s Medium (DMEM) and fetal calf serum (instead of SILAC 
labelling medium and dialysed fetal calf serum). 

 

Subcellular fractionation procedure for label-free organellar maps 

Cell lysis and subcellular fractionation were identical to our previously reported protocol (Itzhak et al., 2016), 
but omitting any steps relating to the SILAC heavy labelled reference sample. Each map was prepared from a 
single ∼70% confluent 15 cm dish of HeLa cells. 

 

Cortical neuron preparation 

Mice (C57BL/6 background) were housed in an SPF facility with 12:12 h light/dark cycle and food/water 
available ad libitum. All animal experiments were performed in compliance with institutional policies approved 
by the government of upper Bavaria. For preparation of cortical neurons, the procedure described in Meberg and 
Miller (2003) was adapted. One E15 pregnant mice was sacrificed by cervical dislocation, the uterus was 
removed from the abdominal cavity and placed into a 10 cm sterile petri dish containing cold Hanks’ balanced 
salt solution (HBSS) on ice. Each fetus was isolated, heads of embryos were quickly cut, brains were removed 
from the skull and immersed in ice cold HBSS. Subsequently, cortical hemispheres were dissected and 
meninges were removed under a stereo-microscope. For each sample, cortical tissue from typically six to seven 
embryos (from one litter) was cut into smaller pieces, transferred to 15 ml sterile tube and treated with 0.25% 
trypsin containing 1 mM EDTA for 20 minutes at 37°C. The enzymatic reaction was stopped by removing the 
supernatant and washing the tissue twice with Neurobasal medium (Invitrogen) containing 5% Fetal Bovine 
Serum. The tissue was resuspended in 2 ml medium and triturated 10 strokes with the tip of a Pasteur pipette. 
Single cell suspension was achieved by triturating an additional 10 strokes with a fire-polished pipette. Cells 
were spun at 180 x g, the supernatant was removed and the cell pellet was stored on ice till further use. 

Please note that this preparation procedure yields fairly pure neuronal populations (Xu et al., 2012), since glial 
cells have not yet developed at stage E15 (Qian et al., 2000). Supporting this notion, we detected neuronal 
markers as highly abundant proteins in our complete neuron proteome (Table S4; eg Nestin, 91th abundance 
percentile; Tubb3, 98th abundance percentile), whereas markers of glial cells (eg GFAP (astrocyte marker) and 
Cldn11/Ops (oligodendrocyte marker)) were undetectable. Red blood cells were a very minor contaminant of 
the preparation (estimated at ca. 1.5%, based on levels of detected hemoglobin). Since the red blood cell 
proteome is mostly dominated by hemoglobin itself (Bryk and Wisniekswi, 2017), the contamination of the 
neuron proteome with other red blood cell proteins was considered negligible.     

Owing to the necessary cell dissociation step, isolated neurons are prone to losing their neurites during the 
preparation procedure. Since cells can be cultured subsequently (Meberg and Miller, 2003), this does not appear 
to compromise cell viability. The axonal and dendritic parts of the plasma membrane (in addition to a proportion 
of cytosol) are hence lost to some extent, and will not be accounted for in the proteome. This is unavoidable for 
the analysis of acutely isolated neurons. Importantly, at this early stage of development, there is not extensive 
dendritic or axonal arborisation (Sciarretta and Minichiello, 2010), so the loss of neurites should account for a 
fairly small proportion of the total cellular material. The big advantage of using acutely isolated neurons is that 

2 

3 x HeLa, untreated (Itzhak et 
al., 2016), SILAC light 
subfractions only 

TMT 10-
plex 

Fast New mass spec TMT maps, static 
and dynamic 

TMT 10-
plex 

Deep New mass spec TMT maps, static 
and dynamic 

3 

3 x HeLa, 20 min EGF treated 
(Itzhak et al., 2016), SILAC light 
subfractions only 

TMT 10-
plex 

Fast New mass spec TMT maps, 
dynamic 

TMT 10-
plex 

Deep New mass spec TMT maps, 
dynamic 

5 5 x mouse neurons, acutely 
isolated, no label (this study) Label free Fast New mass spec LFQ maps of mouse 

neurons 
      



 
 

the cells have not been exposed to any culture conditions, and, with the above restrictions, should faithfully 
reflect neuronal composition as encountered in the brain. 

 

Generation of organellar maps from neurons 

In total, six independent neuron preparations were performed, on three separate days (two pregnant 
females/day). Isolated neurons were immediately processed for organellar mapping. For generation of Map 1, 
neurons from preparations 1&2 were pooled. For Maps 2-5, neurons prepared from a single litter were used. A 
typical prep corresponded to 1-2 mg of protein as starting material for subcellular fractionation. 

Cells were resuspended in ice-cold PBS and centrifuged at 250 x g for 5 minutes. Cells were then resuspended 
in 5 ml homogenisation buffer (25 mM Tris pH 7.4, 50 mM Sucrose, 0.2 mM EGTA, 0.5 mM MgCl2) for 5 
minutes. For Map 1, cells were lysed in a Dounce homogenizer (Sartorius, tight pestle; 15 strokes). For Maps 2-
5, cells were passed through a cell cracker (Isobiotec) fitted with a 10 μm bore (5 passes) to achieve lysis. The 
remainder of the fractionation protocol followed the procedure previously described in detail for HeLa cells 
(Itzhak et al., 2016).   

 

 

Sample preparation for mass spectrometry  

 

SILAC and LFQ samples 

Protein digestion, peptide cleanup and peptide fractionation of label free and SILAC based samples were 
performed as described (Itzhak et al., 2016). 

