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Supporting Appendix

Supporting Materials and Methods.

Study samples. The UK Biobank is a large prospective study of over 500,000 individuals in the United Kingdom(UK)(1).
Participants were 40-69 years of age during the recruitment phase (2006-2011). To avoid issues related to population structure,
we studied only the 376,366 individuals of self-reported white-British ancestry. Unless otherwise notes we restricted our analysis
to males over 50y old at assessment and females over 45y old, to ensure that number of children born to date is a good proxy
for lifetime reproductive success. These filters resulted in 217,728 Female and 158,638 Male samples with phenotypic data.
Of these individuals, there were 157,807 Female and 115,902 Male samples with genetic data available that were genetically
unrelated (relatedness < 0.05).

Phenotypic data. The UKB contains data on the number of live births for females and the children fathered for males. These two
variables were treated as life time reproductive success(LRS). To calculate relative lifetime reproductive success (rLRS) we
followed the approach of (2). Briefly, the samples were split into birth cohorts and LRS values were divided by the cohort
specific mean value. We calculated rLRS within 4 non-overlapping birth cohorts, based on birth year. Specifically, the birth
cohorts are: Cohort 1 (1934-1942), Cohort 2 (1943-1948), Cohort 3 (1949-1955) and Cohort 4 (1956-1965). In all subsequent
regression analyses age, birth cohort and data collection assessment center were treated as covariates. All phenotypes, except
LRS, measured in the set of 376,366 post-reproductive white-British ancestry samples were split by sex and then scaled to
mean zero and variance one. If a sample was measured on multiple visits to the assessment center then we used the mean value
across measurements except in the case of educational attainment for which the maximum value was used. Unless otherwise
noted, individuals more than 6 standard deviations from the mean were removed as outliers.

Genetic data. The UKB genetic data were collected using two similar genotyping arrays. Nearly 450,000 participants were
genotyped on the custom Affymetrix UK Biobank Axiom® (UKBA) array, while an additional 50,000 participants were
genotyped using the UK BiLEVE (UKBL) array. The two arrays have over 95% common marker content, with the UKBA
array having a small number of additional markers for genome-wide coverage. The genetic data was imputed using two different
reference panels, by the UK Biobank team. The Haplotype Reference Consortium (HRC) panel was used as first choice option,
but for SNPs not in that reference panel the UK10K + 1000 Genomes panel was used. A problem arose in the second set of
imputed data from the UK10K + 1000 Genomes panel. The genotypes at these SNPs are imputed correctly, but have not been
recorded as having the correct genome position in the files. We have established that the imputed data from the HRC panel is
not affected and has the correct positions. This is about 40M sites and will include the majority of the common SNPs i.e.
sites most likely to show genetic associations. These sites are readily identified since the HRC site list is public. The sample of
“White British” ancestry individuals was derived using principal component analysis and the self-reported ancestry information.
For our further genetic analyses, we selected 1,162,900 HapMap3 SNPs with info score >0.3, minor allele frequency >=0.01
and Hardy-Weinberg Equilibrium test p-value >=1e-6. We further constructed genetic relatedness matrices in GCTA (3) and
removed one of each pair of individuals with estimated SNP marker relatedness greater than 0.05 or if a genetically inferred
gender of the sample did not match the self-reported gender. For some analyses only the UKB interim release was used which
consisted of 108,402 unrelated White British individuals.

Phenotypic regression analyses. To estimate linear and quadratic selection gradients, we performed simple linear regressions of
each phenotype and its square onto rLRS independently and through a multiple linear regression. In both cases, the phenotypes
and their squared values were included and statistical significance was assessed by the Wald test.

The resulting regression coefficients are used to estimate the linear (β) and quadratic (γ) selection gradients (4, 5). The
value of β is simply equal to the regression coefficient on the phenotype itself. However, the value of γ is twice the regression
coefficient on the square of the phenotype (5).

The particular subset of phenotypes used in the multiple linear regression was chosen to reduce the variance of the regression
estimates. We observed the phenotypic correlations between traits (Fig. S4 and S5) and noticed some sets of highly correlated
traits. Within each set we prioritized inclusion in the final model by (1) significance of genetic correlation with rLRS, (2)
significance of phenotypic regression on rLRS and (3) sample size. The UKB has very large sample sizes, but the missing
data is non-overlapping for each trait. As such, the data matrix became singular upon inclusion of all trait interaction terms.
Therefore, we only include the traits interaction with itself (the quadratic term). To further address multi-collinearity in the
data we calculated the variance inflation factor (VIF) for each trait. Individual traits were removed from the model, starting
with the trait with the highest VIF, and the VIF’s were recalculated. This process was repeated until all VIF values were
below 2 for all included traits.

Genetic correlation analyses. Summary statistic based LD-score regression(6, 7) was performed on the full UKB dataset to
calculate genetic correlations between various traits and rLRS. GWAS summary statistics were generated using a simple linear
association test in plink(8). Then, LD-score regression was performed using pre-computed LD-scores which are provided with
the LD-score regression software.

