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SI Theory

A. Definition of the Complex Gaussian Distribution. We de-
fine ε = εr+ iεi, where the real and imaginary components are
independent, zero mean Gaussian random variables with vari-
ance σ2

ε/2. The one-dimensional circularly symmetric complex
Gaussian distribution is [29]

p(ε) = (πσ2
ε)−1 exp

(
−εε

∗

σ2
ε

)
, CN (ε; 0, σ2

ε), [S1]

where ε∗ = εr − iεi is the complex conjugate of ε.

B. Derivation of the Complex Kalman Filter Algorithm. We de-
rive the parallel, one-dimensional complex Kalman filter al-
gorithms by following the standard maximum a posteriori
derivation of the Kalman filter algorithm [23]. To define the
recursive estimator of ∆Z(m)

k , we use Bayes’ rule and express
the posterior density of ∆Z(m)

k given all of the data, Y (m),F
1:k ,

up through interval k as

p(∆Z(m)
k |Y (m),F

1:k ) =
p(∆Z(m)

k |Y (m),F
1:k−1 )p(Y (m),F

k |∆Zk)
p(Y (m),F

k |Y (m),F
1:k−1 )

, [S2]

where the first term on the right side of Eq. S2 is the one-
step prediction density defined by the Chapman-Kolmogorov
equation as

p(∆Z(m)
k |Y (m),F

1:k−1 )

=
∫
p(∆Z(m)

k−1|Y
(m),F

1:k−1 )p(∆Z(m)
k |∆Z(m)

k−1)d∆Z(m)
k−1. [S3]

The ∆Z(m)
k (ωj) are independent for j = 1, . . . , J and for

each j, p(∆Z(m)
k (ωj)|Y (m),F

1:k−1,j) is a one-dimensional circularly
symmetric complex Gaussian distribution. Hence, given the
recursion up through interval k−1 and the state model (Eq. 3),
the one-step prediction density has the form

p(∆Z(m)
k |Y (m),F

1:k−1 )

=
J∏
j=1

CN (∆Z(m)
k (ωj); ∆Z(m)

k|k−1(ωj), σ2,(m)
k|k−1,j), [S4]

where

∆Z(m)
k|k−1(ωj) , E(∆Z(m)

k (ωj)|Y (m),F
1:k−1,j)

= ∆Z(m)
k−1|k−1(ωj) [S5]

σ
2,(m)
k|k−1,j , E(||∆Z(m)

k (ωj)−∆Z(m)
k|k−1(ωj)||2|Y (m),F

1:k−1,j)

= σ
2,(m)
k−1|k−1,j + σ

2,(m)
v,j [S6]

Moreover, the Y (m),F
k,j are also independent for j = 1, . . . , J

and for each j, p(Y (m),F
k,j |∆Z(m)

k (ωj)) is a one-dimensional
circularly symmetric complex Gaussian distribution that is
defined by Eq. 5. Hence, the observation model at interval k
is

p(Y (m),F
k |∆Z(m)

k ) =
J∏
j=1

CN (Y (m),F
k,j ; ∆Z(m)

k (ωj), σ2,(m)
ε ).

[S7]

The posterior density at interval k is

p(∆Z(m)
k |Y (m),F

1:k ) ∝ p(∆Z(m)
k |Y (m),F

1:k−1 )p(Y (m),F
k |∆Z(m)

k ),
[S8]

and the log posterior density at interval k is

log p(∆Z(m)
k |Y (m),F

1:k ) = −
J∑
j=1

‖Y (m),F
k,j −∆Z(m)

k (ωj)‖2

σ
2,(m)
ε

−
J∑
j=1

‖∆Z(m)
k (ωj)−∆Z(m)

k|k−1(ωj))‖2

σ
2,(m)
k|k−1,j

. [S9]

The J pairs of one-step prediction densities and observation
models are independent. Therefore, differentiating Eq. S9 with
respect to ∆Z(m)∗

k (ωj) gives

∂ log p(∆Z(m)
k |Y (m),F

1:k )
∂∆Z(m)∗

k (ωj)
=

∆Z(m)
k (ωj)−∆Z(m)

k|k−1(ωj)