 

TMT sample preparation 

Protein fractions in SDS buffer (2.5% SDS, 50 mM Tris pH 8.1) were precipitated with 100% acetone and 
resuspended in 6M guanidine, 50 mM HEPES pH 8.5. Dithiothreitol (DTT) was added to a final concentration 
of 5 mM and samples were incubated for 20 minutes. Cysteines were alkylated with 14 mM iodoacetamide and 
incubated 20 minutes at room temperature in the dark. Excess iodoacetamide was quenched with DTT for 15 
min. Samples were diluted with 200 mM HEPES pH 8.5 to 1.5 M Guanidine, followed by digestion at room 
temperature for 3 hr with LysC protease at a 1:100 protease-to-protein ratio. Following LysC digestion, trypsin 
was then added at a 1:100 protease-to-protein ratio followed by overnight incubation at 37°C. The reaction was 
quenched with 2% formic acid, subjected to C18 solid-phase extraction (Sep-Pak, Waters) and vacuum-
centrifuged to near-dryness. TMT labelling was performed as previously described (Weekes et al., 2014). 
Briefly, desalted peptides were dissolved in 200 mM HEPES pH 8.5. Peptide concentration was measured by 
micro BCA (Pierce), and 25 μg of peptide labelled with TMT reagent at a final (AcN) concentration of 30% 
(v/v). Samples were labelled as follows: Control 3k (TMT 126); Control 5.4k (TMT 127N); Control 12.2k 
(TMT 127C); Control 24k (TMT 128N); Control 78.4k (TMT 128C); EGF-treated 3k (TMT 129N); EGF-
treated 5.4k (TMT 129C); EGF-treated 12.2k (TMT 130N); EGF-treated 24k (TMT 130C); EGF-treated 78.4k 
(TMT 131). Following incubation at room temperature for 1 h, the reaction was quenched with hydroxylamine 
to a final concentration of 0.5% (v/v). TMT-labeled samples were combined at a 1:1:1:1:1:1:1:1:1:1 ratio. The 
sample was vacuum-centrifuged to near dryness and subjected to C18 solid-phase extraction (SPE) (Sep-Pak, 
Waters). 

 

Off-line high pH reversed-phase (HpRP) peptide fractionation of TMT labelled samples (deep protocol) 

TMT-labelled tryptic peptides were subjected to HpRP-HPLC fractionation using an Ultimate 3000 RSLC 
UHPLC system (Thermo Fisher Scientific) equipped with a 2.1 i.d x25 cm, 1.7 µm particle Kinetix Evo C18 
column (Phenomenex). Mobile phase consisted of A: 3% AcN, B: AcN and C: 200 mM ammonium formate pH 
10. Isocratic conditions were 90% A/10% C and C was maintained at 10% throughout the gradient elution. 
Separations were carried out at 45°C. After loading at 200 µL/minute for 5 minutes and ramping the flow rate to 
400 µL/minute over 5 minutes the gradient elution proceed as follows: 0-19% B over 10 minutes (curve 3), 19-
34% B over 14.25 minutes (curve 5), 34-50% B over 8.75 minutes (curve 5), followed by a 10 minutes wash at 
90% B. UV absorbance was monitored at 280 nm and 15 s fractions were collected into 96 well microplates 
using the integrated fraction collector. Peptide containing fractions were then orthogonally recombined into 24 



 
 

fractions and dried in a vacuum centrifuge and resuspended in 10 µL MS solvent (4% AcN / 5% formic acid 
(FA) prior to LC-MS3). 12 combined fractions were used for MS analysis of replicates 1 and 3. In replicate 2, a 
contaminant of unknown origin reduced the MS performance; hence, all 24 combined fractions were used for 
MS analysis.  

 

Mass spectrometric (MS) analysis 

 

SILAC and LFQ samples 

Mass spectrometric analysis of SILAC and LFQ samples was performed as described (Itzhak et al., 2016). 
Briefly, peptides were loaded onto a 50-cm column with 75-µm inner diameter, packed in-house with 1.8-µm 
C18 particles (Dr Maisch GmbH, Germany), attached to an EASY-nLC 1000 (Thermo Fisher Scientific, 
Germany). Peptide separation was achieved with a binary buffer system consisting of 0.1% formic acid (buffer 
A), and 80% acetonitrile in 0.1% formic acid (buffer B), using a linear gradient of buffer B from 2% to 30% in 
130 min followed by washout (ramping to 95% B in 5 min, constant at 95% B for 5 min, ramping down to 2% B 
in 5 min, constant at 2% B for 5 min), at a flow rate of 250 nl/min. The column was operated at 55°C. The LC 
was coupled to a Q Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, 
Germany). MS data were acquired using a data-dependent top 15 method. Survey scans were acquired at a 
resolution of 120,000, and HCD spectra at a resolution of 15,000. The dynamic exclusion of sequenced peptides 
was set to 30s.  

 

TMT samples 

For samples in the TMT workflow, mass spectrometry data for replicates 1 and 2 was acquired with an Orbitrap 
Lumos and replicate 3 with an Orbitrap Fusion (Thermo Fisher Scientific, San Jose, CA). 