In addition, a bivariate genetic variance component analysis was performed in the interim data release to establish genetic
relationships between various traits and rLRS. The bivariate variance component model allows us to jointly estimate the genetic
variance of each trait and their genetic covariance. Because of the large sample sizes of the UKB, BOLT-REML(9) was chosen
for computational efficiency. Briefly, BOLT-REML estimates the genetic variance-covariance matrix via a Monte-Carlo Average
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Information REML approach. The genetic variance parameters are initially estimated using the related BOLT-LMM(9), which
is a Bayesian linear mixed model methods. BOLT-LMM assumes a mixture-of-normals prior on the SNP effects such that most
SNPs have small effects and others may have large effects. Given the BOLT-LMM initial estimates, BOLT-REML then applies
a rejection sampling technique to obtain final estimates of the genetic variance-covariance matrices. We assessed the statistical
significance of the BOLT-REML genetic correlations via the Wald test.

SI Text.

BOLT-REML analysis of the interim UKB data release. We obtained genetic correlation estimates from a linear mixed modeling
approach in addition to LD-score regression. Specifically, we used BOLT-REML, which gives very similar estimates to the
standard gREML procedure in GCTA (10) but scales more efficiently with large sample sizes. Following (11) a REML estimate
of the genetic correlation between traits and rLRS, rg,rLRS , was directly estimated using common (MAF> 0.01) SNP markers
in a bivariate linear mixed model (LMM) approach (12, 13) using BOLT-LMM (9). The estimate of SNP heritability for rLRS
varied across analyses and by sex. Due to the action of natural selection against deleterious mutations, the heritability of fitness
components, such has reproductive success, is expected to be low and largely dominated by low frequency variants. Thus, our
estimates of the common-SNP heritability of rLRS are most likely biased downward, which reduces the power of our genetic
correlation analyses. Here we provide an overview of BOLT-REML results and a brief comparison to the LD-score regressions.

The BOLT-REML estimates of genetic correlation are summarized in Fig. S12. Many traits in females show a r̂g,rLRS in
the same direction as the phenotypic regression estimate β̂. Overall, there was a strong positive correlation between the β̂ and
r̂g,rLRS in females only (Fig. S15). Further, the total phenotypic correlation estimated from the mixed model is consistent
with results from the regression analysis (Fig. S14 and table S3);see the following section for a more detailed discussion on the
consistency between the phenotypic and genetic results.

In females, the median BOLT-REML estimate of h2
SNP,rLRS was 0.076, which on a relative scale is considerably larger than

the value 0.0564 estimated from LD-score regression. While in males, the estimates of h2
SNP,rLRS from the two methods were

quite close, with the BOLT-REML estimate being equal to 0.035 and the LD-score regression estimate being equal to 0.033. It
is also known that, all else equal, LD-score regression estimates of genetic variance components will have larger standard errors
than estimates obtained from mixed modeling approach. This means that there are multiple competing factors affecting power
to detect non-zero genetic correlations including the sample size, the heritability explained by the model, and the precision of
the estimate.

Four body-size related traits have a significant r̂g,rLRS in females: WHR, WC, BFP and BMI. An additional two body-size
traits, WT and HC were marginally significant in females. No traits show a significant r̂g,rLRS at the FWER≤ 0.05 level
in males, but r̂g,rLRS for male BMI is marginally significant and in the same direction as the phenotypic result (β̂). Again
consistent with the phenotypic results, r̂g,rLRS values for EA and AFB in females are significant and negative.

The BOLT-REML and LD-score regression estimates of r̂g,rLRS were highly correlated. However, the specific traits which
passed the study-wise significance threshold varied considerably. More male traits were significant in the LD-score regression
analysis while the opposite was true for females and the BOLT-REML analysis. However, it is important to emphasize that
significance thresholds are somewhat arbitrary and we draw attention to the overwhelming consistency of the estimates obtained
from the two approaches as demonstrated by Fig. S13.

Consistency of phenotypic and genetic correlations. In the main text of this manuscript we present results from a phenotypic
analyses in a large section of the UKB data and above we presented a genetic analysis from a reduced subset of that data.
Specifically, we perform a linear regression for phenotypic analyses and bivariate linear mixed modeling for the genetic analyses.
Here in this section we would like to provide a joint interpretation and discuss the issue of consistency between results of
these two analyses. Below we provide calculations for various correlation coefficients obtained from our analyses; the empirical
estimates of these coefficients are presented in table S3.

The β̂ estimates from a linear regression can be expressed in terms of phenotypic covariances and correlations. In the model

rLRS = βP + ε

we have

β̂ = cov(P, rLRS)
V (rLRS)

= rp
σrLRS

σP

Where rp is the phenotypic correlation coefficient in the sample. Therefore, we obtain by simple algebra the first expression for
the phenotypic correlation coefficient directly from our phenotypic analyses, which we call rp,1.

rp,1 = β̂
σP

σrLRS
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Given some assumptions we can obtain a similar expression for phenotypic correlation from the genetic results. We assume
an additive polygenic model for both traits (P and rLRS) analyzed in the bivariate model such that the traits are expressed as
additive genetic and environmental components.

rLRS = ArLRS + ErLRS

P = AP + EP

We can then further decompose the additive genetic component into a portion explained by genotyped SNPs and a remainder.

