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1 Efficient coding models

The efficient coding hypothesis posits that sensory systems have evolved to transmit maximal infor-
mation about incoming sensory signals, given internal resource constraints (such as internal noise,
and/or metabolic cost) [1, 2, 3, 4, 5, 6, 7]. It has been successful in predicting a host of different
neural response properties from first principles. Nonetheless, there is often confusion in the literature,
due to the fact that different authors have made very different assumptions about: (i) what sensory
information is relevant (and thus, should be encoded); (ii) the internal constraints (determining what
information can be encoded).

In the following we provide a brief (non-exhaustive) overview of the various types of efficient coding
model that have been proposed (illustrated in SI Fig 1), so as to clarify the relation between them.

1.1 Redundancy reduction

Efficient coding models have usually assumed that the goal of sensory processing is to encode max-
imal information about all incoming signals, given internal constraints. In the low-noise limit, this
implies that neurons should remove redundancies in their inputs, to achieve statistically independent
responses [5, 6, 7, 8, 9].

Considering, for the moment, only second-order statistics, redundancy reduction implies that neu-
rons should whiten incoming signals, to achieve decorrelated responses. Previous work showed that
this can explain many aspects of low-level visual neuron responses, such as the centre-surround recep-
tive fields (RFs) of neurons in the retina [3, 10], and the temporal filtering properties of neurons in
the LGN [11].

More generally, to achieve independent responses, neurons must also remove high-order (i.e. beyond
covariance) statistical redundancies in their inputs. One way to do this is via ‘sparse coding’, where
only a small proportion of neurons are active at any one time [12]. Indeed, given certain assumptions
about the statistical structure of sensory signals (i.e. that they are generated by linearly combing a set
of independent sparsely distributed features), maximising the sparsity of neural responses is equivalent
to maximising their independence [13, 14, 15]. In a seminal paper, Olshausen & Field showed that
learning a sparse code of natural images results in local orientated filters, that closely resemble the
RFs of V1 simple cells [16]. Since then, sparse coding has been used to model several other aspects of
low-level visual neuron responses [17], in addition to coding by auditory [18] and olfactory [19] neurons.

It has been proposed that statistically independent responses could be achieved if sensory neurons
encode a ‘prediction error’ equal to the difference between their input, and an internal prediction
generated by the network [10, 20]. This could be implemented in a hierarchical network, with feed-
forward signals transmitting an error signal, while feed-back signals transmitting a prediction [20].
Alternatively, recent works have shown how predictive coding could be implemented within a single
densely connected recurrent spiking network [21, 22].
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Figure 1: Schematic of various types of efficient coding model, with corresponding references.

1.2 Robust coding

The mutual information between responses, R, and stimulus X, can be expressed as: I(R;X) =
H(R) − H(R|X), where H(R) is the response entropy, and H(R|X) is the noise entropy. At low-
noise, where the second, noise entropy term is negligible, information is maximised by maximising
the response entropy, H(R) (via redundancy reduction). At higher noise, it becomes important to
minimise the noise entropy, H(R|X), leading to qualitatively different predicted neural responses [4].

In a seminal paper, Atick & Redlich showed that varying the signal-to-noise ratio leads to a qualita-
tive change in the predicted neural code, with neurons whitening their inputs at low noise (to minimise
redundancy) and smoothing their inputs at high noise (to average the noise) [23]. Interestingly, their
model was able to explain how the shape of retinal ganglion cell (RGC) RFs vary with visual contrast.

More recently, several authors proposed ‘robust coding’ models detailing how ‘sensory noise’ (added
to the sensory input), and ‘neural noise’ (added to the neural responses) alter the predicted neural
responses [24, 25, 26, 27]. These models were able to account for various further aspects of RGC
responses, including how the shape and overlap of RGC RFs varies with visual eccentricity. Further,
they showed how sparse coding varies with the amplitude of neural and sensory noise. For example,
Karklin & Simoncelli [26] showed that at low noise enforcing sparsity leads to local orientated spatial
filters (as in [16]), while at high noise it leads to circularly symmetric spatial filters.

Tkacik et al. studied how the recurrent connectivity of an efficient spiking network should vary
with the signal-to-noise ratio [28]. Interestingly, they found that at low signal-to-noise, information
maximisation predicts an attractor like structure of the neural code. While highly redundant, this
type of code allows the network to mitigate the effects of noise.

Given time-varying stimulus statistics time, the speed that neurons can adapt to efficiently encode
their inputs is limited by the need to collect new statistics. Interestingly this was observed for motion-
sensitive neurons (H1) neurons in the fly visual system, which not only adapt to efficiently encode
new input statistics [29], but whose speed of adaptation approaches the physical limits imposed by
statistical sampling and noise [30].

1.3 Coding relevant information

An alternative hypothesis is that, rather than encoding all sensory signals, neural circuits preferentially
encode behaviourally relevant signals. Indeed, Machens et al. found that grasshopper auditory neurons
are optimised to efficiently encode behaviourally relevant vocalisation signals, rather than the sound
signals most commonly found in their environment [31]. Further in higher-level sensory areas, many
neurons are specialised for encoding features that are behaviourally relevant (e.g. faces) [32], rather
than features that are statistically likely (e.g. clouds).

A difficulty here is that, except in special cases, it is hard to know which sensory information is
relevant to an organism. To overcome this, Bialek & colleagues proposed that a minimal criterion for a
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stimulus to be behaviourally relevant, is that it can be used to predict what will happen in the future.
This led them to hypothesise that sensory neural circuits are set up to encode maximal information
about stimuli that are predictive about the future, given a constraint on the information encoded about
previous inputs [33, 34, 35].