 

Mass spectrometric analysis of TMT samples with an Orbitrap Lumos 

Samples were injected onto an Ultimate 3000 RSLC nano UHPLC equipped with a 300 µm i.d. x 5 mm 
Acclaim PepMap µ-Precolumn (Thermo Fisher Scientific) and a 75 µm i.d. x50 cm 2.1 µm particle Acclaim 
PepMap RSLC analytical column. Loading solvent was 0.1% FA, analytical solvent A: 0.1% FA and B: AcN + 
0.1% FA. All separations are carried out at 55°C. Samples were loaded at 5 µL/minute for 5 minutes in loading 
solvent before beginning the analytical gradient. The following gradient was used: 3-7% B over 4 minutes, 7 – 
37% B over 176 minutes, followed by a 10 minutes wash at 90% B and equilibration at 3% B for 5 minutes. 
Each analysis on the Orbitrap Lumos mass spectrometer (Thermo Fisher Scientific) used a MultiNotch MS3-
based TMT method (McAlister et al., 2012, 2014). The following settings were used: MS1: 400-1200 Th, 
Quadrupole isolation, 120,000 Resolution, 2x105 AGC target, 50 ms maximum injection time, ions injected for 
all parallisable time. MS2: Quadrupole isolation at an isolation width of m/z 0.7, CID fragmentation (NCE 35) 
with ion trap scanning out in turbo mode from m/z 120, 1.5x104 AGC target, 120 ms maximum injection time, 
ions accumulated for all parallisable time in centroid mode. MS3: In Synchronous Precursor Selection mode the 
top 10 MS2 ions were selected for HCD fragmentation (NCE 65) and scanned out in the Orbitrap at 60,000 
resolution with an AGC target of 1x105 and a maximum accumulation time of 150 ms, ions were not 
accumulated for all parallelisable time. The entire MS/MS/MS cycle had a target time of 3 s. Dynamic exclusion 
was set to +/- 10 ppm for 70 s. MS2 fragmentation was trigged on precursors 5x103 counts and above.  

 

Mass spectrometric analysis of TMT samples with an Orbitrap Fusion  

Samples were injected onto an Ultimate 3000 RSLC nano UHPLC equipped with a 300 µm i.d. x 5 mm 
Acclaim PepMap µ-Precolumn (Thermo Fisher Scientific) and a 75 µm i.d. x50 cm 2.1 µm particle Acclaim 
PepMap RSLC analytical column. Loading solvent was 0.1% TFA, analytical solvent A: 0.1% FA and B: AcN 
+ 0.1% FA. All separations are carried out at 55°C. Samples were loaded at 10 µL/minute for 5 minutes in 
loading solvent before beginning the analytical gradient. The following gradient was used: 3-5.6% B over 4 
minutes, 5.6 – 32% B over 162 minutes, followed by a 5 minute wash at 80% B and a 5 minute wash at 90% B 
and equilibration at 3% B for 5 minutes. Each analysis on the Orbitrap Lumos mass spectrometer (Thermo 
Fisher Scientific) used a MultiNotch MS3-based TMT method (McAlister et al., 2012, 2014). The following 
settings were used: MS1: 400-1400 Th, Quadrupole isolation, 120,000 Resolution, 2x105 AGC target, 50 ms 
maximum injection time, ions injected for all parallisable time. MS2: Quadrupole isolation at an isolation width 



 
 

of m/z 0.7, CID fragmentation (NCE 30) with ion trap scanning out in rapid mode from m/z 120, 1x104 AGC 
target, 70 ms maximum injection time, ions accumulated for all parallisable time in centroid mode. MS3: in 
Synchronous Precursor Selection mode the top 10 MS2 ions were selected for HCD fragmentation (NCE 65) 
and scanned out in the Orbitrap at 50,000 resolution with an AGC target of 5x104 and a maximum accumulation 
time of 150 ms, ions were not accumulated for all parallelisable time. The entire MS/MS/MS cycle had a target 
time of 3 s. Dynamic exclusion was set to +/- 10 ppm for 90 s. MS2 fragmentation was trigged on precursors 
5x103 counts and above. 

 
Overview of MS measurement time requirements   

 
Labelling 
method 

MS 
protocol 

Subcellular 
fractions/ 

map 

Peptide 
fractions 

Total 
samples for 

MS 

MS run 
time/fraction 

(hours) 

Total MS 
run 

time/map 
       

SILAC Fast 5 1 5 2.5 12.5 
 Deep 5 3 15 2.5 37.5 

LFQ5 Fast 5 1 5 2.5 12.5 
 Deep 5 3 15 2.5 37.5 

LFQ6 Fast 6 1 6 2.5 15 
 Deep 6 3 18 2.5 45 

TMT Fast 5 1 1 3 1.5** 
 Deep 

 
5 12+1* 13 3 19.5** 

 

* For TMT deep maps, the 12 peptide fractions were jointly processed with the single file from the 
corresponding fast map. 

**TMT 10-plex allows running of two maps in one sample; hence, total MS run time is shown as half the actual 
run time.  

   
Processing of mass spectrometry data 

Raw files were processed with MaxQuant Version 1.5.5.2 (Cox and Mann, 2008; Tyanova et al., 2016a), using 
the human reference protein dataset downloaded from UniProt (SwissProt canonical and isoforms database). 
Default settings were used for all analyses, with the following exceptions:  

For SILAC samples, multiplicity was set to 2, with Arg10 and Lys8 as heavy isotopes. The minimum ratio count 
was set to 1. Re-quantification was enabled. Matching between runs was enabled, to allow matching between 
equivalent fractions of replicates only. 

For unlabelled samples, LFQ quantification (Cox et al., 2014) was selected, with a minimum peptide count of 1. 
Matching between equivalent fractions was enabled, as for SILAC samples. 