ArLRS = As,rLRS +Ar,rLRS

AP = As,P +Ar,P

The covariance between rLRS and P is

cov(rLRS, P ) =cov(ArLRS , AP ) + cov(ErLRS , EP )
cov(rLRS, P ) =cov(As,rLRS , As,P )+

cov(Ar,rLRS , Ar,P ) + cov(ErLRS , EP )

From the bivariate linear mixed model we obtain estimates of the correlation between the additive genetic components of
both traits explained by SNPs and the covariance between the residual components.

rs,g = cov(As,rLRS , As,P )√
V (As,rLRS)V (As,P )

rs,e = cov(Ar,rLRS + ErLRS , Ar,P + EP )√
V (Ar,rLRS + ErLRS)V (Ar,P + EP )

We cannot assume that the environmental components of the two phenotypes is zero (cov(ErLRS , EP ) = 0) because this is a
strong untested assumption and it is one that would not be true under a causal relationship between P and rLRS. Therefore,
it is not possible to extrapolate from the mixed model results to the true full genetic correlation (rg). However, we can provide
a second calculation of the full phenotypic correlation from the genetic results which we call rp,2.

rp,2 = cov(rLRS, P )√
V (rLRS)V (P )

= cov(As,rLRS , As,P ) + cov(Ar,rLRS + ErLRS , Ar,P + EP )√
V (rLRS)V (P )

=
rs,g

√
V (As,rLRS)V (As,P )√
V (rLRS)V (P )

+
rs,e

√
V (Ar,rLRS + ErLRS)V (Ar,P + EP )√

V (rLRS)V (P )

The two calculations of phenotypic correlation should be closely related as one is obtained using a subset of the data used
from the other. Indeed in a regression of rp,1 on rp,2 the R2 = 0.94 (Fig. S14). The residual variance-covariance estimates from
the bivariate model contain both untagged genetic and non-genetic effects. Therefore we can not definitively demonstrate
consistency between the pure phenotypic and genetic results. However, we can ask how well the phenotypic correlations
predict the genetic correlations. To do so we regressed the mixed model genetic correlation estimates rs,g onto the phenotypic
correlation estimates from the phenotypic regressions rp,1. The regression coefficient in that model was 2.96 with an adjusted
R2 = 0.27. In other words the phenotypic correlation values explain 27 percent of the variance in genetic correlation estimates.
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Correlation between rLRS and a polygenic predictor for height. As an alternative approach to finding genetic evidence for a relationship
between rLRS and height we constructed a polygenic predictor for height based on a meta-analysis of published height GWAS
and the interim UKB data. This meta-analysis has an effective sample size of 390,000. From the meta-analysis there were
1,371 SNPs that passed a clumped p-value threshold hold of 10−6. We predicted height in the UKB samples using the sample
genotypes and estimated effect sizes at these 1,371 SNPs. Our predictor explains 25 percent of phenotypic for height( Fig. S22).

The rLRS values were regressed onto the predicted height and squared height values for males and females separately. In
males neither the linear nor quadratic predictor were significantly associated with rLRS. However, in females both the linear
and the quadratic predictor showed marginal significance. In females, the estimated effect size of the height predictor on rLRS
was −0.0081± 0.004(p = 0.0624) and effect size of the squared height predictor on rLRS was −0.007919± 0.003(p = 0.0097).
This result is qualitatively consistent with our phenotypic observations of a weak directional and quadratic relationship between
rLRS and height.

We performed a simulation to better understand the behavior of the polygenic predictors for height and their relationship to
rLRS. We simulated fitness values under a model of multivariate stabilizing selection(14) where three phenotypes contribute to
fitness. One of the three underlying phenotypes was treated as being under directional selection by setting the phenotypic
optimum to be different from 0 for that phenotype only.

We simulated genotypes at 20,000 unlinked biallelic variants. 10,000 of these variants were causal for the phenotype under
directional selection. Variant effect sizes were estimated in a panel of 300,000 individuals using a simple linear association test.
Using the estimated variant effects we created polygenic predictors for the phenotype and squared phenotype in an independent
validation panel of 50,000 individuals. The predictors were regressed against the simulated fitness values in the independent
validation panel.

The simulations recapitulate an important qualitative signature of our empirical polygenic predictors. As the number of
SNPs in the predictor is increased the p-value of a predictor goes down and then eventually goes back up(Fig. S23. When the
number of SNPs is too low, there is no statistical power to predict in a new panel. However, if too many SNPs are included then
we are adding noise to the predictor and power is reduced. This effectively reflects a transition from a model that under-fits to
one that has over-fit the data; both under and over fitting reduce prediction accuracy in an independent dataset.

According to our simulations, the transition from under-fitting to over-fitting as a function of number of variants happens
much faster for the quadratic predictor than for the linear predictor. This is likely due to the propagation of measurement
error through a quadratic function. By predicting the variant effects on the phenotype and then predicting its square we have
propagated the error of the variant effect size estimates.