While intriguing, there is currently little theoretical work exploring the neural implications of this
idea. Further, previous work only considered a highly restrictive scenario where neurons are assumed to
encode information redundantly, via their instantaneous responses [35, 36, 37]. Interestingly, Creutzig
et al. [37] showed that, in this case (and given some further assumptions, such as linear gaussian
stimulus statistics) efficiently encoding the future is equivalent to ‘slow feature analysis’ (SFA), a
method for extracting slowly varying components from quickly varying input signals, used previously
to account for the response properties of complex cells in area V1 [38, 39].

2 General framework

We consider a stimulus represented by the time series, {. . . , Yt−1, Yt}, which is corrupted by additive
gaussian white noise to produce a input, {. . . , Xt−1, Xt}, received by a population of sensory neurons.
We ask what is the optimal neural code, p(Rt|X−∞:t), such that responses in a time window from t−τ
to t encode maximal information about the stimulus between time t+ ∆1 and t+ ∆2, constrained on
the total information encoded about previous inputs, up to time t. This can be achieved by maximising
the following ‘information bottleneck’ (IB) objective function [40]:

Lp(Rt|X−∞:t) = I
(
Rt−τ :t;Yt+(∆1:∆2)

)
− γI (Rt−τ :t;X−∞:t) (1)

The first term denotes the mutual information between Rt−τ :t and Yt+(∆1:∆2), to be maximised, and
the second term denotes the mutual information between Rt−τ :t and X−∞:t, to be constrained. A
constant, γ, determines the strength of this constraint, and thus, the tradeoff between coding fidelity
and compression.

The above objective function is valid for modeling predictive coding, when ∆1 > 0 & ∆2 > 0.
However, we wanted a framework that would: (i) give non-trivial solutions for all ∆1 and ∆2; (ii)
allow comparison with previous efficient coding models. That the first criterion is not satisfied by the
above objective function can be seen by setting [∆1,∆2] = [−∞, 0] and Y = X, in which case the two
terms of equation 1 are proportional, and the maximisation is unconstrained.

To overcome this, we considered an alternative objective function:

Lp(rt|x−∞:t) = I
(
Rt−τ :t;Yt+(∆1:∆2)

)
− γτI (Rt;X−∞:t) (2)

where we replaced Rt−τ :t in the second, constraint term with the instantaneous response, Rt. If the
responses at each time point are conditionally independent, this expression gives a lower bound on
the previous IB objective function. Further, when [∆1,∆2] = [−∞, 0] and X = Y , maximising L̃ is
equivalent to minimising the temporal redundancy of neural responses (and exactly the same, when
γ = 1). Thus the objective function is equally applicable for modeling efficient coding of past inputs
(∆1 & ∆2 < 0) and predictive coding of future inputs (∆1 & ∆2 > 0).

Finally, note that, while in general the decoding window could be of arbitrary length, to limit the
number of free parameters in our analysis, we considered the case where ∆1 = ∆2, so that the decoding
window is limited to a single time-bin of lag ∆. Setting X = Y (i.e. zero external noise), gives the
objective function shown in equation 1 in the main text.

After performing these simplifications, the objective function can be expanded as follows:

Lp(rt|x−∞:t) = 〈log p (yt+∆|rt−τ :t) + γτ log p (rt)− γτ log p (rt|xt−∞:t)〉p(r,x,y) (3)

where for notational simplicity, we have omitted the constant stimulus entropy term. Unfortunately,
in many cases, this objective function cannot be computed tractably. Instead, we can compute an
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approximate lower bound L̃ < L, that can be evaluated tractably. To do this, we replace the distribu-
tions p(yt+∆|rt−τ :t) and p(rt) with approximate distributions, q(yt+∆|rt−τ :t) ∈ QY |R and q(rt) ∈ QR
(where QR|X and QR denote parametric families of distributions, for which the expectations can be

computed tractably) [41]. We then maximise the resulting lower bound L̃, via alternate updates on
p(rt|x−∞:t), q(rt) and q(yt+∆|rt−τ :t).

2.1 Model description

We considered a linear encoding model, with neural responses sampled from a multivariate gaus-
sian, N (rt|µt,Σ). The mean response, µt was obtained by linearly filtering the stimulus, µt =∑τw
k=1Wkxt−k+1, where Wk is an Nr×Nx matrix, denoting the spatial encoding filter at lag k. Σ is an

Nr ×Nr symmetric noise covariance matrix. Nr and Nx denote the number of neurons and stimulus
dimensions, respectively.

As described above, to formulate a tractable lower bound for the IB objective function, we had to
approximate the decoding distribution, p(yt+∆|rt−∆:t), and the response distribution, p(rt).

We approximated the decoding distribution with a linear gaussian model, q(yt+∆|rt−∆:t) =
N (yt+∆|ŷt+∆,Λ), with mean, ŷt+∆, obtained by linearly filtering the responses according to, ŷt+∆ =∑τ
k=1 Ukrt−k+1, where Uk is an Nx×Nr matrix, denoting the decoding filter at lag k. Λ is an Nx×Nx

symmetric error covariance matrix.
Previous work has shown that efficient coding of natural stimuli can be achieved via a ‘sparse’

code, where individual neurons are selective for rarely occuring (i.e. sparse) stimulus features. To
allow for sparse coding solutions in our framework, we approximated the response distribution p(rt)

using a student-t distribution, q(rt) =
∏Nr

i=1 Student
(
ri,t|0, ω2

i , νi
)
, where ri,t denotes the response of

the ith neuron at time t, and ω2
i , and νi are the scale and shape parameters of the student-t distribution,

respectively. For the initial simulations with gaussian stimulus statistics, shown in fig. 2, we considered
the limit where νi →∞ (i.e. where q(rt) is gaussian). In later simulations, shape parameters for each
neuron, νi, were learned from data.

