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Analysis of the Bulk Spectrum
In the strong coupling regime that is relevant to heavy-fermion
systems, we can approach the prohibition of dσ fermion dou-
ble occupancy by an auxiliary boson method (1). Represent-
ing d†iσ = f †iσbi , the f †iσ (bi) are fermonic (bosonic) operators
satisfying the constraint b†i bi +

∑
σ f
†
iσfiσ = 1. At the saddle-

point level, we replace b†i , bi → r and introduce a Lagrange
multiplier ` to enforce the local constraint. Defining ΞT

k ≡(
dk↑,A dk↑,B dk↓,A dk↓,B

)
and ΨT

k ≡
(
ck↑,A ck↑,B ck↓,A dk↓,B

)
,

we can transform Hamiltonian Hc , Hcd , and Hd into the pseu-
dospin basis using Ξ̆k =S †σΞk and Ψ̆k =S †σΨk , with S †σ =Uστ0
being a unitary matrix which consists of the | ± D〉 eigenvectors.
The effective hybridization becomes rV , which is nonzero only
for V >Vc , whenever the conduction-electron density of states
has a pseudogap form near the Fermi energy (2). The hybridiza-
tion part can be reexpressed as

Hcd =
∑

k

[
Ψ̆†k · rV14 · Ξ̆k + H.c.

]
. [S1]

Introducing Ψ̆T
k =

(
ψ̆T

k+ ψ̆T
k−
)
, Ξ̆T

k =
(
ξ̆Tk+ ξ̆Tk−

)
, where ψ̆T

k± =(
ψ̆k±,A ψ̆k±,B

)
and ξ̆Tk± =

(
ξ̆k±,A ξ̆k±,B

)
, we find that the

strong-coupling Hamiltonian can straightforwardly be written in
the | ±D〉 basis as H s =

∑
a=±H

s
a ,

Hs
a =

∑
k,a=±

(
ψ̆†ka ξ̆†ka

)(hka − µ12 Vs12

Vs12 Es12

)(
ψ̆ka

ξ̆ka

)
, [S2]

where Vs ≡ rV and Es ≡Ed +`. Straightforward diagonalization
of the strong-coupling Hamiltonian yields a set of four quasipar-
ticle bands for each spin sector as

E(τ,α)
±D (k) =

1

2

[
Es + ε̃τ±D + α

√(
Es − ε̃τ±D

)2
+ 4V 2

s

]
, [S3]

ε̃τ±D = ετ±D − µ, [S4]

ετ±D = τ

√
u1(k)2 + u2(k)2 + (m ± λD(k))2, [S5]

where τ = (+,−), and α = (+,−) indexes the upper/lower
quartet of bands, respectively.

To gain a deeper understanding of the gap structure of the
hybridized bands, it is more convenient to first diagonalize the
conduction electron part of the Hamiltonian, which is possible
since the off-diagonal blocks and the bottom right block are all
proportional to 2×2 identity matrices. Diagonalizing the conduc-
tion electron part of the Hamiltonian, we can rewrite the strong
coupling Hamiltonian in a diagonal form,

hD
k± =

(
ε+
±D 0
0 ε−±D

)
, [S6]

and in the new basis, the Hamiltonian becomes

Hs
± =

∑
k

(
(ψD

k±)
†

(ξDk±)
†
)(

hD
ka − µ12 Vs12

Vs12 Es12

)(
ψD

k±
ξDk±

)
.

[S7]

We can then directly see that the matrix elements associated
with the first and third fields are decoupled from the second and
fourth fields, which means we can simplify the 4 × 4 matrix in
either |±D〉 sector, to be two 2 × 2 matrices, which allows us
to examine the eigenenergy bands analytically. Below, we discuss

the cases in different |±D〉 sectors separately. Our main conclu-
sion below is that the WKSM phase can only occur at the |−D〉
sector in the hybridized band regime, and the hybridized bands
in |+D〉 sector always remain gapped.
|+D〉 sector:
For further analysis in the band gaps, we assume that Es lies

well below the conduction electron bands ετ±D . In addition, for
the condition for 1/4-filling, Es is required to be positive Es > 0.
Focusing on the two 2 × 2 matrices of the |+D〉 sector, we can
separate the Hamiltonian into Hs

+ =
∑
α,τ H

s,τ
+,α, the energies

obtained are

E(+,α)
+D =

1

2

[
Es + ε̃+

+D + α

√(
Es − ε̃+

+D

)2
+ 4V 2

s

]
[S8]

E(−,α)
+D =

1

2

[
Es + ε̃−+D + α

√(
Es − ε̃−+D

)2
+ 4V 2

s

]
. [S9]