Mendelian randomization using summary statistics for Educational Attainment. We use Mendelian randomization based on summary
statistics (GSMR) (15) to assess the evidence for a possible causal relationship between educational attainment and reproductive
phenotypes. In the main text of this manuscript we show that there is a strong phenotypic and genetic correlation between
educational attainment and relative lifetime reproductive success. Briefly, a Mendelian randomization (MR) analysis estimates
and tests a causal relationship of trait X on trait Y by using known SNP associations for trait X as instruments. The rationale
is that if trait X causes Y then any perturbation that affects X will have the same proportional effect on Y.

Using summary statistics from GWAS for educational attainment (16) and the UKB data on rLRS used in the main text,
we tested the hypothesis that educational attainment, or a trait genetically highly correlated with it, is causal for rLRS. Using
50 instruments (genome wide significant SNPs for educational attainment) we estimate that ˆβEA,rLRS = −0.2(p < 10−5.8).

This instrument variable analysis implies that an increase of one standard deviation in educational attainment leads to a 0.2
decrease in rLRS. While this limited analysis is insufficient to fully demonstrate causality, the results are clearly consistent
with the hypothesis that educational attainment, or a trait such as cognitive ability (which is genetically correlated with EA
and might itself be causal for EA), has a negative causal relationship with lifetime reproductive success.

We also performed a similar GSMR analysis between educational attainment and age at first birth. Using the same
educational attainment summary statistics, we had 51 instruments and estimated that ˆβEA,AF B = 0.653(p < 10−21). The
results are consistent with the hypothesis that educational attainment (or a highly correlated trait) causally increases age at
first birth.

Linear regression sensitivity analysis. The phenotypic results presented in the main text followed the default data filter and QC
pipeline. In the defaults pipeline we used age cutoff of 50 and 45 for males and females respectively, did not perform inverse
noram transformation on the data, used 6 standard deviations to define outliers for removal and did not remove known related
individuals. We were concerned that, while rare, it is possible for males and females to have children above the ages of 50 and
45 respectively. When the age inclusion thresholds were increased to 55 and 50 for males and females respectively, we did
not see many major changes to the results although the specific magnitudes of the selection gradient estimates did change.
Similarly, we increased stringency of the outlier inclusion criteria by removing individuals outside of 4 standard deviations from
the mean. The increased outlier stringency had little qualitative effect on the our results.

We found that our results were also robust to normalization via inverse-normal transformation and the removal of known
related individuals (Fig. S20 and S21). Additionally, a logistic regression analysis was performed using a binary encoding
of LRS in which zero indicates no children and one indicates one or more children. Many of the phenotypes appear to be
associated with this binary phenotype. This indicates that some of the our phenotypic regression results can be explained by
whether people end up having children or not. These results are contained in Dataset S1 along with all other regression results.
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The broad sense heritability of a squared phenotype. In the main text, we argue that the narrow sense heritability for a squared
trait will necessarily be much lower than the heritability for the trait itself. This stems from a few fundamental features of
the squared phenotype including gene-by-environment interactions, over-dominance and epistasis. We will not derive the
general case here, but instead will illustrate a couple of informative special cases. First, we will demonstrate the reduction in
broad-sense heritability for a general trait with independent genetic and environmental components. Second, we will derive the
dominance and epistatic variance components under purely additive single-locus and two-locus trait models. We finally appeal
to our empirical results to support our claim (Fig. S19).

We begin with the simple phenotypic model with independent genetic and environmental components.

P = G+ E

H2 = V (G)
V (P ) = V (G)

Where P ∼ N (0, 1) , G ∼ N (0, V (G)), and E ∼ N (0, V (E)). Assume that G and E are independent. Therefore when we take
the squared phenotype we get:

P 2 = G2 + 2GE + E2

I want to find expressions for V (P 2), V (G2), V (E2), and V (2GE). Because G and E both have mean zero and are independent:

V (2GE) = 4V (G)V (E)

From the definition of variance:

V (X2) = E(X4)− E(X2)2

This is the difference between the fourth central moment and the square of the second central moment. For a normal random
variable the fourth central moment is 3 times the squared variance

µ4 = 3σ4
X

V (X2) = 3σ4
X − (σ2

X)2

V (X2) = 2(σ2
X)2

The remaining expressions clearly follow.

σ2
P = 1
σ2

G = V (G) = H2

σ2
E = V (E) = 1−H2

Therefore:

V (P 2) = 2
V (G2) = 2(H2)2

V (E2) = 2(1−H2)2

V (GE) = 4 ∗H2(1−H2)

If we decompose the squared phenotype, we can get expressions for the proportions of variance due to each component:

PNAS | November 7, 2017 | vol. XXX | no. XX | 5



DRAFT

V (G2)
V (P 2) = (H2)2

V (E2)
V (P 2) = (1−H2)2

V (2GE)
V (P 2) = 2 ∗H2(1−H2)

Thus the broad sense heritability of squared phenotype will be the square of broad sense heritability of the phenotype.

Finite locus models for a squared phenotype. Next, we will show how the genetic variance for the squared trait decomposes under
single and two locus models of a trait. Consider a single biallelic locus contributing to purely additive trait P with alleles and
at frequencies p and q respectively.

A1A1 A1A2 A2A2

G a 0 −a
G2 a2 0 a2

G2∗ 0 −a2 0

The additive variance in P is given by the classic formula.