σ
2,(m)
k|k−1,j

−
Y

(m),F
k,j −∆Z(m)

k (ωj)

σ
2,(m)
ε

, [S10]

for j = 1, . . . , J . Setting Eq. S10 equal to zero yields the
recursion of estimate ∆Z(m)

k|k (ωj)

∆Z(m)
k|k (ωj) =

σ
2,(m)
ε ∆Z(m)

k|k−1(ωj) + σ
2,(m)
k|k−1,jY

(m),F
k,j

σ
2,(m)
k|k−1,j + σ

2,(m)
ε

. [S11]

Setting σ2,(m)
k|k,j equal to the negative reciprocal of the second

derivative of Eq. S9 gives

σ
2(m)
k|k,j =

(
(σ2,(m)
k|k−1,j)

−1 + (σ2,(m)
ε )−1

)−1
. [S12]

Eq. 7c (Eq. 7d) follows from Eq. S11 (Eq. S12) by applying the
definition of the Kalman gain in Eq. 8. Eqs. S5, S6, S11, and
S12 are the one-dimensional complex Kalman filter algorithm
given in Eqs. 7a-7d.

C. State-Space Multitaper Cross-Spectrogram Analysis. By
making standard assumptions regarding joint local station-
arity between two or more time series, the SS-MT paradigm
can be extended to compute SS-MT cross-spectrograms. We
assume that we compute on interval k, the Fourier transforms
of tapered data series Y r,(m),F

k and Y s,(m),F
k from recording

locations r and s, respectively. We compute the correspond-
ing increment difference estimates from the two locations as
∆Zr,(m)

k|k (ωj) and ∆Zs,(m)
k|k (ωj), the mth SS-MT eigencross-

spectrogram as

f
SS−MT (r,s)(m)
k|k (ωj) = ∆Zr,(m)

k|k (ωj) ·∆Zs,(m)
k|k (ωj)∗ [S13]

and the SS-MT cross-spectrogram estimate is

f
SS−MT (r,s)
k|k (ωj) = M−1

M∑
m=1

f
SS−MT (r,s)(m)
k|k (ωj). [S14]

The corresponding SS-MT coherogram estimate is

Cr,sk|k(ωj) =
‖fSS−MT (r,s)
k|k (ωj)‖

(fSS−MT (r,r)
k|k (ωj) · fSS−MT (s,s)

k|k (ωj))
1
2
. [S15]
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D. An EM Algorithm for Model Parameters and Initial State
Estimation. We use an EM algorithm to find the maximum-
likelihood estimates of Θ = {σ2,(m)

ε , σ
2,(m)
v,j ,∆Z(m)

0 } [27]. It is
computed by maximizing the expectation of completed data
log-likelihood. The joint probability distribution of ∆Z(m)

1:K (ωj)
and Y (m),F

1:K,j at frequency j can be written as:

L
(m)
j = p(∆Z(m)

0 (ωj)|σ2,(m)
v,j )

×
K∏
k=1

p(∆Z(m)
k (ωj)|∆Z(m)

k−1(ωj), σ2,(m)
v,j )

×
K∏
k=1

p(Y (m),F
k,j |∆Z(m)

k (ωj), σ2,(m)
ε ), [S16]

where we assume that the probability density of the initial
state is given by

p(∆Z(m)
0 (ωj)) = (πσ2,(m)

v,j )−1 exp

(
−‖∆Z

(m)
0 (ωj)‖2

σ
2,(m)
v,j

)
.

