Supporting Information

Khan et al. 10.1073/pnas.1714313114

SI Materials and Methods

Generation of Gnas^{R201H} Conditional "Knockin" Mice. The BAC clone RPCI23-312C1 containing the Gnas gene was purchased from Invitrogen. As shown in Fig. S1, a DNA fragment containing exons 4 to 12 of the Gnas gene was retrieved from the BAC clone and inserted into the targeting vector using a recombineering method. Next, we cloned a minigene cassette containing a 250-bp upstream sequence of exon 7, a partial cDNA sequence containing exons 7 to 12, and three consecutive polyA sequences. The minigene cassette was inserted into intron 6 of the Gnas gene and flanked by LoxP sequences. The mutation in exon 8 corresponding to human R201H was generated by changing a single nucleotide (CGT to CAT). The targeting vector containing the wild-type minigene cassette and the FD mutation was used in mouse ES cells along with Cas9 and a guide RNA to increase targeting efficiency. Correctly targeted ES clones were identified by both 5' and 3' long-range PCR, and sequencing and mouse lines were generated by blastocyst injection of the targeted ES cells according to standard protocols. One of the correctly targeted ES clones was used to generate the $Gnas^{f(R201H)}$ mice, and two independent founder lines gave rise to the same phenotypes in subsequent experiments.

Gnas^{f(R201H)} **Genotyping PCR.** PCR amplification of the conditional allele and wild-type allele was done in the same reaction mixture using the following primers: forward-1, ATGCGGCGCGCCA-CTTTTGCCTTTTGCAGGACTGAG; forward-2, CTTTGGG-GATCACACCACTT; and reverse, AGCTTGGCGTGAAGTTC-CTATTCTC. PCR amplification conditions used were as follows: step 1, 94 °C for 3 min; step 2, 94 °C for 30 s; step 3, 58 °C for 30 s; step 4, 72 °C for 1 min; and step 5, cycle 35 times to step 2.

 μ CT Scanning. μ CT scanning of long bones was performed using a SCANCO μ CT 35.

Tamoxifen Injection. Tamoxifen (1 mg) was injected into the lactating mother in our *Sox9CreER; Rosa26Tdtomato; Gnas*^{f(R201H)} mating at postnatal day 5 (P5), and the pups were collected at P21 for analysis.

Skeletal Preparation: Alizarin Red and Alcian Blue Staining. Embryos were harvested and skinned carefully. Internal organs were then

eviscerated, and the embryos were placed in 100% ethanol overnight. Staining was performed according to previously described protocol (18).

von Kossa Staining. Paraffin sections were deparaffinized in xylene and hydrated in distilled water. Then a 5% silver nitrate solution was added to the slides and placed under a 60-W lamp for 1 h. Slides were rinsed three times in distilled water. Sodium thiosulfate (5%) was added to the slides for 5 min. Slides were rinsed three times in distilled water and counterstained with nuclear fast red for 5 min. Slides were rinsed three times in distilled water and then dehydrated and cleared in xylene before mounting with Permount.

Alkaline Phosphatase and Alizarin Red Staining. Cells were rinsed with PBS and fixed with 4% paraformaldehyde at room temperature for 10 to 15 min. After washing with PBS, cells were stained with NBT/BCIP (nitro-blue tetrazolium chloride/5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt) (purchased from Thermo Fisher Scientific; 34042) for alkaline phosphatase activities or with 1% alizarin red (pH 4.2) in water for 20 min followed by PBS washing (three times). Quantification of alizarin red staining was performed as described before (71).

Antibodies Used for Immunohistochemistry. Osx (ab22552; Abcam), Opn (AF808; R&D), Col10 (X-AC9; DSHB), α SMA (A5228; Sigma), CD31 (550274; BD Biosciences), p-Creb (06-519; Millipore), and β -catenin (610154; BD Biosciences).

Antibodies Used for Western Blotting. $G\alpha_s$ (sc-55546; Santa Cruz Biotechnology), Creb (sc-25785; Santa Cruz), p-Creb (06-519; Millipore), β -catenin (610154; BD Biosciences), α SMA (A5228; Sigma), Gapdh (G8795; Sigma), and α/β -tubulin (2148; Cell Signaling Technology) according to the manufacturers' recommendations.

Quantitative Real-Time PCR. qRT-PCR was performed with SYBR Green Real-Time PCR Master Mix purchased from Thermo Fisher Scientific. Primer pairs used in this study are listed in Table S1.