VG2 (A) = 2pqa2

In the case of the P 2 there is no additive effect, but there is a dominance deviation (d = −a2) such that:

VG2 (A) = 2pq(−a2(q − p))2

VG2 (D) = (−2pqa2)2

VG2 (A)
VG2 (A) + VG2 (D) = 2pq(−a2(q − p))2

2pq(−a2(q − p))2 + (−2pqa2)2

= a2(q − p)2

a2(q − p)2 + 2pqa2

= 1
1 + 2pq

(q−p)2

The expression for the percent of total genetic variance which is due to additive effects only depends on the allele frequencies
.The absolute magnitude of the additive variance for the squared genetic component is maximized for p = 0.5± 1

2
√

2 . However,
the relative magnitude of the of the additive component is maximized as p goes to zero. This composition of the genetic
variance across the range of allele frequencies is shown in Fig. S16. Thus, for a given trait architecture the additive component
of squared trait will be more highly influenced by rare variants. This fact further reduced the power of present study, in which
we use common SNPs to estimate genetic relatedness.

To illustrate the inclusion of epistasis, we derive the variance components under a two-locus model with equal additive
effects. The loci have equal effects, a, and allele frequencies p1 and p2.

The genetic values for the trait and the squared trait are

G =

( 2a a 0
a 0 −a
0 −a −2a

)

G2 =

( 4a2 a2 0
a2 0 a2

0 a2 4a2

)
For this model, we follow the approach of Kojima (17) for the derivation of genetic variance components based on partial

derivatives of the population mean with respect to allele frequencies. Given the population mean genetic value µ, the (L-additive
X Q-dominance) variance due to a particular locus of set of loci can be defined as:
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aLQ = 1
2L+Q

δL+2Qµ∏L

i
δpi

∏Q

j
p2

j

σ2
LQ = 2L

L∏
i

pi(1− pi)
Q∏
j

(pj(1− pj))2a2
LQ

For example, the additive variance for a trait with M loci would be found by setting L=1 and Q = 0, such that:

a10,i = 1
2
δµ

δpi

σ2
10 =

M∑
i

2pi(1− pi)a2
10,i

In the case of our two locus squared trait model, we will have additive, dominance and additive by additive epistatic terms.
It can be shown that dominance interactions go to zero, i.e DxA and DxD epistasis.

µG2 =4a2 (1− p2) 2 (1− p1) 2 + 2a2 (1− p2) p2 (1− p1) 2+
2a2p1 (1− p2) 2 (1− p1) + 2a2p1p

2
2 (1− p1) +

4a2p2
1p

2
2 + 2a2p2

1 + (1− p2) p2

VG2 (A) =
2∑

i=1

2pi(1− pi)
δµG2

δpi

VG2 (D) =
2∑

i=1

(pi(1− pi))2 δ
2µG2

δp2
i

VG2 (AA) =4p1(1− p1)p2(1− p2) δµG2

δp1δp2

In Fig. S17, we illustrate how much of the total genetic variance is attributable to the additive component across the allele
frequencies at each locus. The conclusions are similar to the single locus model: at intermediate allele frequencies there is a
substantial reduction in the relative contribution of additive variance to total genetic variance for a squared phenotype. This
implies that, even if the additive variance is preserved at some loci, our study using common variants will be severely under
powered. However, as the number of loci in the model increase, the importance of the additive variance component should
also increase (18). Regardless, our empirical results show that narrow-sense heritability of a squared trait is severely reduced
compared to that of the trait itself.

Additive heritability of a squared trait under a polygenic model. In the previous section, we derived estimates of genetic variance
under one and two locus model. However, the traits studied in this work are highly polygenic and we sought an alternative
approximation based on the infinitesimal model. Under the infinitesimal model, we can approximate the additive heritability of
a trait as the limit of the correlation between relatives as the correlation goes to zero(unrelated). This approximation should
remain valid for functions a traits.

Let there be a phenotype Y which is purely additive and another phenotype Z = Y 2. We then consider both phenotypes Y
and Z in a set of relatives with relatedness r for

Y = A+ E

E[Y ] = 0
var[Y ] = 1

Z1 = Y 2
1 = (A1 + E2)2

Z2 = Y 2
2 = (rA1 + E2)2

var[Z] = 2
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First, we need to derive a statement for the covariance between Z1 and Z2. Given that we E[Y ] = 0, this derivation is
relatively straightforward. The results follow below.

cov(Z1, Z2) = 2r2V (A)2

cov(Z1, Z2)
V (Z) = corr(Z1, Z2) = r2(h2

Y )2

lim
r→0

corr(Z1, Z2)
r

= h2
Z

h2
Z = lim

r→0

corr(Z1, Z2)
r

= lim
r→0

r(h2
Y )2 = 0

Therefore, under a highly polygenic model we expect there to be no additive genetic variance for a squared phenotype.
To check this result we performed simple simulations in R. We sampled genotypes at M markers for N individuals (N>>M),
assuming equal allele frequencies as allelic effects at each marker. Then we estimated the additive genetic variance using the
R2 from simple linear regression. We performed the regression on either the raw phenotypes or the phenotypes scaled to mean
zero and variance one. Fig. S18 shows that the two locus analytical expression for additive variance is accurate when M=2 in a
regression on the raw phenotypes. Fig. S18 also shows that when the phenotypes is scaled, the additive variance decreases
rapidly as M (the number of markers) increases. From this we infer that, in accordance with our derivation under a polygenic
model, as M gets very large there is no additive genetic variance for a squared phenotype.