Since ε+
+D > ε−+D , we can see E(+,+)

+D > E(−,−)
+D and these two

bands always remain gapped. Similarly, within each pair of
branches E(τ,+)

+D > E(τ,−)
+D , and they should be always gapped. The

only possibility that the gap closes occurs between E(+,−)
+D and

E(−,+)
+D . If there is a crossing between them at some momenta k =

k0, the two bands should be degenerate E(+,−)
+D (k0)= E(−,+)

+D (k0),
which leads to

ε+
+D(k0)− ε−+D(k0) =

√(
Es − ε̃+

+D(k0)
)2

+ 4V 2
s

+

√(
Es − ε̃−+D(k0)

)2
+ 4V 2

s

≥ ε+
+D(k0) + ε−+D(k0)− 2Es

⇒ ε−+D(k0) ≤ Es , [S10]

where we use the assumption that Es <ε
τ
±D in the second line.

This in turn leads to a contradiction to our initial condition
that the d fermion Fermi energy is well below the four con-
duction electron bands, Es <ε

τ
±D . Therefore, we conclude that

there cannot be any crossing between E(+,−)
+D and E(−,+)

+D . The
hybridized bands in the |+D〉 sector always remain gapped at any
momenta and Weyl nodes cannot reside there. Now let’s exam-
ine the |−D〉 sector.
|−D〉 sector:
In the |−D〉 sector, we can also decompose the 4× 4

Hamiltonian matrix to two 2 × 2 matrices, Hs
+ =

∑
α,τ H

s,τ
+,α,

which gives the eigenvalues as

E(+,α)
−D =

1

2

[
Es + ε̃+

−D + α

√(
Es − ε̃+

−D

)2
+ 4V 2

s

]
, [S11]

E(−,α)
−D =

1

2

[
Es + ε̃−−D + α

√(
Es − ε̃−−D

)2
+ 4V 2

s

]
. [S12]

The bands’ dispersions associated with the conduction elec-
trons show Weyl nodes at certain momenta, i.e., k = kW , where
ε+
−D(kW ) = ε−−D(kW ) = 0. There are actually 12 inequivalent

kW along the X −W lines on the 3D BZ boundary, determined
by the condition m

4|λ| = sin( k0
2

), where kW is a cyclic permuta-
tion of the elements in a vector (k0, 0,±2π). At k = kW , in the
hybridized bands we then have

E(+,+)
−D (kW ) = E(−,+)

−D (kW ), [S13]

E(+,−)
−D (kW ) = E(−,−)

−D (kW ). [S14]
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We can see that in the hybridized bands, there are actually two
pairs of degenerate bands sitting at the momenta kW . Near kW ,
the band dispersions can be linearized.

Due to the constraints in the strong-coupling regime,Hs
a must

be solved self-consistently with the saddle-point equations,

1

2Nu

∑
k,a=±

〈
ξ̆†ka ξ̆ka

〉
+ r2 = 1,

V

4Nu

∑
k,a=±

[〈
ψ̆†ka ξ̆ka

〉
+ H.c.

]
+ r` = 0,

[S15]

where Nu is the number of the unit cell. Here, we can tune the
chemical potential to be µ=−V 2

s /Es , with Es > 0. This fixes the
lower Weyl node to the Fermi energy, at 1/4-filling, as shown in
Fig. 2. For the illustration in the main text, we use the same bare
coupling parameters to be (t , λ,Ed ,V ) = (1, 0.5, 1,−6, 6.6), and
solved self-consistently for r ' 0.259 and ` ' 6.334, with error
ε ≤ O(10−5) on a 64× 64× 64 unit cell diamond lattice.

Berry Curvature

The Berry curvature field ~Ω(k) is akin to a fictitious magnetic
field in momentum space; analogously, the Weyl nodes manifest
as monopole sources and sinks of Berry curvature (3, 4). The field
is a way of representing the tensor components since it is a 3× 3

antisymmetric tensor in 3D, ~Ω(k) = (Ωyz (k),Ωzx (k),Ωxy(k)).
The components are given by the gauge invariant equation
(3, 4),

Ωab(k) =
∑
n 6=n′

Im 〈nk |∂c,kaH
s
k |n ′k〉〈n ′k |∂c,kbH

s
k |nk〉

(En−En′)
2 , [S16]

where H s
k is the 8×8 Bloch matrix in the strong coupling regime

in physical spin space, ∂c,ka is the derivative with respect to only
the conduction electrons corresponding to the velocity of the
charge carriers. En= E(τ,α)

ν and |nk〉 are the Bloch eigen ener-
gies and eigenstates of H s

k , with index n specifying one of the
eight bands, n = (τ, α, ν) = (±,±,±D).