Fig. S1. Generation of the *Gnas*^{f(R201H)} conditional knockin allele. (A) Maps of the genomic locus of mouse *Gnas* gene, targeting vector, and correctly targeted and mutant alleles. Relative position of exons 4 to 12 is indicated by black boxes. The map of the targeting vector shows insertion of a minigene cassette between exons 6 and 7. The R-to-H FD mutation is CGT \rightarrow CAT in exon 8, which was recreated in the targeting vector. When there is no Cre activity, the targeted *Gnas* allele expresses a wild-type *Gnas* gene containing the minigene cassette. After Cre-mediated recombination, the minigene cassette is deleted and the *Gnas*^{R201H} mutant is expressed instead. (B) Representative chromatogram of DNA sequencing of long PCR-positive ES cell clones showing a single-nucleotide base change from G to A. (C) PCR analysis of genomic DNA obtained from mouse ES cells or tails. f, *Gnas*^{f(R201H)}.

^		2650	2660	2670	2680	2690	2700	2710	2720
A	Mouse GNAS mRNA hGNAS mRNA	TTCCCACCTGAATTC TTCCCTCCCGAATTC	TAT GAGCATO TAT GAGCATO	GCCAAGGCT CT GCCAAGGCT CT	GT GGGAGGA GT GGGAGGA	T GAGGGAGT GC T GAAGGAGT GC	GT GC CT GCT / GT GC CT GCT /	ACGAGCGCTCCA ACGAACGCTCCA	ATGA 2720 ACGA 503
	Majority	GTACCAGCTGATTGA	CTGTGCCCA	GTACTTCCTG	BACAAGATXG	AXGTGATCAAG	CAGGCXGACT	TAXGTGCCXAG	GAXC
		2730	2740	2750	2760	2770	2780	2790	2800
	Mouse GNAS mRNA hGNAS mRNA	GTACCAGCTGATTGAC GTACCAGCTGATTGAC	CT GT GCCCA CT GT GCCCA	GTACTTCCTGG	GACAAGATTG/ GACAAGATCG/	AT GT GAT CAAG ACGT GAT CAAG	CAGGCCGACT CAGGCTGACT	TACGT GCCAAGT TAT GT GCCGAGG	GACC 2800 CGATC 583
	Majority	AGGACCTGCTTCGCT	GCCGTGTCC	TGACXTCTGGA	ATCTTTGAG	ACCAAGTTCCA	GGTGGACAA	AGTCAACTTCCA	CATG
		2810	2820	2830	2840	2850	2860	2870	2880
	Mouse GNAS mRNA hGNAS mRNA	AGGACCT GCTT CGCT (AGGACCT GCTT CGCT (GCCGTGTCC GCCGTGTCC	T GACCT CT GGA T GACT T CT GGA	ATCTTTGAG/	ACCAAGTTCCA	GGT GGACAA GGT GGACAA	AGT CAÁCTTCCA AGT CAACTTCCA	CATG 2880 CATG 663
	Majority	TTXGAXGTGGGXGGC	CAGCGCGAT	GAXCGCCGCAA	GTGGATCCA	GTGCTTCAAXG	ATGTGACTG	CATCATCTTC	GT GGT
		2890	2900	2910	2920	2930	2940	2950	2960
	Mouse GNAS mRNA hGNAS mRNA	TT CGAT GT GGGCGGCC TT T GACGT GGGT GGCC	CAGCGCGAT	GAGCGCCGCAA GAACGCCGCAA	GT GGAT CCAO GT GGAT CCAO	GT GCT T CAAT GA GT GCT T CAACGA	ATGTGACTGO ATGTGACTGO	CCATCATCTTCC	GT GGT 2960 GT GGT 743
	Majority	GGCCAGCAGCAGCTAG	CAACATGGT	CATXCGGGAGG	GACAACCAGA	CXAACCGCCTG	CAGGAGGCT	CTGAACCTCTT	CAAGA
		2970	2980	2990	3000	3010	3020	3030	3040
	Mouse GNAS mRNA hGNAS mRNA	GGCCAGCAGCAGCTAG	CAACAT GGT (CAACAT GGT (CATTCGGGAGG CATCCGGGAGG	GACAACCAGAG GACAACCAGAG	CTAACCGCCTG	CAGGAGGCT (CAGGAGGCT (CT GAACCT CT T CT GAACCT CT T C	CAAGA 3040 CAAGA 823
	Majority	GCATCTGGAACAACA	GATGGCTGC	GCACCATCTCT	GTGATXCTX	TTCCTCAACAA	GCAAGAXCT	GCT X GCT GA GA A	AGTC
		3050	3060	3070	3080	3090	3100	3110	3120
	Mouse GNAS mRNA	GCATCTGGAACAACA	GAT GGCT GC	GCACCATCTCT	GTGATTCTC	TTCCTCAACAA	GCAAGACCT	GCTTGCTGAGAA	AGTC 3120
_									
В									
		IDCAQYFLDKIDV	IKQADYVP	SDQDLLRCR	VLTSGIFE	TKFQVDKVNF	HMFDVGGQ	RDERRKWIQC	FNDV
		920	930	94	0 9	950	960	970	980
	Human GNAS n	1R IDCAQY <mark>FLDKIDV</mark>	IKQADYVP	SDQDLLRC <mark>R</mark>	VLTSGIFE	TKFQVDKVNF	H <mark>MFDVGGQ</mark>	RDERRKWIQC	FNDV 241
	Mouse GNAS n	1R IDCAQY <mark>FLDKIDV</mark>	IKQADYVP	SDQDLLRC <mark>R</mark>	VLTSGIFE	TKFQVDKVNF	H <mark>MFDVGGQ</mark>	RDERRKWIQC	FNDV 2938
									TEDY
			MVIKEDNQ	INKLQLAL				ALKVLAGKSK	
							.030	1040	1050
	Human GNAS n	1K TALLEVVASSSTN 1D TATTEVVASSSYN	MVIKEDNQ				FLNKQDLL	AEKVLAGKSK	TEDY 3148
	MOUSE UNAS II		MATKEDIAÓ	INKLQLALI			LINKOLL	ALKVLAGKS	CILDI JI40
					~				
C			D		Snn	0			
U				$C = c f(R^{201})$	4)/+	Sox2Cre	, ,		
		Δ		Gnas	<i>יµ</i> .	Gnas ^{t(R20}	1H)/+		