Genetic control of variability. We first considered the behavior of the broad sense heritability of the square of a trait and found
that it is the square of the broad-sense heritability of the trait. Next we derived expressions for genetic variance components
under finite locus models following the classic approach of Kojima (17) (revisited in (18)). Our single locus derivations here are
equivalent to those done by Yang, et al. (10). The finite locus models suggested that for a purely additive trait, the additive
genetic variance of the square of trait will be less than genetic variance by an amount which depends on allele frequencies and
number of loci. Under an infinitesimal model, based on the correlation between relatives, we expect there to be zero additive
genetic variance for the square of a trait. Using simple simulations we validate our finite locus expressions and show that
as the number of loci increases the additive genetic variance approaches zero, in agreement with the derivations under the
infinitesimal model (Fig. S18).

Further, without making assumptions about the genetic architecture of the trait, any observed additive genetic variance
for a squared phenotype can not be easily disentangled from the effects of loci that explicitly control phenotypic variability.
In other words, when genotypic classes differ in phenotypic variability there will additive genetic variance for the square of
the phenotype–a fact that has been previously appreciated in the literature(19–24).Yang et al (10) showed that it is possible
to determine whether the additive effect of a SNP on the square of the trait is too large to be induced by that SNPs direct
effect on the trait. However, this approach does not easily allow us to interpret variance components of the square of the trait,
because of the confounding effect of the number of loci–we cannot say exactly what the heritability of the square of a purely
additive trait should be without knowing both the heritability of the trait and the number of loci involved.

Converting from scaled phenotype to real phenotype estimates. For us to interpret out regression estimates in term of theoretical
parameters, we scaled all phenotypes to mean zero and unit variance. However, for visualization of the predicted relationship
between real phenotypes and rLRS, we must convert our regression estimates back to the real scale. While this is relatively
straight forward algebra, the presence of the squared term add some minor additional complexity, which we illustrate here.

Given a sample of paired rLRS and trait values y and x, we convert x to z-scores:

z = x− x0

σx

We have the multiple linear regression model:

y = β0 + β1z + β2z
2 + ε

y = β0 + β1(x− x0

σx
) + β2(x− x0

σx
)2 + ε

y = (β0 −
x0β1

σx
+ β2x

2
0

σ2
x

) + (β1

σx
− 2β2x0

σ2
x

)x+ β2

σ2
x
x2 + ε

y = β∗0 + β∗1x+ β∗2x
2 + ε
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Fig. S1. Histograms showing the distributions of (A) linear and (B) quadratic selection gradients estimated from single trait regressions. Results are not split by sex, i.e. each
data point is a result for a specific sex-trait pair. Linear selection gradients are equal to the regression coefficients estimates. Quadratic selection gradients are equal to twice
the value of the regression coefficient estimates. A significance cut-off of FWER≤ 0.05 (Bonferroni correction) was chosen for visualization. Vertical lines show the values for
Female (solid) and Male (dashed) height.

PNAS | November 7, 2017 | vol. XXX | no. XX | 9



DRAFT

A

0

2

4

6

8

140 160 180
Height (cm)

LR
S

5000

10000

15000

count

B

0

2

4

6

8

150 170 190 210
Height (cm)

LR
S

2500

5000

7500

10000

count

C

−2

0

2

4

6

−6 −3 0 3 6
Height (s.d.)

rL
R

S

2000

4000

6000

count

D

−2

0

2

4

6

−5.0 −2.5 0.0 2.5
Height (s.d.)