[S17]

D.1. E-step. In iteration l of the E-step, the algorithm computes
the expectation of the complete data log-likelihood, given the
observed data and the previous estimates of the parameters
from iteration l − 1. For simplicity, we omit the superscript
m for the tapered data series. Taking log and expectation to
the likelihood yields

E[logL(l)
j | Y

F
1:K,j ,Θ(l−1)]

= E

[
−‖∆Z

(l)
0 (ωj)‖2

σ
2,(l−1)
v,j

− 1
σ

2,(l−1)
ε

K∑
k=1

‖Y F,(l)k,j −∆Z(l)
k (ωj)‖2

−K log(πσ2,(l−1)
ε )− (K + 1) log(πσ2,(l−1)

v,j )

− 1
σ

2,(l−1)
v,j

K∑
k=1

‖∆Z(l)
k (ωj)−∆Z(l)

k−1(ωj)‖2 | Y F1:K,j

]
.

[S18]

We need to compute three quantities to evaluate Eq. S18 for
k = 1, · · · ,K. They are

∆Z(l)
k|K(ωj) = E[∆Zk(ωj) | Y F1:K,j ,Θ(l−1)], [S19]

W
(l)
k|K,j = E[‖∆Zk(ωj)‖2 | Y F1:K,j ,Θ(l−1)], [S20]

and

W
(l)
k,k−1|K,j = E[∆Zk(ωj)∆Z∗k−1(ωj) | Y F1:K,j ,Θ(l−1)]. [S21]

Following Smith and Brown [20], these 3 quantities can be
efficiently computed using the Kalman filter (Eqs. 7 and 8),
Kalman smoothing (Eq. 16) and covariance smoothing (Eq. 17)
algorithms.

D.2. M-step. To carry out the M-step we let τ (l)
v,j = 1/σ2,(l)

v,j and
τ

(l)
ε = 1/σ2,(l)

ε and assume that each has a gamma prior density
defined as

p(τ |α, β) = βα

Γ(α) (τ)α−1 exp(−βτ), [S22]

for α > 1 and β > 0. The expectation of log joint posterior
density of τ (l)

v,j and τ
(l)
ε is defined as

E[log p(τ (l)
ε , τ

(l)
v,j) | Y

F
1:K,j ,Θl−1]

∝ log(p(τ (l)
ε | α, β)) + log(p(τ (l)

v,j | α, β)) + E[logL(l)
j ]. [S23]

We maximize Eq. S23 with respect to τ (l)
v,j and τ

(l)
ε to obtain

τ
(l)
v,j = K + α

2
K∑
k=1

(
W

(l)
k−1|K,j −<{W

(l)
k,k−1|K,j}

)
+W

(l)
K|K,j + β

,

[S24]

τ (l)
ε = α− 1 + JK∑

k,j

(
(Y F,(l)k,j )2 +W

(l)
k|K,j − 2<{Y F,(l)∗k,j ∆Z(l)

k|K,j}
)

+ β
.

[S25]
respectively. The initial state ∆Z0(ωj) can be simply esti-
mated using the Fourier transform of original time-series X1
as ∆Z0(ωj) = FX1. The EM algorithm iterates between E-
steps and M-steps until ‖∆Z(l)

k|K −∆Z(l−1)
k|K ‖

2/‖∆Z(l−1)
k|K ‖

2 < ε

where ε ∈ (0, 0.001) or l = Lmax, where Lmax is a pre-specified
number of maximum iterations.

SI Applications

A. Examples of Multitaper Spectrogram Analyses. In formu-
lating our concept of non-stationarity, we assumed minimal
intervals on which the time series is stationary. This assump-
tion derives from the common practice by investigators across
many fields of science of assuming a minimal interval of station-
arity. Table S1 documents several examples. These examples
show that the minimal stationary interval is generally chosen
to be small relative to the length of the times series.

B. Time-Domain Signal Extraction. Because the SS-MT
paradigm estimates the increment differences, we use Eq. 14
to extract the slow-delta (Fig. S1A), theta (Fig. S1B), and
alpha oscillations (Fig. S1C), and Eq. 15 to estimate instan-
taneous amplitudes (Fig. S1C) for 12 sec of data in Fig. 2B
beginning at 140 minutes. The magnitudes of the oscillations
are consistent with what is seen in the SS-MT spectrograms.
The alpha and theta oscillations show substantial slow-delta
amplitude modulation consistent with previous reports [32].
Fig. S2 shows the slow-delta (0.1 to 4Hz), the theta (4 to 8
Hz) and the alpha (8 to 12 Hz) oscillations extracted from the
EEG time series in Fig. S1 along with their associated 95%
credibility intervals.