2.2 Optimisation algorithm

Parameters of the encoding distribution (W & Σ), decoding distribution (U & Λ) and response distri-
bution (ω & ν) were learned using a variational IB algorithm, as described in [41]. First we initialise
the parameters of the encoding distribution W , and Σ. Next we perform recursive updates of the
decoding distribution (U & Λ) and response distribution (ω & ν) parameters, followed by updates of
the encoding distribution (W & Σ). This sequence is repeated until the parameters converge. As a full
derivation is given in [41], here we restrict ourselves to describing how each of the model parameters
are updated on each iteration of the algorithm.

Decoding distribution. On each iteration, the parameters of the decoding distribution,
q (yt+∆|rt−τ :t) = N (yt+∆t|Urt−τ :t,Λ) are updated according to:

U ← Cyt+∆rC
−1
rr Λ← Cyt+∆yt+∆ − Cyt+∆rU

T (4)

where U is an Ny × τNr matrix, U = (U0, · · · , Uτ−1). Crr is an [τNr × τNr] covariance ma-

trix, Crr =

〈 rt
...

rt−τ

 (rt, . . . rt−τ )

〉
and Cyt+∆r is an [τNy × τNr] covariance matrix, Cyt+∆r =

〈yt+∆ (rt, . . . rt−τ )〉.

Response distribution. As stated earlier, we approximated the marginal response distribution by
a student-t distribution, q(rt) =

∏Nr

i=1 Student
(
ri,t|0, ω2

i , νi
)
, with shape and scale parameters for each
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neuron νi, and ωi, respectively. Substituting q(rt) into the second term of equation 3, gives:

〈log q (rt)〉 = −
Nr∑
i=1

νi + 1

2

〈
log

(
1 +

r2
i,t

ω2
i νi

)〉
− 1

2
logω2

i + f(νi), (5)

where the summation is taken overNr neurons, and f(νi) = log Γ
(
ν+1

2

)
−log Γ

(
ν
2

)
. Parameters, νi, and

ωi, are updated on each iteration, to maximise 〈log q (rt)〉. Note that, for non-sparse, gaussian stimuli,
the IB algorithm returns νi → ∞ and ω2

i =
〈
r2
i,t

〉
, in which case 〈log q (ri,t)〉 = − 1

2 log
〈
r2
i,t

〉
+ const.,

as in equation 3 of the main text.
Unfortunately, the expectation shown above cannot be evaluated in closed form. Instead, we use

a variational approximation to construct a lower bound that can be tractably maximised. Following
this procedure, as detailed in [41], the scale parameter is updated on each iteration according to,

ω2
i ←

〈
ξtir

2
ti

〉
, (6)

where
〈
r2
ti

〉
, denotes the mean-squared response of the ith neuron at time t, and ξti is an additional

variational parameter updated on each trial according to: ξti = νi+1

νi+〈r2
ti〉/ω2

i

. (Note that in the limit

where νi →∞, so that the response distribution is near gaussian, ξti = 1, and ω2
i =

〈
r2
ti

〉
.)

The shape parameter, νi, is found numerically on each iteration by solving:

ψ
(νi

2

)
− log

(νi
2

)
= 1 + ψ(ai)− log ai + 〈log ξti − ξti〉 , (7)

where ψ(·) is the digamma function, and ai = 1
2

(
νoldi + 1

)
.

Encoding distribution. The encoding distribution is described by: p(rt|xt−τw:t) =
N (rt|Wxt−τw:t,Σ). On each trial, the noise covariance is updated according to:

Σ−1 ← 1

γ

τ−1∑
k=0

UTk Λ−1Uk + Ω−1 〈Ξt〉 , (8)

where Uk denotes the decoding filter at lag k, and Ω and Ξn are Nr×Nr diagonal covariance matrices
with diagonal elements Ωii = ω2

i , and (Ξt)ii = ξti, respectively.
The update for W is given by:

w ← (Hf + γHp)
−1b (9)

where w is an [NxτwNr × 1] vector defined by w = vec

 WT
1
...

WT
τw

.

To expressHp andHf , we start by defining the time series, (· · · , zt−1, zt), where zt =


xt
xt−1

...
xt−τw+1

.

Hp is then defined as an [NxNr ×NxNr] square matrix,

 (Hp)11 0 · · ·
0 (Hp)22 · · ·
...

...
. . .

 where (Hp)ii =

1
ω2

i i

〈
ξi,tztz

T
t

〉
.

Hf is an [NxNr ×NxNr] square matrix, defined by

 (Hf )11 (Hf )12 · · ·
(Hf )21 (Hf )22 · · ·

...
...

. . .

 where (Hf )ij =

∑τ
k=1

∑τ
m=1 u

T
kiΛ
−1umi

〈
zt−k+1z

T
t−m+1

〉
, and uki is the ith column of the [Ny ×Nr] matrix, Uk.
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Figure 2: Dependence of encoding filters on decoding lag, ∆, code length, τ , and coding
capacity, C. (a) Encoding filters after optimised with varying ∆, and τ = 0. Encoding filters are
normalised to have the same value at lag 0. (b) Same as a, but with filters optimised with τ � 0.
Plots correspond to filters at varying coding capacity, C, & fixed decoding lag (∆ = 3).

Finally, b is an [NxNr × 1] vector, defined by b =

 b1
b2
...