rL
R

S

1000

2000

3000

4000

5000

6000
count

Fig. S2. Empirical relationships between LRS and Height. (Top row) Raw LRS values plotted against raw height values with a quadratic regression line fit to the data for (A)
Females and (B) Males with a dashed horizontal line at the sex-specific population mean. (Bottom row) rLRS adjusted for age, birth cohort and assessment center values
plotted against centered and scaled height values with a quadratic regression line fit to the data for (C) Females and (D) Males.
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Fig. S3. Simulated relationship between LRS and a trait under stabilizing selection. Trait values for 150,000 individuals were drawn from a unit normal distribution. Fitness
values were calculated with a Gaussian stabilizing selection fitness model with an optimum at zopt = 1 and Vs = 40. Then LRS values were drawn from a poisson distribution
with a mean equal to twice the relative fitness of each individual. We use twice the relative fitness so that the mean number of offspring per individual is 2, reflecting a constant
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Fig. S4. Phenotypic correlation matrix for Females. Shows the correlation coefficient for the measured phenotypes in females. The color legend is shown on the right hand side,
with dark blue and dark red representing strong positive and negative correlations, respectively.
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Fig. S5. Phenotypic correlation matrix for Males. Shows the correlation coefficient for the measured phenotypes in males. The color legend is shown on the right hand side,
with dark blue and dark red representing strong positive and negative correlations, respectively.
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DRAFT
Fig. S6. Predicted relative fitness as a function of age at first live birth. Linear and quadratic selection gradients were converted into parameters of a Gaussian fitness function.
Using the parameterized Gaussian fitness function, relative fitness values across the observed phenotypic range were predicted and shown by solid red (female) line. The
population means are indicated by vertical solid red (female). Histograms of female (red) phenotypes are overlaid with an axis on the right hand side. The horizontal dashed line
indicates a relative predicte fitness of 1.
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DRAFT
Fig. S7. Predicted relative fitness as a function of age at menopause. Linear and quadratic selection gradients were converted into parameters of a Gaussian fitness function.
Using the parameterized Gaussian fitness function, relative fitness values across the observed phenotypic range were predicted and shown by solid red (female) line. The
population means are indicated by vertical solid red (female). Histograms of female (red) phenotypes are overlaid with an axis on the right hand side. The horizontal dashed line
indicates a relative predicted fitness of 1.
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Fig. S8. Predicted relative fitness as a function of age at menarche. Linear and quadratic selection gradients were converted into parameters of a Gaussian fitness function.
Using the parameterized Gaussian fitness function, relative fitness values across the observed phenotypic range were predicted and shown by solid red (female) line. The
population means are indicated by vertical solid red (female). Histograms of female (red) phenotypes are overlaid with an axis on the right hand side. The horizontal dashed line
indicates a relative predicted fitness of 1.
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Fig. S9. Predicted relative fitness as a function of educational attainment. Linear and quadratic selection gradients were converted into parameters of a Gaussian fitness
function. Using the parameterized Gaussian fitness function, relative fitness values across the observed phenotypic range were predicted and shown by solid red (female)
and dashed black (male) lines. The population means are indicated by vertical solid red (female) and dashed black (male) lines. Histograms of female (red) and male (gray)
phenotypes are overlaid with an axis on the right hand side. The horizontal dashed line indicates a relative predicted fitness of 1.
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Fig. S10. Predicted relative fitness as a function of Fluid intelligence. Linear and quadratic selection gradients were converted into parameters of a Gaussian fitness function.
Using the parameterized Gaussian fitness function, relative fitness values across the observed phenotypic range were predicted and shown by solid red (female) and dashed
black (male) lines. The population means are indicated by vertical solid red (female) and dashed black (male) lines. Histograms of female (red) and male (gray) phenotypes are
overlaid with an axis on the right hand side. The horizontal dashed line indicates a relative predicted fitness of 1.
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Fig. S11. Predicted relative fitness as a function of BMI. Linear and quadratic selection gradients were converted into parameters of a Gaussian fitness function. Using the
parameterized Gaussian fitness function, relative fitness values across the observed phenotypic range were predicted and shown by solid red (female) and dashed black (male)
lines. The population means are indicated by vertical solid red (female) and dashed black (male) lines. Histograms of female (red) and male (gray) phenotypes are overlaid with
an axis on the right hand side. The horizontal dashed line indicates a relative predicted fitness of 1.
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Fig. S20. Sensitivity analysis of linear selection gradients. Each set of β estimates is compared to a baseline analysis described in the the text. For each data QC pipeline we
display the log fold-change in the value of β compared to and whether the estimate changed significance status. Red coloration implies that β increased in absolute magnitude
and thus became more significant and vice versa for blue coloration.
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Fig. S21. Sensitivity analysis of quadratic selection gradients. Each set of γ estimates is compared to a baseline analysis described in the the text. For each data QC pipeline
we display the log fold-change in the value of γ compared to and whether the estimate changed significance status. Red coloration implies that γ increased in absolute
magnitude and thus became more significant and vice versa for blue coloration.
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Fig. S22. Performance of polygenic predictor for height. Polygenic predictors for height and squared height were constructed based on genetic association statistics obtained
from a meta-analysis of the UKB and GIANT data. The R2 score and p-values for each predictor are plotted against the number of SNPs included in the model.
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Fig. S23. Performance of simulated polygenic predictors. A phenotype was simulated under a polygenic model with 20,000 causal markers. SNP effects were estimate in a
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and p-values for each predictor are plotted against the number of SNPs included in the model.
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Table S1. Summary of multiple regression of traits onto rLRS. Traits which were marginally significant in a multiple regression model are
displayed below. The multiple regression was carried out separately for each sex. The full results of multiple regression are contained in the
Dataset S1.

Trait Sex Order Estimate �log10(p)
Educational attainment Female 1 0.04 23
Age at menarche Female 1 0.02 4
Age at first live birth Female 1 -0.18 >220
Bone mineral density (ultrasound) Female 1 -0.02 5
Systolic blood pressure Female 1 -0.03 8
Waist-hip ratio Female 1 0.04 14
Hand grip strength(right) Male 1 0.05 15
Pulse rate Male 1 -0.04 7
Systolic blood pressure Male 1 -0.03 4
Body mass index (BMI) Male 1 0.08 17
Age at first live birth Female 2 0.04 43
Body mass index (BMI) Female 2 0.01 5
Educational attainment Male 2 0.05 6
Body mass index (BMI) Male 2 -0.03 13

Table S2. Summary of multiple regression of educational attainment and age at first birth onto rLRS. The linear model rLRA EA + AFB +
EA ∗AFB + ε was fit to the female samples. Both predictors as well as their interaction term were found to be statistically significant.