For SILAC samples processed to simulate a label free experiment, multiplicity was set to 1 (SILAC light 
channel detected only). Matching between equivalent fractions was enabled. Please note that this procedure will 
underestimate the performance of LFQ dynamic maps, since a large proportion of the MS2 peptide sequencing 
will be performed on SILAC heavy peptides, which do not contribute the quantification of the light peptides. 
This substantially reduces the sequencing depth and oversampling rate compared to a genuine single channel 
MS analysis; peptide IDs are reduced by about 30-40%.   

For TMT labelled samples, batch-specific correction factors were configured in the modifications tab in 
MaxQuant (TMT 10-plex lot no. QK226224). Sample type was set to ‘reporter ion MS3’ with all 10-plex TMT 
labels selected, for both Lysine and N-termini. Matching between fractions was not activated. For deep TMT 
maps, the 12 fractions obtained with high pH fractionation were processed jointly with the single fraction from 
the corresponding fast map. In replicate 2, a contaminant of unknown origin reduced the MS performance; 
hence, all 24 high pH fractions and the single fast map file were jointly analysed. Nevertheless, the performance 
of replicate 2 remained substantially lower (4959 complete profiles). The depth we report for replicates 1 and 3 
(6059 and 6699 profiles, respectively), obtained with 12+1 fractions, is therefore likely to be representative of 
the performance. 



 
 

 

For mouse neuron data, raw files were processed with MaxQuant Version 1.5.4.3 (Cox and Mann, 2008; 
Tyanova et al., 2016a), using the mouse reference protein dataset downloaded from UniProt (SwissProt 
canonical and isoforms database). Default settings were used for all analyses, with the following exceptions: 
LFQ quantification (Cox et al., 2014) was selected, with a minimum peptide count of 1. Since the mouse neuron 
maps were prepared in three batches (one map in batch 1, two maps each in batches 2 and 3), matching between 
runs was enabled for equivalent and adjacent fractions within each batch only.  

 

Filtering and transformation of proteomic data 

The primary output from MaxQuant is the ‘protein groups’ file, listing protein identifications and the 
quantifications across the (five or six) subfractions. For all datasets, matches to the reverse database, proteins 
identified only with modified peptides, and common contaminants were removed. Further filtering was tailored 
to each labelling strategy, to obtain high quality datasets for further analysis. 

For SILAC, profile filtering was always performed at the level of individual maps. Each map consisted of five 
ratio quantifications. For each fraction, SILAC ratios were linearly normalized by division through the fraction 
median. Individual ratios were retained if they were based on more than two quantification events, or on two 
quantification events where the ratio variability did not exceed 31%. Only proteins with a complete set of five 
ratios were retained. These SILAC ratio profiles were used for organellar assignments (SVM predictions, see 
below). For a direct comparison of SILAC profiles with TMT and LFQ profiles, further (0 to 1) normalization 
of profiles was required. For each protein, inverted SILAC ratios (Light/Heavy) were divided buy their sum. 

For static LFQ maps, profile filtering was performed at the level of individual maps. Each map consisted of six 
fractions with LFQ intensities. MaxLFQ intensities are already globally normalized, and need no further 
normalization correction. Owing to the high dynamic range of label-free quantification, profiles with some 
missing values could be tolerated. Two stringency filters were applied: first, only proteins with LFQ intensities 
in at least three out of the six fractions were retained; and second, the MS/MS count summed over all six 
fractions had to be at least 12 (i.e. two per fraction on average). For each protein, LFQ intensities were 
normalized to the sum of LFQ intensities across the six fractions, yielding a six-data point profile of relative 
intensities (summing to one). These profiles were used for the generation of 6-fraction LFQ organellar maps.  

To evaluate the performance of 5 fraction LFQ maps, the 1K fraction was removed from the dataset, and the 
remaining five data points were re-normalised to their sum. Thus, 5 and 6 fraction LFQ maps contain the exact 
same sets of proteins, permitting a fair comparison of the contribution made by the sixth fraction.   

For dynamic LFQ maps (based on reprocessed SILAC data), only 5-data point profiles were available. These 
were filtered for a minimum of four consecutive LFQ values per protein and map. The dynamic LFQ 
experiment consisted of six maps (three controls and three +EGF treatment). For determining the MS/MS counts 
filter, MS/MS events were summed across all six maps (i.e. across 30 fractions). Only proteins with 60 or more 
MS/MS events in total were retained in the dataset. This alternative filtering strategy greatly enhances the scope 
of the MR plot translocation analysis, as it allows the inclusion of proteins that are abundant under one of the 
tested conditions, but not the other.  

Each TMT labelled map consisted of five fractions with corrected reporter intensities. To account for unequal 
peptide loading in each fraction, a set of correction factors were determined by calculating the total intensity of 
each fraction divided by the fraction with the lowest summed intensity. Each value in a fraction was then 
divided by its own correction factor. Each TMT 10-plex experiment contained two maps, but these were treated 
separately for normalisation. For static TMT maps, proteins with a minimum median reporter intensity count of 
1 across the five fractions were retained. For each protein, TMT intensities were then normalized to the sum of 
intensities within a map, yielding a five-data point profile (summing to one). 

For dynamic TMT maps, this filtering was applied per experiment (i.e. the minimum median intensity count had 
to be 1 across ten fractions). As with the dynamic LFQ maps, this enhances the depth of the MR plot analysis. 

Please note that for dynamic SILAC, TMT and LFQ maps, profiles were weighted with fraction yields (percent 
of protein recovered in a given subcellular fraction, relative to total yield) prior to 0-1 normalisation (Itzhak et 
al., 2016). While this step is recommended, it is not absolutely required. 