C. Denoising and Leakage Reduction Analysis. We computed
the eigenspectrograms (Fig. S3) for the MT spectrogram in
Fig. 2D and the eigenspectrograms (Fig. S4) for the SS-MT
spectrogram for Fig. 2F . The eigenspectrograms resemble
their respective periodograms. Comparing the eigenspectro-
grams with the resultant spectrograms shows that averaging
contributes significantly to denoising the spectrogram.

Fig. S5A (S5B) shows state variance estimates and the
steady-state Kalman gains for the first tapered series as a
function of frequency for the complex Kalman filter algorithms
used to compute the SS-MT spectrogram for the simulated
time series in Fig. 1F (the EEG time series in Fig 2F ).
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Table S1. Examples of Multitaper Spectrogram Analyses

Article Application
Stationary Interval
Overlap
Total Time

1 Prechtl et al, PNAS, 1997 (1)
Voltage sensitive dye measurements of
electrical activity in the turtle cortex

1 second
Non-overlapping
Total length: 8 sec

2 Llinas et al. PNAS, 1999 (2)
Magnetoencephalographic activity in
neurogenic pain, tinnitus, Parkinson’s
disease and depression

5 seconds
1 seconds overlap
Total length: 10 min

3 Van der Meer and Redish, FINS, 2009 (3)
Relationship of gamma oscillations to
different behavioral states in the rodent

500 msec
50 msec overlap
Total length: 6 sec

4
Mhuircheartaigh et al. Science Translational
Medicine, 2013 (4)

Electroencephalogram of patients under
general anesthesia

3 seconds
0.4 seconds overlap
Total length: 116 min

5
Schmandt et al. Geophysical Research
Letters, 2013 (5)

Analysis of seismic and infrasound
measurements during control flood
experiments

2 minutes
Non-overlapping
Total length: 5 days

6 Williams et al. eLife, 2013 (6)
Electroencephalogram measurements of
brain dynamics in patients with severe brain
injuries

2-3 seconds
Non-overlapping
Total length: 5 hours

7 Mandelblat-Cerf et al. PLoS One, 2014 (7) Local field potential for zebra finch song
9 milliseconds
1 millisecond overlap
Total length: 500 msec

8
Takahashi et al. Nature Communications,
2015 (8)

Analysis of large-scale oscillations in neural
spiking activity in the non-human primate
motor cortex

250 milliseconds
248 millisecond overlap
Total length: 500 msec

9 Purdon et al. Anesthesiology, 2015 (9)
Electroencephalogram studies of patients
under general anesthesia

3 seconds
0.5 seconds overlap
Total length:20-180 min

10 Cornelissen et al. eLife, 2015 (10)
Electroencephalogram studies of neonates
under general anesthesia

2 seconds
1.9 seconds overlap
Total length:76-268 min

11 Prerau et al. Physiology, 2016 (11) Electroencephalogram studies of sleep
2.5 second to 30 sec
2.45–25 sec overlap
Total length: 8.5 hours

12 Bhat et al. INTERSPEECH, 2016 (12) Detecting dysarthric speech
30 milliseconds
20 millisecond overlap
Total length: 2-5 sec

13 Ivory et al. PNAS, 2016 (13)
Studies of biodiversity and variability in Lake
Malawi by analyzing long sedentary records

80K years
60K years overlap
Total length: 1.2M years

14 Vlisides et al. Anesthesiology, 2017 (14)
Electroencephalogram of patients under
general anesthesia

3 seconds
0.5 seconds overlap
Total length: 55 minutes

15 Hussain et al. SAGEEP, 2017 (15) Seismic vibrations in Brasilia, Brazil
1 hour
No overlap
Total length: 12 days
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Fig. S4. Eigenspectrogram and spectrogram estimates of the state-space multitaper algorithm from EEG data recorded from a patient undergoing sevoflurane-induced general
anesthesia (Fig. 2). (A)-(C) Eigenspectrogram for each tapered signal. (D) State-space multitaper spectrogram. The color scale is in decibels.
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true spectrum (red curve) from Fig. 1B. (D) Minute 25 MT spectrum (black curve) from Fig. 1D, SS-MT spectrum (blue curve) from Fig. 1F and true spectrum (red curve) from
Fig. 1B.