Predictor Estimate �log10(p)
Educational Attainment (EA) 0.032 75
Age at First Birth (AFB) 0.167 > 220
Interaction (EA:AFB) 0.038 112

SI Datasets.

Dataset S1. Supplemental excel file containing simple and multiple regression results.

Dataset S2. Supplemental text file containing genetic correlation results.
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Table S3. Summary of correlation coefficients. This table contains the calculated phenotypic, genetic, and residual correlations from the anal-
yses presented in the main text. Columns correspond to the genetic correlation from LD score regression rg,LDSC , phenotypic correlation
from regression analyses rp,full, the phenotypic correlation from mixed model analyses rp,BOLT , the genetic correlation from mixed model
analyses rg,BOLT , and the residual correlation from the mixed model re,BOLT . Note that these are correlation coefficients not covariances
and are thus normalized by total variance components. This means that the residual correlation can be smaller than the genetic correlation
but still have a greater contribution to the phenotypic correlation if the residual variances are larger than the genetic variance explained by
genotyped SNPs.

Predictor Sex rg,LDSC rp,full rp,BOLT rg,BOLT re,BOLT

Age at first live birth Female -0.593 -0.175 -0.269 -0.492 -0.254
Age at menopause Female -0.168 0.028 0.020 -0.238 0.052
Age at menarche Female 0.133 0.013 0.024 0.120 0.008
Basal metabolic rate Female -0.015 0.025 0.028 0.094 0.016
Birth weight Female -0.073 0.003 0.001 -0.018 0.003
Body mass index (BMI) Female 0.104 0.038 0.036 0.205 0.009
Body fat percentage Female 0.108 0.012 0.027 0.170 0.004
Diastolic blood pressure Female -0.022 -0.003 -0.004 0.058 -0.013
Fluid intelligence score Female -0.313 -0.030 -0.057 -0.239 -0.032
Forced expiratory volume Female -0.075 0.008 -0.001 -0.094 0.015
Forced vital capacity Female -0.092 0.010 0.002 -0.097 0.020
Hand grip strength(right) Female -0.097 0.003 0.006 -0.102 0.019
Bone mineral density (ultrasound) Female -0.010 -0.007 -0.015 0.068 -0.035
Height Female -0.128 -0.018 -0.031 -0.089 -0.019
Hip circumference Female 0.045 0.022 0.026 0.146 0.008
Maximum digits remembered Female -0.028 -0.016 -0.018 0.027 -0.022
Mean time to correctly identify matches Female 0.014 -0.006 -0.009 -0.044 -0.007
Peak expiratory flow Female -0.041 0.009 0.002 -0.070 0.011
Pulse rate Female -0.020 -0.009 -0.010 -0.037 -0.006
Pulse wave Arterial Sti↵ness index Female -0.186 0.007 0.014 -0.154 0.026
Pulse wave peak to peak time Female 0.159 -0.010 -0.009 0.411 -0.039
SRT hearing score Female 0.139 0.010 0.026 0.335 0.015
Systolic blood pressure Female -0.040 -0.008 -0.004 0.009 -0.005
Waist circumference Female 0.089 0.041 0.043 0.201 0.019
Weight Female 0.032 0.028 0.029 0.133 0.012
Waist-hip ratio Female 0.105 0.037 0.054 0.160 0.038
Basal metabolic rate Male 0.233 0.050 0.049 0.098 0.048
Birth weight Male 0.071 0.014 0.020 -0.013 0.023
Body mass index (BMI) Male 0.310 0.048 0.042 0.253 0.020
Body fat percentage Male 0.224 0.013 0.024 0.157 0.010
Diastolic blood pressure Male 0.137 0.004 0.007 0.065 0.003
Forced expiratory volume Male -0.086 0.022 0.022 0.007 0.025
Forced vital capacity Male -0.066 0.021 0.020 -0.045 0.028
Hand grip strength(right) Male 0.060 0.044 0.057 -0.072 0.069
Bone mineral density (ultrasound) Male 0.126 0.021 0.017 0.193 0.003
Height Male -0.007 0.015 0.009 -0.117 0.038
Hip circumference Male 0.228 0.034 0.022 0.120 0.013
Mean time to correctly identify matches Male -0.131 -0.029 -0.034 -0.053 -0.033
Neuroticism score Male -0.067 -0.021 -0.033 -0.086 -0.031
Peak expiratory flow Male 0.009 0.041 0.046 0.092 0.043
Pulse rate Male 0.084 -0.021 -0.027 -0.018 -0.029
Pulse wave Arterial Sti↵ness index Male 0.137 0.020 0.042 0.093 0.038
Pulse wave peak to peak time Male -0.267 -0.022 -0.035 -0.215 -0.024
Systolic blood pressure Male 0.039 -0.003 -0.002 0.048 -0.006
Waist circumference Male 0.273 0.030 0.026 0.182 0.010
Weight Male 0.278 0.050 0.043 0.126 0.036
Waist-hip ratio Male 0.246 0.016 0.023 0.216 0.005
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