, where bi =
∑τ
k=1

〈
zt−k+1y

T
t+∆

〉
Λ−1uki

.

3 Methods for simulations in the main text

3.1 Neural coding of 1-d gaussian time series

For the initial simulations, shown in figure 2 in the main text, we considered three different 1-d time
series. Stimulus 1 (‘markov stim.’) was generated from an AR1 process, that evolved in time according
to the recurrence relation: xt = axt−1 + bηt, where ηt is drawn from a standard normal distribution,
and a = 0.89 and b = 0.48. Stimulus 2 (‘two timescales’) was constructed from two AR1 series,

summed according to, xt = ρxslow
t +

√
1− ρ2xfast

t , with ρ = 0.47. xslow and xfast were both generated
from an AR1 process, with parameters a = 0.97, b = 0.23, and a = 0.67, b = 0.73, respectively.
Stimulus 3 (‘inertial’) was generated from an AR2 process. The stimulus at time t was given by
xt = axt−1 + bxt−2 + cηt, where a = 1.65, b = −0.68 & c = 0.13. In all cases, parameters were chosen
such that the stimulus had unit variance (and zero mean). The autocovariance of each stimulus, used
to optimise neural responses, were computed analytically for each set of stimulus statistics. We added
zero noise to the inputs (i.e. X = Y ).

Neural responses were obtained by linearly filtering the stimulus, as described in the main text
(with encoding filter of length 60). We optimised the encoding filters by maximising the IB objective
function, separately for each stimulus. For panels 2c-d we used decoding filters of length τ = 1; for
panels 2e-f we used decoding filters of length τ = 60. In each case we performed the optimisation with
decoding lags ranging from ∆ = 1 to ∆ = 10, and a range of different bottleneck parameters, γ (which
determined the channel capacity, C). SI fig. 2 plots the optimal encoding filters for each stimulus, with
varying τ , C and ∆.
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3.2 Neural coding of naturalistic movie stimuli

For figure 3, we considered neural coding of naturalistic movie stimuli, consisting of stochasti-
cally drifting static images. Images were taken from the van Hateren natural image database
(www.kyb.tuebingen.mpg.de/?id=227). Each image was normalised so that the pixels had zero mean
and unit variance.

Each trial began with a 10×10 patch at a random position, {xcord(0), ycord(0)}, of the image. Movies
were constructed by sliding the patch across the image. The position along the x-axis varied according
to an AR2 process, described by: xcord(t) = xcord(t− 1) + vx(t− 1), where vx(t) = avx(t− 1)− bη(t),
and a = 0.95 and b = 0.16 (see SI fig. 3), and η is a zero mean gaussian process. The position of the
patch along the y-axis evolved according to the same dynamics. Trials where the patch reached the
border of the image were excluded from the training data. The input to each neuron was created by
adding gaussian white noise (with standard deviation of 0.1) to the stimulus.

We trained spatio-temporal encoding filters, W , with temporal length 3. We used a student-t
approximation for the response distribution (see SI fig. 5 for comparison with results obtained using a
gaussian approximation of the response distribution). Filters were initialised with uncorrelated white
noise, of magnitude 10−2. We first learned filters using with ∆ = −6. We then learned filters with
increasing values of ∆. The encoding weights obtained for each ∆ was used as the initial conditions for
∆ + 1. We also adjusted the bottleneck parameter, γ, so that the channel capacity remained constant
across all ∆ (C ≈ 32.5bits).

To compute the ‘directionality index’ for each neuron, shown in fig. 3e, we first presented model
neurons with drifiting sinusoidal grating stimuli, of varying phase, direction, and speed. We thus
obtained the preferred phase/direction/speed for each model neuron that elicited strongest maximal
response. The ‘directionality index’ was then computed for each neuron by comparing the neuron’s
maximum response to its preferred stimulus, and its response to a similar stimulus moving in the
opposite direction.

3.3 Drifiting blob stimulli

For figure 4, we considered neural responses to ‘drifting blob’ stimuli, as shown in figure 4a. For
this stimulus, there were 20 stimulus dimensions (i.e. ‘pixels’), arranged along a single spatial axis.
Note that to simplify our analysis we considered circular boundary conditions, so that each stimulus
dimension corresponded to an angular coordinate, θ, arranged in equally spaced intervals between −π,
and π − 2π/20.

Blob-like stimulus features were described by a (wrapped) gaussian, with standard deviation σblob =
0.45, time-varying position, θblob(t), and amplitude, A(t). On each trial, the stimulus was constructed
by adding two blob-like features, with varying amplitude and position. The position of each blob
varied according to an AR2 process, according to: θblob(t) = θblob(t − 1) + v(t − 1), where v(t) =
av(t− 1)− bη(t), and a = 0.90 and b = 0.14. The ampltidue of each blob varied according to an AR1
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trials and modulated by the movie. During movie presentation,
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(<4 Hz) and then dropped with increasing frequency (Figure S1
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of the phase of LFPs fluctuations in the highest-power band,

namely the 1–4 Hz frequency range (delta band). The single-
trial 1–4 Hz band-passed LFP traces during movie presenta-
tion (Figure 1B) show that 1–4 Hz LFPs too were reliably mod-
ulated by the movie. To extract the instantaneous value of the
phase of the LFP fluctuations in each trial and at each time

Figure 1. Illustration of the Time Course of the LFP Phase and of the Spikes, and of the Difference between the Spike Count and Phase-of-Firing Code