Gnas^{f(R201H)/+} Sox2Cre Gnas^{f(R201}

Fig. S2. (Continued)

DN A S

Fig. 52. Sequence identity between mouse and human Gnas. (*A*) Nucleotide sequence identity between mouse and human *Gnas* coding sequences. The yellow highlighted region indicates exon 8 nucleotide sequence, and the nucleotide highlighted in blue is the mutation site. (*B*) Sequence identity at the amino acid level in exons 7 (highlighted in yellow on left), 8 (not highlighted region; amino acid highlighted in blue is the site of mutation), and 9 (highlighted in yellow on right) between mouse and human GNAS protein. (*C*) Representative chromatogram of DNA sequencing of cDNA, prepared from total RNA isolated from an E10.5 *Sox2Cre; Gnas^{f(R201H)}* embryo, showing a single-nucleotide base change. (*D*) Whole-mount mRNA in situ hybridization of *Shh* in E9.5 *Gnas^{(R201H)+}* littermate control and mutant embryos. (Scale bar, 500 μm.) (*E*) Representative H&E staining of embryo sections at E10.5 showing retarded heart development of the mutant embryo. (*F*) Representative images of TUNEL staining in control and mutant embryo sections at E10.5. (*G*) Representative images of the proliferation marker pH3 in control and mutant embryos at E10.5. (Scale bar, 100 μm.)

Fig. S3. Histomorphometric analysis of long bones from P21 mice. (A) Dorsal view of 3- and 8-wk-old littermate control [$Gnas^{f(R201H)/+}$] and mutant [Prrx1- $Cre; Gnas^{f(R201H)/+}$] mice. While the limbs were shortened significantly, the body length was not altered in the mutant mice. (B) X-ray images of forelimbs and hind limbs of 3- and 8-wk-old littermate control and mutant mice. White arrows indicate translucent X-ray areas of cartilage tissue. (C) Whole-mount skeletal preparation of trunk bones. (Magnification: 5×.) (D) μ CT scans of humerus from 2- and 4-mo-old littermate control [$Gnas^{f(R201H)/+}$] and mutant [Prrx1- $Cre; Gnas^{f(R201H)/+}$] mice. (E and F) Toluidine blue staining and quantification by histomorphometric analysis of bone parameters. (G and H) H&E staining of the growth plate of littermate control and mutant humerus. BV, bone volume; Sp, space; Tb, trabecular; Th, thickness; TV, trabecular volume. (I) Quantification of TRAP⁺ cell. (J) qRT-PCR analysis of *Rankl* expression. *P < 0.05, **P < 0.001; data are presented as mean \pm SD.

Fig. S4. Gnas^{R201H} expression in early limb mesenchyme leads to delayed bone formation at postnatal stages. (*Top*) Whole-mount limb skeleton preparation. (*Middle*) H&E staining of humerus sections (*A*–C) and tibia sections (*D*). (*Bottom*) von Kossa staining of the similar sections shown (*Middle*). Arrows indicate enchondroma-like lesions. (Magnification: *A–D*, *Top*, 5×.)