In the main text, the Berry curvature of the heavy Weyl
fermions in the strong coupling regime were shown; specifically,
we plot the field’s unit length 2D projection onto the kx -ky plane,

Ω̂(kx , ky , 2π) =
1

|~Ω(kx , ky , 2π)|
×
(
Ωyz (kx , ky , 2π), Ωzx (kx , ky , 2π)

)
. [S17]

Surface States
Following the approach in ref. 5, we also seek surface states in the
|−D〉 sector near the Weyl nodes. The nodes are on the square
faces of the fcc BZ boundary, along the lines connecting high
symmetry points X and W . We find that the Hamiltonian matrix
ofHs

−, Eq. S2 can be expressed

h−(k) = (κ0 + κz )⊗ 1
2

[u1(k)τx + u2(k)τy + (m − λD(k))τz )]

+
[
(Es − µ)κ0 − (Es + µ)κz + Vsκ

x ]⊗ τ0
[S18]

where κi are Pauli matrices acting on the
(
ψ̆k−, ξ̆k−

)
basis. We

linearize the Hamiltonian matrix near q =
(
kx , ky , 2π

)
in q̃z =

kz − 2π around q̃z = 0. Defining u ′ ≡
√

(u ′1)2 + (u ′2)2, and

u ≡
√

u2
1 + u2

2 , we obtain

h−(q) = (κ0 + κz )⊗ 1
2
[q̃zu

′(q)τx − u(q)sgn(kxky)τy

+ (m − λD(q))τz ] +
[
(Es − µ)κ0

−(Es + µ)κz + Vsκ
x ]⊗ τ0. [S19]

Making the real-space replacement q̃z → −i∂z , we can enforce
the boundary condition by assigning the value of the staggered
mass to be m = m+ > 4|λ| outside for z > 0 (trivially insulating
vacuum), and m = m− < 4|λ| for z < 0, such that the bulk is in
a stable Weyl semimetal phase.

Generalizing the wave function suggested in ref. 5, we find the
surface eigenstates in the plane of the four Weyl nodes around
the X point to be

ψs(kx , ky , z ) = Ase
∓ z

ξ± |κ〉 ⊗ |τy = +1〉 ⊗ |−D〉, [S20]

with

|κ〉 = Bs

 1

−
√

1−
(
βs

k
Vs

)2

− βs
k

Vs

, [S21]

βs
k ≡ −

1

2
[u(q)sgn(kxky) + Es + µ], [S22]

where As , Bs are normalization constants. We identify ξ± =
±u ′(q)/(m± − λD(q)) as the penetration depth of the surface
wave functions. Inside the boundary, the divergence of ξ− when
D(q) = m− indicates that the surface states merge with the bulk
states, becoming indistinguishable (5).

Inversion-Symmetry Breaking and Time-Reversal-Symmetry
Breaking Cases
Here, we consider Hc in the presence of a static magnetic field,
as an illustration of the effect of a time-reversal symmetry break-
ing (TRB) on the Weyl state. Consider the conduction electron
Hamiltonian,

Hc =
∑
〈ij〉,σ

(
tij c
†
iσcjσ + H.c.

)
+ iλ

∑
〈〈ij〉〉

[
c†iσ (σ · eij ) cjσ −H.c.

]
[S23]

+m
∑
i,σ

(−1)ic†iσciσ +
∑
j

M ·
(
c†jσσcjσ

)
[S24]

where eij =
ei×ej
|ei×ej |

are determined by the two bond vectors con-
necting second-nearest-neighbors, and σ = (σx , σy , σz ) are the
Pauli matrices acting on spin space, and the last term is the TRB
term, with M being the local moment and c†jσσcjσ being the con-
duction electron spin.

The noncentrosymmetric diamond lattice (the “zincblende”
lattice) is presented in Fig. S1A. Although the diamond and
zincblende lattices are structurally the same, the different on-site
potential m reduces the Oh cubic point group symmetry of the
diamond lattice to tetragonal Td symmetry in the zincblende.
The simplest way to visualize the inversion symmetry-breaking
introduced by the m term is to compare the interlocked sub-
lattice unit cells under the inversion operations in Fig. S1B. If
one reflects the position of any site across the indicated inversion
center X, the upper four sites neatly exchange positions with the
lower four. Conversely, if the on-site potential differentiates the
sublattices via m , an inversion operation exchanges the distinct
sublattice sites, as seen in Fig. S1C, so the inversion symmetry
is broken.