These data were recorded from electrode 2 in monkey A98 in response to a movie.
(A) LFP traces from five presentations of a 12-s-long movie extract. Traces were displaced on the vertical axis so that they could be made distinguishable.
(B) Time courses of the 1–4Hz (delta band) band-passed LFP to five presentations of the same 12-s-longmovie extract as in (A). Traces were again displaced
on the vertical axis. The color of the line at each time denotes to which of the four phase quadrants the instantaneous LFP phase belongs to (the color code
for phase quadrants is shown in [G] and [H]).
(C) Time course of the phases of the 1–4Hz (delta) LFP over 30 repetitions of themovie extract. Phase valueswere color coded into quadrants as illustrated in
(G). The bottom five trials in (C)–(E) correspond to the five trials in (A)–(B).
(D) Raster plot of spike times (indicated by dots) resulting from 30 repeated presentations of the selected 12 s movie extract.
(E) Raster plot of the same spike times as in (D) but with the dots representing the spikes color coded according to the 1–4Hz LFP phase quadrant at which
they were emitted. These colored spike times illustrate the phase-of-firing code, whereas the colorless spike times in (D) illustrate the spike-count code.
(F) Spike rate, averaged over all 30 trials and computed in 4-ms-long sliding time bins, during the 12 s movie extract. The green star and the blue circle in-
dicate movie points that elicit similar spike rate responses but different and reliable phase values. These twomovie points can bemuch better discriminated
from each other by consideration of the phase at which spikes were emitted rather than just the counting of spikes.
(G) The sinusoidal convention used for phase, plotted with the color code chosen to label phase quadrants. With this sinusoidal convention, the phase
values p/2 and 3p/2 correspond respectively to the peak and trough of the oscillation.
(H) The probability distribution of the LFP phases at spike times. The curve (plotted with the same color code as in [G]) is normalized as probability per unit
angle (its integral across all angles equals one).
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they were emitted. These colored spike times illustrate the phase-of-firing code, whereas the colorless spike times in (D) illustrate the spike-count code.
(F) Spike rate, averaged over all 30 trials and computed in 4-ms-long sliding time bins, during the 12 s movie extract. The green star and the blue circle in-
dicate movie points that elicit similar spike rate responses but different and reliable phase values. These twomovie points can bemuch better discriminated
from each other by consideration of the phase at which spikes were emitted rather than just the counting of spikes.
(G) The sinusoidal convention used for phase, plotted with the color code chosen to label phase quadrants. With this sinusoidal convention, the phase
values p/2 and 3p/2 correspond respectively to the peak and trough of the oscillation.
(H) The probability distribution of the LFP phases at spike times. The curve (plotted with the same color code as in [G]) is normalized as probability per unit
angle (its integral across all angles equals one).
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trials and modulated by the movie. During movie presentation,
the power of the LFP spectrum was highest at low frequencies
(<4 Hz) and then dropped with increasing frequency (Figure S1
available online). We thus started by considering the behavior
of the phase of LFPs fluctuations in the highest-power band,

namely the 1–4 Hz frequency range (delta band). The single-
trial 1–4 Hz band-passed LFP traces during movie presenta-
tion (Figure 1B) show that 1–4 Hz LFPs too were reliably mod-
ulated by the movie. To extract the instantaneous value of the
phase of the LFP fluctuations in each trial and at each time

Figure 1. Illustration of the Time Course of the LFP Phase and of the Spikes, and of the Difference between the Spike Count and Phase-of-Firing Code

These data were recorded from electrode 2 in monkey A98 in response to a movie.
(A) LFP traces from five presentations of a 12-s-long movie extract. Traces were displaced on the vertical axis so that they could be made distinguishable.
(B) Time courses of the 1–4Hz (delta band) band-passed LFP to five presentations of the same 12-s-longmovie extract as in (A). Traces were again displaced
on the vertical axis. The color of the line at each time denotes to which of the four phase quadrants the instantaneous LFP phase belongs to (the color code
for phase quadrants is shown in [G] and [H]).
(C) Time course of the phases of the 1–4Hz (delta) LFP over 30 repetitions of themovie extract. Phase valueswere color coded into quadrants as illustrated in
(G). The bottom five trials in (C)–(E) correspond to the five trials in (A)–(B).
(D) Raster plot of spike times (indicated by dots) resulting from 30 repeated presentations of the selected 12 s movie extract.
(E) Raster plot of the same spike times as in (D) but with the dots representing the spikes color coded according to the 1–4Hz LFP phase quadrant at which
they were emitted. These colored spike times illustrate the phase-of-firing code, whereas the colorless spike times in (D) illustrate the spike-count code.
(F) Spike rate, averaged over all 30 trials and computed in 4-ms-long sliding time bins, during the 12 s movie extract. The green star and the blue circle in-
dicate movie points that elicit similar spike rate responses but different and reliable phase values. These twomovie points can bemuch better discriminated
from each other by consideration of the phase at which spikes were emitted rather than just the counting of spikes.
(G) The sinusoidal convention used for phase, plotted with the color code chosen to label phase quadrants. With this sinusoidal convention, the phase
values p/2 and 3p/2 correspond respectively to the peak and trough of the oscillation.
(H) The probability distribution of the LFP phases at spike times. The curve (plotted with the same color code as in [G]) is normalized as probability per unit
angle (its integral across all angles equals one).
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Figure 4: Schematic, where the goal is to reconstruct a stimulus in an extended temporal window
(shaded blue). (b) We plotted the relative information encoded by two neurons about a ‘two-timescale
stimulus (fig. 2b) at varying channel capacity, C. The x-axis is the total information (or channel
capacity) encoded by both neurons; the y–axis is the fraction of information encoded by the less active
neuron. In blue we plot the results for an instantaneous code (τ = 0); the red plot corresponds to a
temporally extended code (τ = 30). In both cases, at low channel capacity only one neuron is active;
increasing the channel capacity above a certain threshold leads to the second neuron being active. The
required threshold increases with the coding length, τ .

process: A(t) = aA(t− 1) + bη(t), where a = 0.99 and b = 0.01. The input to each neuron was created
by adding gaussian white noise (with standard deviation of 0.2) to the stimulus.