We analyze the MT and SS-MT spectra for the simulated
time series at times 5 and 25 minutes in (Fig. S6). By design,
the power spectral density (PSD) of the first taper has a main
lobe which is 0.5 Hz in width (blue curve, inset in Figs. S6A
and S6B). The SS-MT spectrum (blue curve in Figs. S6C and
S6D) resembles the true spectrum (red curve, Figs. S6C and

S6D). Figs. S7 and S8 show the PSD of the tapers at minute
25 taken from frequency 9.5 Hz (high signal power) and 6 Hz
(low signal power or noise). At 9.5 Hz, the PSDs of the SS-MT
tapers (Figs. S7B,D,F ) are very similar to that of the MT
tapers (Figs. S7A,C,E). The average of the ratios of areas
of the main lobes of PSDs for the SS-MT tapers relative to
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state Kalman gain for first tapered series (red curve). (D) Minute 80 MT spectrum (dashed black curve) from Fig. 2E, SS-MT spectrum (red curve) from Fig. 2F and SS-MT
steady state Kalman gain for first tapered series (blue curve).

the MT tapers is 0.94 and for the corresponding side lobes is
0.95. The PSDs of the SS-MT tapers at 6 Hz (Figs. S8B,D,F )
have less area and lower side lobes than the MT PSDs at 6 Hz
(Figs. S8A,C,E). Here, the average of the ratios of the areas
of the main lobes of PSDs for the SS-MT tapers relative to
the MT taper is 0.16 and for the corresponding side lobes is
0.14. The SS-MT algorithm thereby produces effective tapers
that appreciable reduce broad band and narrow band leakage
from frequencies with low power.

We analyze the MT and SS-MT spectra for EEG time series
at times 70 and 80 minutes in Fig. S9. By design, the PSD of
the first taper has a main lobe which is 2 Hz in width (blue
curve, inset in Figs. S9A and S9B). Hence, at 70 minutes,
the power at 5 Hz is expected to leak into the power at 6
Hz since the difference between 5 and 6 Hz is less than 2 Hz.
Similarly, at 80 minutes the power at 15 Hz is expected to
leak into the power at 16 Hz (Fig. S9B). At minute 70, in
the SS-MT spectrum at 6 Hz, the power is 12 dB less than
the power in the MT spectrum (Fig. S9C). Similarly, at 80
minutes, in the SS-MT spectrum at 16 Hz, the power is 7 dB
less than the power in the MT spectrum (Fig. S9D). The
SS-MT has enhanced denoising and leakage reduction because
the Kalman gains at 6 and 16 Hz are approximately 0.1 in

both cases (Figs. S9C and S9D).

For a given set of tapers in the MT analysis, the PSD of
the tapers are the same at each frequency (Figs. S7A,C,E,
S8A,C,E, S10A,C,E, and S11A,C,E). For the SS-MT analysis
the PSD of the tapers depends critically on the Kalman gain.
If the Kalman gain is close to 1, then the MT and SS-MT
PSD agree (Fig. S7). However, the smaller the Kalman gain
the greater the difference between the PSD for the MT and
the SS-MT tapers (Figs. S8, S10, and S11). The smaller
values of the Kalman gain correspond to frequencies with
lower power. Frequencies with low power are unaffected by
nearby frequencies with high power because the low Kalman
gain places little weight on a new observation which is the
potential source of the leakage. The associated PSDs of the
SS-MT tapers at frequencies with low power have less area
in the main and side lobes than the corresponding MT PSDs.
The average of the ratios of the areas of the main lobes of
PSDs for the SS-MT tapers relative to the MT taper is 0.17
and for the corresponding side lobes is 0.36 (Fig. S10). The
average of the ratios of the areas of the main lobes of PSDs
for the SS-MT tapers relative to the MT taper is 0.04 and for
the corresponding side lobes is 0.10 (Fig. S11). This property
of SS-MT tapers reduces leakage from low power frequencies.