 



 
 

Datasets for organellar predictions 

To evaluate the suitability of different labelling strategies for making static organellar maps, performance was 
assessed at the level of individual maps, as well as for combinations of multiple maps.  

To combine maps for classification, the set of proteins common to all maps was determined. Combining maps 
reduces the depth compared to the individual maps, but enhances classification accuracy. Support vector 
machine based classification (see below) was then performed on the total data available for each protein (e.g. 15 
data points for a combination of 3 SILAC maps), resulting in one set of organellar prediction scores (regardless 
of how many maps were combined).  

For LFQ, six individual fast maps were generated and assessed individually. The two lowest performing maps 
were then combined, for a joint output, followed by adding the third-lowest performing map and so on, up to a 
combination of all six maps. In all cases, only the proteins common to all six datasets were analysed. 

An equivalent analysis was then repeated with three deep LFQ maps. These maps were generated from the same 
samples used for three of the fast maps, but with much more extensive MS analysis.  

For SILAC, three fast maps and three deep maps were analysed likewise. 

The TMT data had a different structure, as the 10-plexing allowed the concomitant generation of two (2 x 5 
fraction) maps in one sample. Here, a control map was always multiplexed with its cognate EGF treatment map. 
For the evaluation of TMT static map performance, only fractions of the control map were processed as standard 
(five fraction) maps. Thus, three fast and three deep (untreated) TMT maps were analysed.  

Based on the analysis presented in this study, we recommend the generation of three replicate maps, both for 
static and dynamic applications. Hence, map performance of all labelling approaches and MS protocols (fast vs 
deep) was compared for a combination of three maps (Figure 2, Figure 4, Figure S1). For LFQ fast analysis, we 
selected three medium performing maps from our set of six available maps, and jointly reprocessed them in 
MaxQuant. To combine maps, only proteins with high quality profiles in each map were selected for making 
organellar predictions. These six combination datasets were then assessed for prediction performance, depth, 
and concordance.  

 

Organellar marker sets 

For map annotation and supervised learning, we used our previously published set of 1,076 organellar markers 
from 12 different subcellular compartments (Itzhak et al., 2016). For SILAC (deep), TMT (deep), LFQ (deep) 
and LFQ (fast) maps, sets of around 1,000 markers were matched in each case. For SILAC (fast) and TMT (fast) 
analyses, map depth was considerably lower, and only 801 and 572 markers were matched, respectively. The 
minimum size for a cluster was seven members. In the case of TMT (fast), two clusters were too small, and 
hence excluded from the supervised learning. 

For the mouse neuron maps the same set was used, matching markers by gene names (834 proteins matched).  

 

Generation of organellar maps  

For organellar assignments, we used the machine learning approach described in Itzhak et al. (2016), as 
implemented in Perseus software (Tyanova et al., 2016b). Briefly, organellar makers were matched to each map. 
A support vector machine (SVM)-algorithm (with a radial basis function kernel) was trained on the marker 
proteins, with cross-validation to prevent overfitting. Supervised learning was then performed with the 
optimized parameters, using full (leave-one-out) cross-validation for performance assessment. 

The analysis provides two outputs: firstly, a misclassification table (or ‘confusion matrix’), listing which marker 
proteins had been assigned (correctly or incorrectly) to which compartment; and secondly, a prediction table, in 
which proteins receive prediction scores for each of the 12 compartments. Each protein is then assigned to the 
compartment for which it received the highest score. The sum of all these organellar assignments constitutes an 
organellar map.  

Prediction scores are a measure of how confidently a protein is assigned to a compartment. Classification by 
SVMs defines (non-linear) maximum-margin boundaries between clusters; the distance from a cluster to the 
boundary is set to 1. Predictions with scores >1 therefore fall within the space defined by the markers; 
predictions with scores between 0 and 1 fall between the marker cluster and the boundary to markers from other 
clusters; and predictions with scores <0 are beyond the boundary. A prediction with a score <0 can still be 
correct, but less likely so. We therefore stratified our predictions into four confidence classes:  



 
 

 

Prediction confidence classes 
 

SVM score Confidence Class 
>1 High 1 

0.5-1 Medium 2 
0-0.5 Low 3 

<0 Very Low 4 
  
Please note that in our previous study (Itzhak et al., 2016), we used a more complex scoring system, since the 
complete output from six individual maps was combined (and not just the overlapping set). For single maps, or 
for a combination of maps using the overlapping set of proteins as in the present study, this new scheme is 
recommended, as it allows a more straightforward interpretation of the scores and confidence classes, and is also 
directly comparable between sets of maps. 

 

Performance evaluation of organellar maps 

A pre-defined set of ca. 1000 bona fide markers of 12 different subcellular localisations/organelles (Itzhak et al., 
eLife 2016) was used to annotate any new map dataset. Support vector machines were optimized with the 
marker proteins, to define boundaries between the organellar clusters (see above, Generation of organellar 
maps). The quality of the final SVM model was evaluated with full leave-one-out cross validation (eg when 
there were 1000 marker proteins, 1000 different SVM models were built, each with only 999 proteins; in each 
case it was checked if the missing protein was correctly predicted, to simulate the application of the model to 
non-marker data). The average proportion of correctly predicted marker proteins was then assessed, both 
globally, and by cluster. This serves as an estimate of the prediction accuracy for the remainder of the data, 
which are not marker proteins.  