Spatio-temporal encoding filters, W , were learned as for the naturalistic stimuli, with varying ∆,
and γ chosen so that that the channel capacity remained constant across all ∆ (C = 8 bits).

We sought to evaluate how well the neural responses encoded both the speed versus position the
position of the stimulus after being optimised for efficient/predictve coding. To do this, we optimised
responses with varying γ, and ∆ = ±2. We then computed neural responses to a stimulus, consisting of
a single drifting blob feature, of constant amplitude. In each condition we computed the position/speed
of the stimulus at time t from a linear readout of neural responses up until time t. We then computed
the (circular) correlation between the reconstructed and true position/speed of the stimulus.

For fig. 4g we computed how different the response distribitution for each neuron was from a
gaussian distribution (which we termed ‘sparsity’). Specifically, we computed the ‘negentropy’ of
each neuron’s responses, defined as the difference between the entropy of a gaussian distribution
(with variance equal to the neuron’s response variance), and the entropy of each neuron’s response
(estimated empirically from the observed responses). This value is equal to zero if responses are
gaussian distributed, and greater than zero otherwise.

For fig. 4h we computed the delay in responses to their preferred stimulus. For each neuron, we
computed the preferred stimulus position, that generated maximal response (in the steady state). We
then presented the moving bar stimulus and computed the average response of each neuron, before
and after the stimulus is at its preferred location, given by: u(τ) =

∑
i r(ti + τ), where ti denotes the

ith occurence of the stimulus at the neuron’s preferred location. Finally, the ‘delay’ was defined as the
weighted sum:

∑
τ |u(τ)|τ/

∑
τ |u(τ)|.
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4 Supplementary simulations

4.1 Number of neurons

For a given bottleneck parameter, γ, the IB algorithm automatically learns the appropriate number of
neurons [40]. With a small channel capacity, C (i.e. large γ), all encoding weights, W , go to zero, so
no information is encoded. As C is increased, neurons enter into the solution one-by-one.

The maximum number of neurons is determined by the dimensionality (and statistics) of the stim-
ulus and target variable. Specifically, for the gaussian information bottleneck (i.e. q(r), and q(y|r)
both gaussian), the number of neurons never exceeds the dimensionality of the decoded variable. In
the main text the decoding window was always set to be one time-step long (see Fig. 1a). Therefore,
the maximum number of neurons is equal to the stimulus dimensionality. For the simulations shown in
figure 2, this means there is never more than a single neuron, irrespective of the channel capacity. This
picture changes, however, when the decoding window is increased, so that the objective is to read-out
the stimulus within a window, [t+ ∆1, t+ ∆2] (SI equation 2). In this case, the maximum number of
neurons is equal to the stimulus dimensionality multiplied by the decoding window length (SI fig. 2a).

To investigate what happens with a temporally extended decoding window, we performed the
simulations shown in Fig. 2, with a decoding window extending between t + 1 and t + 10 time-steps.
As in the main text, we began by considering an instantaneous code, with τ = 1. In this case, the
optimal coding weights can be expressed analytically [40]. With the Markov stimulus (Fig. 4b, upper
panel), there is never more than one neuron, regardless of the channel capacity (because the future
stimulus trajectory is fully determined by its current state). In contrast, with both the two-timescale
and inertial stimulus (Fig. 2b, middle and lower panels), there is a maximum of two neurons (SI fig.
4b, blue). Interestingly, increasing the code length τ , reduces the number of neurons learned by the
algorithm (SI fig. 4b, red). This is because increasing the code length, τ increases the dimension of
the neural code, so that less neurons are required.

4.2 Comparison of gaussian and sparse IB results

In the main text we describe how we learned spatio-temporal encoding filters, to optimally encode
naturalistic movies at different decoding lags, ∆ (fig. 3). To do this, we approximated the response
distribution, q(rt) using a student-t distribution (with shape parameter, ν learned from the data).
When trained on data with a sparse latent structure, the IB algorithm learns a small shape parameter,
ν, resulting in a heavy tailed, or ‘sparse’ response distribution, q(rt). Because of the similarity with
traditional sparse coding models, we call this model ‘sparse IB’.

SI fig. 5a plots the first 60 spatial filters (at 0-lag) learned with the sparse IB algorithm, with
∆ = −6, arranged in descending order of response magnitude. SI fig. 5b plots the mean squared

filter response for each neuron (σ2
s =

〈
(
∑
kWkxt−k)

2
〉
t
), divided by the total response variance

(σ2
s + σ2

n =
〈

(
∑
kWkxt−k)

2
〉
t

+ Σii).

We compared these results to the filters obtained with a ‘gaussian IB’ algorithm, where we ap-
proximated the response distribution, q(rt) using a gaussian distribution. SI fig. 5c plots the first 60
spatial filters (at 0-lag) obtained using this agorithm, with ∆ = −6. In contrast to the filters obtained
with the sparse IB algorithm, the gaussian IB algorithm learns spatially non-local RFs (similar to the
fourier decomposition of the image). SI fig. 5d plots the mean squared filter response for each neuron
divided by its total response variance.