PNAS | October 17, 2017 | vol. XXX | no. XX | 9



0

Po
w

er
 (d

B)
Po

w
er

 (d
B)

Po
w

er
 (d

B)

Frequency (Hz)
0 2 10

Frequency (Hz)

-40

-100

-120

SS-MT MT 

Taper 1

Taper 2

Taper 3

A B 

C D 

E F 

-20

-60

-80

-140

0

-40

-100

-120

-20

-60

-80

-140

0

-40

-100

-120

-20

-60

-80

-140
4 6 8 0 2 104 6 8
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Fig. S12. Cross-spectrogram analysis of two EEG time series recorded from a patient under general anesthesia maintained with a propofol infusion. (A) Multitaper coherogram.
(B) State-space multitaper coherogram.
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Fig. S13. A simulation analysis of the coverage probability for the empirical Bayes 95% confidence intervals. The black horizontal line is 4 dB, the true difference in spectral
power at 11.5 Hz between times 27 and 15 minutes. The red vertica lines are the empirical Bayes 95% confidence intervals computed from 1,000 simulated realizations of the
AR(6) model in Eq. 18. The simulation estimates the actual frequentist coverage probability to be 0.9660.

D. Coherence Analysis. For a coherence analysis, we analyzed
16 minutes of EEG data recorded from a patient receiving
general anesthesia maintained by an intravenous propofol infu-
sion. Figure S12 shows the MT coherogram (Fig. S12A) and
the SS-MT coherogram (Fig. S12B). Both methods show high
coherence (>0.9) between 10 to 15 Hz during this period that
is characteristic of general anesthesia maintained by propofol
[32]. The SS-MT coherogram shows greater denoising outside
this frequency band than the MT coherogram.

E. Coverage Probability Analysis. To assess the accuracy of
the empirical Bayes 95% confidence intervals, we conducted a
simulation analysis using the non-stationary AR(6) process in
Eq. 18. We computed the actual difference in spectral power
at 11.5 Hz between times 27 and 15 minutes. We simulated

1,000 time-series from Eq. 18 and fit the SS-MT model to each
using the EM algorithm. We used the Monte Carlo algorithm
to compute from each SS-MT fit the 95% confidence interval
for the spectral power difference by making 3,000 draws from
the empirical Bayes posterior distribution f(∆Z|Y, Σ̂), where
Σ̂ denotes the maximum likelihood estimates of the noise floor
variance and the state variances at each frequency (see page
4, Inferences for Functions of the Increment Differences). The
black horizontal line in Fig. S13 is 4 dB, the true difference in
spectral power at 11.5 Hz between times 27 and 15 minutes.
The red vertical lines in Fig. S13 are the empirical Bayes 95%
confidence intervals computed from 1,000 simulated realiza-
tions of the AR(6) model in Eq. 18. The simulation analysis
finds that the actual frequentist coverage probability to be
0.966. The lower and upper bounds of the Monte Carlo er-
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Fig. S14. Analysis of the stationary interval choice on spectrogram estimation for the time-varying AR(6) process defined in Eq. 18. (A) True spectrogram. (B) SS-MT
spectrogram estimate for J = 512 (8 seconds); (C) SS-MT spectrogram estimate for J = 1, 024 (16 seconds); (D) SS-MT spectrogram estimate for J = 2, 048 (32
seconds); (E) SS-MT spectrogram estimate for J = 4, 096 (64 seconds). The right column shows for each panel a zoomed in display of the three minutes between minutes 24
to 27. The color scale is decibels

ror based on 1,000 draws from a binomial distribution with
p = 0.95 is [0.947 0.964]. The fact that the actual coverage
probability is just beyond the upper Monte Carlo error bound
suggests that the SS-MT 95% confidence interval is slightly
conservative. This observation is reassuring given that the
SS-MT model lies outside the model class that generated the
data.