Here, we show an example of a Weyl semimetal phase in
the broken time reversal symmetry (M 6= 0), in the case of
the diamond lattice (m = 0). For simplicity, below we choose
M = Mz ẑ , and the second term becomes a Zeeman-like
term. Following the same procedure as before, we introduce
the basis in momentum space ΨT

k =
(
ck↑,A ck↑,B ck↓,A ck↓,B

)
.
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The Hamiltonian of the conduction electron becomes HTRB
c,M =

Ψ†k · h
TRB
c ·Ψk, with

hTRB
c = σ0 [u1(k)τx + u2(k)τy ] + Mzσz τ0 + λ [D(k) · σ] τz ,

[S25]

where u1/2 and vector D are defined in the main text. A 3D Dirac
semimetal is realized with Dirac points located at X points in the
absence of the TRB term, as illustrated in Fig. S2A.

Upon increasing the TRB term, first we observe that Weyl
nodes appear along X−Γ lines and along X−W lines on the 3D
BZ boundary parallel to k̂z -axis, and increasing to Mz = 3 moves
both Weyl nodes toward the Γ point, illustrated in Fig. S2B.

Next, we analyze the critical value of Mz signaling the
phase transition that separates the aforementioned TRB-Weyl
semimetals from the topologically trivial insulator phase. Focus-
ing on one of the X − Γ lines that we suspect to harbor Weyl
nodes, we assume its position is at kW = kX − δk, where kX is
the X -point momentum, and δk = (δkx , 0, 0) with |δkx | > 0.
We can then straightforwardly find that all of the components of
D(k) along that line vanish. The Hamiltonian matrix along the
line can be simplified to be

hTRB
c |XΓ = 2tσ0

[(
1− cos

(
δkx
2

))
τx + sin

(
δkx
2

)
τy

]
+ Mzσz τ0,

which leads to the eigenvalues

ETRB,σ
c = σMz ± 2

√
2

[
1− cos

(
δkx
2

)]
, [S26]

where σ = ± for spin =↑, ↓. For Mz > 0, we can see that gapless-

ness can only occur when Mz = 2
√

2
[
1− cos δkx

2

]
, which leads

to the condition

cos

(
δkx
2

)
= 1− M 2

z

8
. [S27]

Therefore, we can see that the condition can be satisfied for 0 <
Mz ≤ M c

z = 4, after which the absolute value of the right-hand
side becomes >1 and the condition can no longer be held. The
critical value of M c

z = 4 is fully consistent with the numerical
analysis illustrated in Fig. S2.

Specific Heat from a Weyl Node
The specific heat is calculated as

cv =

(
∂u

∂T

)
V

=
∂

∂T

∫
BZ

d3k
(2π)3 εkf (εk), [S28]

where εk is the energy dispersion, u is the energy density, and
the integral is over the first BZ. Here, the occupation distribu-
tion function f (εk) is the Fermi function. We focus on the linear
dispersion regime where we can approximate εk = ~v∗k . We
will take the renormalized Fermi velocity v∗ for its asymptotic
low-temperature value. Analyzing the temperature dependence
of the condensate amplitude in our saddle-point analysis will only
cause subleading corrections to the temperature dependence of
the specific heat.

The result for the specific heat per unit volume is

cv =
7π2

30
kB

(
kBT

~v∗

)3

. [S29]

This shows that the T 3 contribution to the specific heat
becomes large when v∗ is small, as in the case of heavy-fermion
systems.

In the above calculation, we have assumed that the leading
term of the specific heat at low temperatures is independent of
the quasiparticle weight or the residual interactions of the nodal

excitations. This is because the entropy counts the number of
degrees of freedom that are thermally excited within an energy
range of approximately kBT . To put this argument on a more
concrete footing, we turn to an alternative calculation.

Fermi Liquid Approach to the Specific Heat of a Weyl Fermion
Adopting the Fermi-liquid approach for calculating the entropy,
as outlined in ref. 6 (chapter 4, section 19), we express the specific
heat per unit volume from a Weyl fermion as

cv =

∫
d3k

(2π)2

1

2πiT

∫ ∞
−∞

ε

[
−∂f (ε)

∂ε

]
[lnGR(k, ε)

− lnGA(k, ε)] dε, [S30]

where T is the temperature, kB is the Boltzmann constant, and
f (ε) is the Fermi distribution function. In addition, GR(k, ε) =
Z/(ε− ξk + i0+) is the retarded Green function of Fermi liquid
quasiparticles, with Z being the quasiparticle weight, and ξk =
~v∗|k| ≡ ~v∗k for ξk > 0 (ξk = −~v∗k for ξk < 0), i.e., a
Weyl fermion dispersion. Likewise, the advanced Green function
is GA = G∗R, and we set the chemical potential µ = 0, sitting
exactly at the nodal point. We use the Sommerfeld expansion∫ ∞
−∞

dεu(ε)

[
∂f (ε)

∂ε

]
' −u(0)− π2

6
(kBT )2

(
∂2u(ε)

∂ε2

)
ε=0

− 7π4

360
(kBT )4

(
∂4u(ε)

∂ε4

)
ε=0

+ · · · .