4.3 Parametric fit of spatiotemporal encoding filters

The spatial filters for each lag learned by the sparse IB algorithm were fitted using a 2d circular gabor
function:

g(x, y) = exp

(
1

2σ2

(
x′2 + y′2

))
cos

(
2π
x′

λ
+ ψ

)
(10)
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Figure 5: Comparison between sparse and gaussian IB. (a) First 60 spatial filters (at 0-lag) learned
with the sparse IB algorithm, with ∆ = −6, arranged in descending order of response magnitude. (b)
Mean squared filter response for each neuron (σs), divided by the total response variance (σ2

s + σ2
n).

(c-d) As for panels a-b, but with gaussian IB algorithm.

where

x′ = (x− x0) cos(θ) + (y − y0) sin(θ) (11)

y′ = −(x− x0) sin(θ) + (y − x0) cos(θ). (12)

Parameters were fitted using the ‘autogaborsurf’ function, written by Patrick Mineault, which evaluates
the quality of fit for many different choices of parameters then refines the most promising set of
parameters through least-squares (exhaustive search followed by refinement). We learned a different
set of filters for the spatial filter at each lag. The average R2 goodness of fit was R2 = 0.73 for the
model trained with ∆ = −6 and R2 = 0.67 for the model trained at ∆ = 2.

As described in the main text, when we trained the model with ∆ = −6, spatial filters at different
lags resembled each other, though shifted in phase. To test this, we fitted gabor functions to the
learned spatial filters at 0-lag, and then learned new values of ψ (determining the phase of the filter)
for each lag (with all other parameters kept constant). We called this the ‘phase shift’ model. SI fig.
6a-b compares the spatio-temporal filters learned with the ‘efficient coding’ model (with ∆ = −6) for
three example neurons with model fits obtained with the phase shift model. Supplementary figure
3c plots the mean squared error for each neuron obtained with the phase shift model, normalised by
the mean squared error obtained when we fitted all the parameters of the gabor function at each lag.
(Note that we discarded neurons from this analysis if the r2 value obtained with the full gabor model
was less than 0.5). As can be seen, the phase shift model performed well at fitting the ‘efficient coding’
filters, with ∆ = −6, but poorly at fitting the ‘predictive coding’ filters, with ∆ = 1.

In contrast, ‘predictive coding’ filters, learned with ∆ = 1, were well fit by a spatio-temporally
separable model, described by multiplying a spatial filter with a temporal filter. SI fig. 6d-e compares
the spatio-temporal filters learned with the ‘predictive coding’ model (with ∆ = 1) for three example
neurons with model fits obtained with the phase shift model. SI fig. 6f evaluates the mean squared
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filters at each lag. Results are shown seperately for the filters trained at ∆ = −6 and ∆ = 2. (d) As
for panel a, but with ∆ = 1. (e) Parametric fits of encoding filters, using a circular gabor function.
For the ‘seperable model’, shown here, we fitted the parameters of the gabor filters to the spatial filter
at 0-lag (i.e. the left column of panel a), and then varied the amplitude at each lag. (f) As for panel
c, but for the separable model fits.
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Figure 7: Motion tuning for efficient versus predictive coding. (a) ‘Efficient coding’ setup, where
the objective is to reconstruct the stimulus in an extended temporal window (shown in blue) from
the instantaneous neural responses. (b) Example spatiotemporal filters, obtained after training the
network to reconstruct past stimuli, as in panel a. Each square corresponds to the filter for one neuron.
(c) ‘Predictive coding’ setup, where the objective is to reconstruct the stimulus in an extended temporal
window (shown in blue) in the future. (d) As for panel b, but for the predictive coding setup, shown
in panel c. (e) Alternative predictive coding set-up, where the decoding window consists of only one
time-step in the future. (e) Encoding filters obtained after training the model with the setup shown in
panel e. (g) Reduced set-up, where the decoding window consists of a single pixel and single time-step
in the future. (h) Encoding filter obtained after training single neuron on the setup shown in panel g.

error for each neuron obtained with a separable model, normalised by the mean squared error obtained
when we fitted all the parameters of the gabor function at each lag. (Again we discarded neurons from
this analysis if their r2 value obtained with the full gabor model was less than 0.5). In this case, the
separable model performed poorly at fitting the ‘efficient coding’ spatial filters, with ∆ = −6, but
could well fit the ‘predictive coding’ filters, with ∆ = 1.

4.4 Why does predictive coding not result in motion filters?

In the main text, we showed, using drifting blob stimuli, that efficient coding (i.e. with ∆� 0) results
in motion filters, while predictive coding (i.e. with ∆ > 0) does not. To understand why this is the
case, we considered the set-up shown in Supplementary figure 4a & c where neural responses in a single
time window (i.e. τ = 0) are used to reconstruct the stimulus in an extended time window (represented
in the figure by a blue square), which can be either in the past (as in SI fig. 7a) or future (as in SI fig.
7c).

When we optimised neural encoding filters to perform ‘efficient coding’ (i.e. with the decoding
window in the past, as in SI fig. 7a), neurons learned to respond to motion in a particular direction
(SI fig. 7b). This was expected, as such a code allows neurons to respond as sparsely as possible, and
thus achieve an efficient representation of presented stimuli.
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Table 1: Factors determining the optimal neural code. First three explored in main text.