The following metrics were calculated to assess map performance: 

 

1. Marker prediction accuracy was calculated as the fraction of all correctly predicted markers divided by 
the total number of markers in the set. This metric gives more weight to larger protein clusters (such as 
mitochondria, plasma membrane and ER), whose prediction accuracy will dominate the global 
accuracy.  

2. To evaluate the prediction performance for individual clusters, we calculated recall and precision. 
Recall is the proportion of markers correctly assigned to this cluster (i.e. True Positives/(True Positives 
+ False Negatives)). Precision is the number of markers correctly assigned to a cluster, relative to the 
number of all markers assigned to the cluster (i.e. True Positives/ (True Positives + False Positives). 
Both metrics can be combined into an ‘F1 score’ by calculating their harmonic mean. F1 Scores range 
from 0-1. Unless both metrics have the same value, the harmonic mean is always lower than the 
arithmetic mean, thus ensuring that only combinations of high precision and recall values can achieve 
high F1 scores. For example, a cluster with perfect precision (1) but poor recall (0.2) would get a low 
F1 score of 0.33. Plotting F1 scores for all map clusters (as in Figure 2G) reveals particular strengths 
and weaknesses of a map; in our experience, clusters with scores >0.7 have high predictive value. 
Please note that F1 scores are not a linear measure of performance; for example, a near perfect cluster 
with precision and recall of 0.99 (almost no erroneous assignments, and almost complete coverage) 
would get a score of 0.99; a cluster with recall and precision of 0.5 (which misses half the real 
associations, and half of its assignments are incorrect) would get a score of 0.5. Although the score 
difference is less than two-fold, the performance difference is enormous. 

3. To derive an overall map performance measure that weights each cluster equally, the average F1 score 
across the 12 clusters was calculated. 

 

Furthermore, map depth, and the distribution of predictions into confidence classes (prediction stratification) 
were also evaluated. Map depth is the total number of proteins that passed the quality filters to be included for 
organellar predictions. For prediction stratification, marker proteins were removed from the set (since markers 
are used to build the SVM models, they generally have high SVM scores). Non-maker proteins were then sorted 
into the four prediction confidence classes (see above). The absolute number as well as the proportion of 
predictions in each class were scored (e.g. Figure 2I, J). Furthermore, overall marker prediction accuracy was 



 
 

calculated within each confidence class; this varies between maps and methods (e.g. Figure 2H), and may 
suggest which predictions to include in a high confidence set. As a rule of thumb, predictions in the first two 
confidence classes are of high quality; hence, the greater the proportion of data in these classes, the better. 

 

Concordance analysis 

Map concordance (‘agreement’) was defined as the proportion of identical organellar assignments made by two 
independent maps. The joint outputs from three replicate maps (the ‘combination data sets’) provided by the 
different labelling methods were analysed. In all cases, predictions were compared to the output from SILAC 
deep maps (the most accurate in the set). Importantly, marker proteins were removed prior to the analysis; since 
they are very likely to have similar predictions across maps, their inclusion could otherwise skew the results. 

 First, the overlapping set of proteins between the SILAC Deep map and the compared map was determined. 
Second, the fraction of proteins with identical predictions in both maps, divided by the total number of proteins 
in the common set, was calculated. This provided the baseline concordance, using 100% of the overlapping data. 
Third, a quality filter on the predictions was introduced. Each organellar assignment is made with a confidence 
score (the higher, the better). Predictions made with low confidence scores are also less likely to be concordant 
between maps. For each protein, the lower of the two prediction scores was determined; map concordance was 
then calculated as a function of this minimum prediction score. By raising the cut-off, a growing proportion of 
data is excluded from the comparison, but concordance increases. 

A corollary of the concordance analysis was that for all map types, regardless of depth and labelling strategy, 
predictions with scores >0.5 were highly concordant (typically >95-98%), and with scores >1 extremely 
concordant (typically >98-99.5%). These score cut-offs also coincide with the first two prediction confidence 
classes defined above.  

 

Detection of dynamic changes between organellar maps 

The detection of protein translocations mostly follows the procedure established in Itzhak et al., 2016, which is 
briefly recapitulated here. Adaptations for the LFQ and TMT workflows are detailed, as well as several 
modifications to improve the overall sensitivity and robustness of the test. 

 

Datasets 

The dynamic experiment consisted of three control samples, and three cognate samples from HeLa cells treated 
continuously with EGF for 20 min (Itzhak et al., 2016). The six maps obtained with each labelling strategy were 
analysed as sets.  

 

Calculation of difference profiles 

For each map pair, the normalized profile of the treated map was subtracted from the profile of the cognate 
control map. Three (5 data point) difference profiles were thus obtained for each protein. 

 

Detection of proteins that move significantly between maps (MR plot analysis) 

Differences between maps have two sources: genuine translocations of proteins, and experimental noise. Since 
most proteins do not move between conditions, the majority of difference profiles approximately follows a 
multivariate normal distribution. Genuine translocations are detected as multivariate outliers from this 
distribution. A standard statistical measure to define such outliers is the Mahalanobis distance. Since the latter’s 
calculation is influenced by the outliers themselves, we used a robust calculation of the distance (the minimum 
covariance determinant, MCD). Distances follow a Chi-square distribution, which allows the conversion into p-
values of likelihood for observing the measured distance by chance. The MCD outlier test is implemented in 
Perseus software (Tyanova et al., 2016b). A critical parameter for the MCD calculation is the proportion of data 
to use; whereas previously we have used 0.9, we now recommend 0.75, to increase sensitivity and robustness. 
Furthermore, the MCD derived p-values can be influenced by which proteins are chosen for the first-round 
calculations of this iterative process; hence, we recommend to calculate median p-values from at least 11 



 
 

repeats, to ensure robust scores. A future version of Perseus will allow users to specify the number of iterations; 
we routinely run 101. 