C

Fig. S5. *Prrx1-Cre;* $Gnas^{f(R201H)/+}$ mutant embryos recapitulate PTHrP/PTH receptor activation phenotypes. (A) Alcian blue and alizarin red staining of E15.5 and E18.5 whole embryonic skeleton. Mineralization is delayed in *Prrx1-Cre;* $Gnas^{f(R201H)/+}$ embryos compared with the $Gnas^{f(R201H)/+}$ littermate control. (Magnification: 5x.) (B) von Kossa staining showing mineralization in E15.5 and E18.5 humerus sections. (C) In situ hybridization performed at E15.5 and E18.5 on humerus sections for *Collagen type 2 (Col2), Ihh, Collagen type 10 (Col10),* and *Mmp13* from control (*a*-*c*) and mutant (*a*'-*c*') embryos. (D) Immunofluorescence staining of Osx on E18.5 humerus sections. (Scale bars, 200 µm.)

Fig. S6. (Continued)

Fig. 56. Expression of the *Gnas*^{*R*201H} allele in Sox9 lineages postnatally leads to bone fibrosis. TM injection was performed at P5 and the mice were analyzed at P21. (*A*) μ CT scans of littermate control (*Sox9CreER; RosaTdTomato*) and mutant [*Sox9CreER; RosaTdTomato; Gnas*^{*(R201H)*}] long bones and quantification of bone parameters. (*B*) H&E staining for littermate control and mutant long bones at P21. TM injection was performed at P5. Boxed areas are magnified (*Bottom*). (Scale bars, 200 µm.) (*C*) Immunofluorescence staining of pCREB in TdTomato⁺ cells; TdTomato marks *Gnas*^(*R201H), expressing cells. (<i>C*') Quantification of the ratio of pCREB⁺; TdTomato⁺ double-positive cells versus TdTomato⁺ cells. (Scale bars, 50 µm.) (*D*) Western blot analysis of α SMA from BMSCs (7 d after osteogenic differentiation) transduced with Ad-GFP or Ad-Cre. (*E*) Coimmunofluorescence staining of α SMA and β -catenin in littermate control and mutant long bones from P21 mice. (Scale bars, 50 µm.) (*G*) Quantification of the ratio of β -catenin⁺; TdTomato⁺ double-positive cells versus TdTomato⁺ cells, 100 µm.) (*F*) Coimmunofluorescence staining of α SMA and CD31 in littermate control and mutant long bones from P21 mice. (Scale bars, 50 µm.) (*G*) Quantification of the ratio of β -catenin⁺; TdTomato⁺ double-positive cells versus TdTomato⁺ cells, and α SMA⁺ cells that are not associated with CD31⁺ cells (α SMA⁺/CD31⁻) versus all α SMA⁺ in littermate control and mutant long bone sections from P21 mice.</sup>

Fig. S7. Osteoclast differentiation was not rescued by *Lrp6* removal. (A) TRAP staining in the bone sections of littermate control [$Gnas^{f(R201H)}$] and $OsxCre-Gnas^{f(R201H)}$; $Lrp6^{C/+}$ mutant mice. (Scale bar, 100 μ m.) (B) Quantification of TRAP⁺ cells and qRT PCR analysis of *Rank1* from the RNA isolated from bone littermate control and mutant mice (n = 3). *P < 0.05; data are presented as mean \pm SD.

No.	Gene name	Forward primer, 5'–3'	Reverse primer, 5'-3'
1	β-Actin	TGAGCGCGGCTACAGCTT	TCCTTAATGTCACGCACGATTT
2	Axin2	GAAGCTGGAGTTGGAGAGCCGCC	TCTCTCTTCATCCTCTCGGATCTGC
3	Tcf1	ACATGAAGGAGATGAGAGCCA	CTTCTTCTTTCCGTAGTTATC
4	Ptch1	CTCTGGAGCAGATTTCCAAGG	TGCCGCAGTTCTTTTGAATG
5	Gli1	GAA AGTCCTATTCACGCCTTGA	CAACCTTCTTGCTCACACATGTAAG
6	Lef1	TCTCAAGGACAGCAAAGCTC	CACTTGAGGCTTCATGCACAT
7	Hip1	GGGAAAAACAGGTCATCAGC	ATCCACCAACCAAAGGGC
8	Osx	CCCACTGGCTCCTCGGTTCTCTCC	GCTGAAAGGTCAGCGTATGGCTTC
9	ALP	CACGCGATGCAACACCACTCAGG	GCATGTCCCCGGGCTCAAAGA
10	Opn	TACCGGCCACGCTACTTTCTTTAT	GACCGCCAGCTCGTTTTCATCC
11	Ocn	ACCCTGGCTGCGCTCTGTCTCT	GATGCGTTTGTAGGCGGTCTTCA

Table S1. Sequences of pri	mers used in this study
----------------------------	-------------------------

<