[S31]

Taking derivatives and setting ε = 0, we obtain

cv =

∫
d3k

(2π)3 kB

[
π

3
kBT Im

(
G−1

R ∂εGR

)
ε=0

+
7π4

90
(kBT )3Im

(
G−1

R ∂3
εGR + 2G−3

R (∂εGR)3

−3G−2
R ∂εGR∂

2
εGR

)
ε=0

]
, [S32]

where Im (A) means the imaginary part of A. For a Weyl
fermion, we find that Im

[
G−1

R ∂εGR

]
= πδ(ε − ξk), where δ(x )

is the Dirac delta function; the identity

1

x + i0+
= Pv

(
1

x

)
− iπδ(x ) [S33]

has been used, with Pv denoting principal value. For the leading
linear-T term, the integral involves∫

4πk2dk

(2π)3 δ(ξk) = 0, [S34]

and, therefore, the leading linear-in-T term vanishes. For the
second term above, we find that

G−1
R ∂3

εGR + 2G−3
R (∂εGR)3 − 3G−2

R ∂εGR∂
2
εGR

= −2

[
Pv

(
1

ε− ξk

)
− iπδ(ε− ξk)

]3

= −2

[
Pv

(
1

ε− ξk

)3

+ 3Pv

(
1

ε− ξk

)2

(−iπ)δ(ε− ξk)

+3Pv

(
1

ε− ξk

)
(−iπ)2δ2(ε− ξk) + (−iπδ(ε− ξk))3

]
.

[S35]
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Focusing on the imaginary terms, we find that only the second
term in Eq. S35 contributes to the results. The last term vanishes
because the integral of cubic delta function is zero. Therefore,
we find that

Im
(
G−1

R ∂3
εGR + 2G−3

R (∂εGR)3 − 3G−2
R ∂εGR∂

2
εGR

)
ε=0

= 6πPv

(
1

ξk

)2

δ(ξk). [S36]

Combining all these, we obtain the specific heat per unit
volume as

cv '
7π4

15
kB (kBT )3

∫
d3k

(2π)3Pv

(
1

ξk

)2

δ(ξk) [S37]

=
7π4

90
kB (kBT )3 1

2

∫ ∞
−∞

4πk2dk

(2π)3

2

(~v∗k)2 δ(~v
∗k) [S38]

=
7π2

30
kB

(
kBT

~v∗

)3

, [S39]

i.e., the same expression as in Eq. S29. It is worth noting that
(i) the principal value evaluation is not necessary since the k2

in the denominator cancel the k2 from the numerator; (ii) the
factor 1/2 in front of the integral in Eq. S38 is due to the exten-
sion of integration range from−∞ to +∞ while recognizing that
the function is even; and (iii) the factor of 2 in the numerator of
2/(~v∗k)2 inside the integral in Eq. S38 is originated from the
fact that, for each momentum k , there are two contribution from
ξk = ±~v∗k in the Weyl fermion band distribution.

In summary, the Fermi liquid analysis here demonstrates that,
even when the Fermi-liquid effects (the quasiparticle weight
and residual interactions of the nodal excitations) are explic-
itly taken into account, the leading renormalization effect to
the specific heat is still for the T 3 coefficient and has the
form (1/v∗)3.
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Fig. S1. (A) Zincblende lattice: diamond lattice with ±m differentiating A, B sublattice. (B) Diamond lattice unit cell. (C) Zincblende unit cell. Translating
an A atom across the inversion point marked X exchanges it with the B site, breaking inversion symmetry in A and C, but preserving it in B, since the two
sites are equivalent.

A B

Fig. S2. Band structure along the high symmetry points of the fcc BZ in the presence of TRB (preserving inversion symmetry), originated from a local
moment field Mz coupled to the conduction electron spin, using λ= 1

2 . (A) Mz = 0: Dirac semimetal. (B) Mz = 3: Weyl nodes along different lines are all
moved toward Γ point.
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