For each protein, the differences from three map pairs provide three p-values for movement. A genuine 
translocation should have a low p-value in each replicate experiment. To combine the replicates, we recommend 
choosing the highest of the three p-values. This represents the map pair with the smallest observed change. 
Since all three map pairs are independent experiments, this p-value is now cubed. The new combined p-value is 
then adjusted for multiple hypothesis correction using the Benjamini-Hochberg method (rank all p values from 
lowest to highest, multiply each value by the total number of proteins in the set, and divide it by its rank). This 
final Q-value is then -log(10) transformed, to obtain M (movement) scores. This modified procedure 
substantially enhances the sensitivity of outlier detection relative to the previous implementation; in addition, M 
scores now have directly interpretable meaning (e.g. an M score of 2 is equivalent to a Q-score of 0.01, i.e. a 
1:100 FDR for movement detection of proteins with M scores of 2 or more). In the absence of proper FDR 
control datasets (see below), we recommend the following M scores cut offs: 2 (lenient), 3 (stringent), 4 (very 
stringent).  

Genuine translocations have consistent directions across replicates, and hence similar map difference profiles. 
As a measure of translocation reproducibility, the Pearson correlation of all pairs of difference profiles (Rep1 vs 
Rep2, Rep1 vs Rep3, Rep2 vs Rep3) is calculated. The lowest correlation is then chosen as the R 
(reproducibility) score. Only translocations with highly (positively) correlated profile changes are of interest. In 
the absence of proper FDR control datasets, we recommend the following R-score cut-offs: 0.68 (lenient), 0.81 
(stringent), 0.93 (very stringent).  

Please note that R scores are orthogonal to M-scores. Their combination (‘MR’ plot analysis as in Figure 3) 
results in very strict filtering, even with ‘lenient’ M and R score cut-offs.   

 

False discovery rate (FDR) control of MR plot analyses 

As described previously (Itzhak et al., 2016), the best way to determine significance cut-offs for a MR plot 
analysis is to perform a mock experiment (three control maps vs three cognate control maps). No genuine 
translocations are expected under these conditions. The MR plot analysis is performed as described above. Cut-
offs for M and R scores are then simultaneously applied to both mock and treatment datasets, and the number of 
significant movers in the mock set divided by the number found in the treatment experiment corresponds to the 
estimated FDR at a given MR score cut off. Cut-offs may then be selected to achieve a desired FDR (e.g. 10%, 
or 1%); alternatively, the FDR at a desired MR cut-off combination may be calculated. 

In the present study, the SILAC and LFQ (fast and deep) analyses were fully FDR controlled. The mock dataset 
for SILAC was provided by the six SILAC (deep) control maps reported in Itzhak et al. (2016). For LFQ, these 
SILAC maps were reprocessed using the MaxLFQ algorithm (ignoring the SILAC heavy peptides). In all cases, 
the number of significant hits in the mock set was scaled by the number of profiled proteins in mock and 
treatment sets. For TMT data, no FDR control dataset was available. As a proxy, we used the same MR cut-offs 
chosen for the LFQ and SILAC sets. 

 

Profile scatter analysis 

Profile scatter within the 20S core proteasome (14 subunits, PSMA1-7, PSMB1-7) was analysed. Only the 
profiles from the ‘deep’ combination datasets (with three biological replicates) were included. For each method, 
the 3 x 14 (0-1 normalised) profiles were extracted, and the ‘average’ profiles of each replicate determined. 
Summed absolute deviations from these averages (Manhattan Distances) were then calculated for each subunit, 
within each replicate. The scatter of the 42 differences was then plotted. 

 

Principal component analysis 

For graphical map representation, weighted normalised profiles of the 941 marker proteins common to the 
SILAC, LFQ and TMT combination datasets (3 deep maps each) were scaled to unit variance, and jointly 
subjected to principal component analysis (PCA). Figure 4 shows the projections along PCs 1 and 2 (scores 
plot). For the LFQ6 dataset, a separate PCA had to be performed, since it had one extra fraction per map. To 
allow optimum visual comparison, the same region of the LFQ6 scores plot is shown as for the other maps, 
causing clipping of 48 large protein complex markers outside this region.  

 



 
 

Software for statistical analysis and graphics 

Statistical analyses, data transformation and filtering were performed in Perseus (Tyanova et al., 2016b), Prism 
6 (GraphPad Software), and Microsoft Excel (enhanced with the Real Statistics Resource Pack, http://www.real-
statistics.com). Principal component analysis was performed in SIMCA 14 (Umetrics/MKS).  

 

Webpage www.MapOfTheCell.org 

We have improved the web interface for our database of human subcellular localization predictions. 

 

Mouse neuron organellar anatomy analysis 

 

Copy number determination 

Copy numbers per cell, protein concentrations and cell volumes were estimated with the proteomic ruler 
approach (Wisniewski et al., 2014), implemented in Perseus software (Tyanova et al., 2016b).  Briefly, mass 
spectrometric protein intensities are scaled to the summed histone intensities. Since the histone to DNA ratio is 
relatively constant, and the amount of DNA per cell is known, the total histone signal can be converted into an 
absolute protein quantity per cell. All other protein intensities can be scaled accordingly. Normalization to 
protein molecular weight then yields copy numbers per cell. Based on an estimated total cellular protein 
concentration of 200 mg/ml, the method also allows an approximate estimation of cell volume, and hence of 
protein concentrations (Wisniewski et al., 2014). 