F. Choice of Stationary Interval Length. Using the AR (6)
model in Eq. 18, we analyzed the effect of stationary interval
choice on spectrogram estimation. For this model there is no
"ground truth" interval choice because there is no finite inter-
val on which the data are stationary. Moreover, the SS-MT
model is outside the model class generating the data. In the
analysis in Fig. 1F we chose J=1,024, the number of data
points per stationary interval. In this analysis of the station-
ary interval choice we fit the SS-MT model with J = 512 (8
seconds) (Fig. S14B); J = 1, 024 (16 seconds) (Fig. S14C);
J = 2, 048 (32 seconds) (Fig. S14D); and J = 4, 096 (64

seconds) (Fig. S14E).

Table S2 shows for seven frequencies the mean-squared error
(MSE) computed by averaging the sum of squared differences
between each estimate (periodogram, MT, SS-periodogram,
and SS-MT) and the true spectrogram over all time intervals
for the four different choices of stationary interval lengths.
In Table S2, we report the MSE for 3 frequencies with high
power: 3.5 Hz, 9.5 Hz, and 11.5 Hz; 3 frequencies with low
power: 1.5 Hz, 6.5 Hz and 12.5 Hz; and one frequency with
intermediate pwoer: 10.5 Hz (Fig. S14). For each stationary
interval length, the SS-MT spectrogram estimates have the
smallest MSEs for all 4 methods.

Within the SS-MT estimates, the stationary interval length
that minimizes the MSE differs in relation to the magnitude of
the spectral power at a given frequency. For two of the frequen-
cies with high power (9.5 Hz and 11.5 Hz) and the frequency
with intermediate power (10.5 Hz), the MSE was minimized
by choosing a 64-second stationary interval. The MSE for
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Table S2. Mean-Squared Error as a Function of Stationary Interval
Length

Frequency (Hz) Periodogram MT SS-P SS-MT

J = 512 (8 seconds)
1.5 7 7 -17 -18
3.5 34 29 33 28
6.5 8 7 -15 -18
9.5 34 34 34 33

10.5 17 12 13 5
11.5 31 26 30 25
12.5 8 6 -15 -20

J = 1, 024 (16 seconds)
1.5 7 5 -16 -22
3.5 35 27 34 27
6.5 8 5 -15 -21
9.5 34 30 33 29

10.5 16 11 10 5
11.5 32 23 32 23
12.5 8 5 -17 -19

J = 2, 048 (32 seconds)
1.5 7 5 -16 -22
3.5 35 25 35 25
6.5 8 5 -13 -18
9.5 33 29 33 29

10.5 16 10 8 2
11.5 34 19 34 19
12.5 6 5 -16 -18

J = 4, 096 (64 seconds)
1.5 7 5 -19 -21
3.5 33 26 33 26
6.5 7 4 -11 -18
9.5 34 28 33 28

10.5 17 10 8 -1
11.5 38 17 38 17
12.5 6 4 -13 -17

The MT and SS-MT spectrograms were estimated using 2 tapers
(J = 512), 4 tapers (J = 1.024), 8 tapers (J = 2.048), and 16 tapers
(J = 4, 096) to keep spectral resolution at 0.5 Hz. Table entries are in
decibels, i.e., 10 log10(MSE). MT: multitaper spectrogram; SS-P:
state-space periodogram; SS-MT: state-space multitaper spectrogram.

the third frequency with high power (3.5 Hz) was minimized
by a 32-second stationary interval choice. The spectrogram
estimates for the high-power frequencies using the 64-second
stationary interval (Fig. S14E) resemble most closely the true
spectrogram (Fig. S14A). For the three frequencies with low
power (1.5Hz, 6.5Hz and 12.5Hz) the minimumMSE stationary
interval choice was the 16-second interval. Although the 16-
second stationary interval spectrogram estimate (Fig. S14C)
has the smallest MSEs for the low-power frequencies, the
differences between it and the other spectrograms at these
frequencies is not visibly discernible in Fig. S14.
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