Factor Control parameter Consequence

Coding capacity C Fig 2
Decoding window τ Fig 2
Decoding lag ∆ Fig 2-4

Input noise magnitude noise n, added to stim. y SI Appendix 4.5.1
Temp. corr. in spiking 2nd term in Eq (1) SI Appendix 4.5.2
Stim. prediction window Y(t+∆1:t+∆2) in Eq (1) SI Appendix 4.5.3
Encoding model parametric form of p(r|x) SI Appendix 4.5.4

In contrast, when we optimised neural encoding filters for ‘predictive coding’ (i.e. with the decoding
window in the future, as in SI fig. 4c), neurons were no longer selective for a particular motion direction
(SI fig. 7f). We hypothesized that this occurs because, when the decoding window is in the future, the
algorithm prioritises reconstructing stimuli at the beginning of the decoding window, as these are the
most predictable. To test this, we reran the optimisation algorithm with a short decoding window,
consisting of a single time-step (SI fig. 7e). In support of our hypothesis, the resulting encoding filters
were qualitatively unaltered (SI fig. 7f).

Assuming that the algorithm allocates all coding resources to reconstructing the stimulus at a
single time-step in the future, one can show that the resulting encoding filters will be unselective to
the direction of the stimulus. To see this, first consider the case where each neuron encodes a single
spatial location (SI fig. 7g). Because, in our simulations, stimuli move in both directions equally often,
each neuron will not be selective to a particular direction; the stimulus is equally likely to approach the
encoded location from either direction. Thus, the resulting spatiotemporal RF for one such neuron is
shown in SI fig. 7h. Moreover, this argument holds even if neurons are selective for stimuli at multiple
locations; linear combinations of filters of the form shown in SI fig. 7h, centred on different locations,
cannot result in motion filters.

Note that, the set-up described in the main text, where a temporally distributed neural code (i.e.
with τ > 0) is used to reconstruct the stimulus at single time-point, t+∆ (see Fig. 1a), differs from the
set-up considered here (illustrated in SI fig. 7c). However, the arguments underlying why we observe
motion filters are similar in both cases.

4.5 Dependence of neural code on constraints and functional goals

In the main text we investigated how the optimal neural code depends on the functional goals/constraints
of the system. Specifically, we looked at how the code varies depending on: the decoding lag, ∆, code
length τ , and channel capacity C (fig. 1b). In addition, our framework allows us to vary several other
factors, which each alter the optimal code in different ways (SI Table 1).

4.5.1 Input noise

In our simulations we added gaussian white noise to the stimulus, Y , to generate the noisy sensory
input, X. Varying the magnitude of this input noise alters the resulting code, as neurons have to
smooth over their sensory input to encode information about the stimulus. Increasing the input noise
has a similar effect to decreasing the coding capacity, resulting in larger neural RFs, and reducing
the degree to which neurons decorrelate the input signal. With the ‘moving gaussian blob’ stimulus,
shown in figure 4 of the main text, increasing the input noise results in neurons that are not direction
selective (SI fig. 8b).
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Figure 8: Effect of varying the internal and external noise. (a) Information encoded about the ‘gaussian
bump’ stimulus (at lag ∆ = −2), shown in fig. 4 of the main text, versus total channel capacity,
C (i.e. variable internal noise). Spatiotemporal encoding filters for an example neuron at various
different channel capacities (denoted by open circles information curve) are shown to the right. (b)
Spatiotemporal filters obtained with varying amplitude of the external noise, added to the input.

4.5.2 Constraint on neural correlations

As shown in SI equation 1, in a straightforward application of information bottleneck framework we
would constrain the information between neural responses in a time window t − τ to t, and stimulus
up until time t: I(Rt−τ :t;X−∞:t). However, in order to compare our framework directly with previous
work on efficient coding, we instead constrained the information between the instantaneous neural
responses at time t and the stimulus up until time t: I(Rt;X−∞:t) (see SI equation 2). In this case, in
the limit where X → Y and γ → 1, maximising the IB objective function is equivalent to minimising
the redundancy between neural responses at different time-steps, as in standard efficient coding.

In contrast, if we constrain the full mutual information I(Rt−τ :t;X−∞:t), rather than just depending
on the marginal response statistics of each neuron, the constraint term depends on the spatiotemporal
dependencies between responses of different neurons & at different times. With a gaussian stimulus,
as in fig. 2, this corresponds to constraining the full spatiotemporal response covariance matrix, rather
than just the response variance of each neuron. We found that this generally results in responses that
are more spatiotemporally correlated (i.e. more ‘smooth’), compared to the results shown in the main
text (SI fig. 9).

4.5.3 Length of decoding window

In the main text, we considered the case where the objective is to reconstruct the stimulus at a single
time-point, t+∆. More generally, we can consider the case where the goal is to reconstruct the stimulus
in an extended window of variable length (as in SI fig. 4 & 7). However, for the simulations shown in
figure 2 of the main text increasing the length of the decoding window had little qualitative effect on
neural responses, (except at the limit of very high channel capacity where it resulted in an additional
neuron being recruited; SI fig. 4). Likewise, for the sparse stimuli shown in Fig. 3-4, increasing the
length of the decoding window had little qualitative effect, as the IB algorithm dedicated the majority
of its resources to encoding the stimulus at the beginning of the decoding window, where the stimulus
is the most predictable (e.g. compare SI fig. 7c and f).

4.5.4 Constraint on encoding model

In the main text we considered a linear encoding model. As described in the discussion, further
extensions to our work could treat non-linear encoding models. The qualitative effect of using a
non-linear encoding model will vary greatly depending on the stimulus statistics. For example, we
previously showed how to combine our variational IB framework with a non-linear kernel encoding
model (Chalk et al. NIPS 2016). Here we found that using such a non-linear model only had a
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strong qualitative effect on neural responses when trained on a complex non-linear task (such as image
completion), but not when trained on a simple task (such as image denoising). Future work will be
required to investigate what are the consequnces of such a non-linear model on predictive coding.
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