The proteomic ruler approach requires determination of a complete proteome as input. For the mouse neurons, 
we derived this in two different ways. First, we used the conventional approach, and directly processed a sample 
of whole cell lysates for mass spectrometric analysis (‘fast’ MS protocol, one sample per proteome). This 
resulted in a depth of ca. 6,000 quantified proteins (from biological duplicates). As an alternative, we combined 
the mass spectrometric analyses from all seven fractions from organellar map experiments (Figure 5A); the sum 
of these fractions corresponds to the total cell content. Mass spectrometric intensities from each fraction were 
normalized to the sum total, and weighted by relative fraction yields as determined by BCA protein assay. 
Weighted intensities were then added to derive total intensities for each protein. This resulted in a depth of ca. 
9,000 quantified proteins (from biological quadruplicates, preps 2-5). The proteomic ruler was then applied to 
both datasets (‘standard’ proteome and ‘compound’ proteome). Importantly, copy number estimates of proteins 
identified with both methods were highly consistent (correlation >0.95, slope near 1; Figure S3A). Furthermore, 
both datasets showed the same expected log-normal distribution, with an extended lower range for the 
compound full proteome (Figure S3B, C). Hence, it is valid to use the compound proteome for copy numbers. 
The advantage is that the compound proteome is derived from samples that are already analysed as part of the 
organellar mapping process; no extra samples are required. The depth is also increased, owing to the cell 
fractionation. We hence recommend this approach for applications where starting material and/or mass 
spectrometric measuring time are limited. 

For the proteomic ruler analysis, we assumed a ploidy of two for mouse neurons, and normalized intensities by 
protein molecular weight. All proteomes were normalized separately. Default settings were used for all other 
parameters. Copy numbers and concentrations were calculated as median values from replicates (in log space).  

 

Global protein distribution analysis 

To determine the global distribution of proteins (‘low resolution’ spatial information), we quantified their 
abundance in the nuclear, cytosolic and membrane fractions (Figure 5A), similar to our previous analysis in 
HeLa cells (see Itzhak et al., 2016, for details). Briefly, intensities in each fraction were normalized to the sum 
total, and weighted by their relative yields (as determined by BCA protein assay). Intensities from membrane 
fractions (2-6 in Figure 5A) were then combined (total membrane fraction). Intensities in the nuclear, cytosolic 
or membrane fractions were then summed, and expressed as fractions of 1. Proteins were then classified based 
on their distribution using arbitrary cut-offs: 
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Classifier  Distribution 
Mostly nuclear nuclear pool >0.9 
Mostly membrane associated membrane pool >0.8 
Mostly cytosolic cytosolic pool >0.9 
Nuclear and Cytosolic (nuclear + cytosolic pools) >0.95  
Membrane associated with cytosolic pool (membrane +cytosolic pools) >0.95 
Unclassified all other proteins 

 
Please note that some proteins had a global as well as an organellar classifier; in these cases, the organellar 
classifier describes where the membrane associated pool of the protein is located, and the global classifier 
reports the cytosolic and/or nuclear proportion of the protein.  

 

Mouse neuron organellar composition analysis 

Subcellular localization predictions and copy number information were combined to derive organellar 
compositions, as described (Itzhak et al., 2016). For each organelle, a list of predicted constituents (Table S4) 
was prepared. For each protein, the copy number/cell was multiplied with the protein’s molecular weight, to 
obtain the total protein mass/cell. Next, this mass was multiplied by the non-cytosolic fraction of the protein. All 
weighted masses were summed, to obtain the total protein mass of the organelle (per cell). Each protein’s 
contribution to the organelle’s total mass was then expressed as a percentage.  Dividing the whole organellar 
protein mass by the whole cell protein mass yielded the relative contribution of the organelle to the cell.  

Since lysis of cells invariably causes disruption of ER and thus exaggerated apparent cytosolic pools of ER 
lumenal proteins (Itzhak et al., 2016), the non-cytosolic correction factor was set to 1 for ER; this was also done 
for lysosomal proteins, which are mostly lumenal or integral to the membrane. 

 

Comparative analysis mouse neurons vs HeLa 

For a quantitative comparison of cell anatomy, we compared the mouse neuron data of this study with our 
previously prepared HeLa data (Itzhak et al., 2016). We matched identified proteins by UniProt gene name 
(which is identical between human and mouse in most cases), and assumed that such matched proteins represent 
orthologues. We also removed duplicated entries for the same gene name within one organism (eg splice 
variants of the same protein), keeping only the most abundant entry. After filtering, our proteomes contained 
8601 and 8469 proteins for mouse neurons and HeLa, respectively. The complete proteome of both cell types is 
estimated at >10,000 proteins. However, as our plateauing cumulative abundance analysis shows (Figure 6B), 
the ‘missing’ proteins are likely to contribute minimally to overall cell protein mass, and hence will not 
substantially affect the quantitative composition analysis.    

Comparisons were performed at the full proteome and organellar levels. 6,708 proteins were identified in 
neurons and HeLa; hence 78% (6,708/8,601) of the neuron proteome is shared with HeLa cells. For calculating 
the protein mass overlap, the respective contributions of each shared protein to total proteins mass were 
compared; the lower value was chose as the overlap. The summed overlap yielded the overall shared mass. To 
assess organellar composition overlap, the top ten most abundant proteins from each neuron organelle were 
matched to their HeLa cell orthologues. For each protein, the respective contributions to total neuron or HeLa 
compartment protein mass were then compared. 
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