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Members of the Milieu Intérieur Consortium. The Milieu Intérieur
Consortium* is composed of the following team leaders: Laurent
Abel (Hôpital Necker), Andres Alcover, Hugues Aschard, Kalle
Aström (Lund University), Philippe Bousso, Pierre Bruhns, Ana
Cumano, Darragh Duffy, Caroline Demangel, Ludovic Deriano,
James Di Santo, Françoise Dromer, Gérard Eberl, Jost Enninga,
Jacques Fellay (EPFL, Lausanne), Magnus Fontes, Antonio Freitas,
Odile Gelpi, Ivo Gomperts-Boneca, Serge Hercberg (Université
Paris 13), Olivier Lantz (Institut Curie), Claude Leclerc, Hugo
Mouquet, Etienne Patin, Sandra Pellegrini, Stanislas Pol (Hôpital
Côchin), Antonio Rausell (INSERM UMR 1163 - Institut Imag-
ine), Lars Rogge, Anavaj Sakuntabhai, Olivier Schwartz, Benno
Schwikowski, Spencer Shorte, Vassili Soumelis (Institut Curie),
Frédéric Tangy, Eric Tartour (Hôpital Européen George
Pompidou), Antoine Toubert (Hôpital Saint-Louis), Marie-Noëlle
Ungeheuer, Lluis Quintana-Murci**, Matthew L. Albert**.

The Milieu Intérieur Cohort. The Milieu Intérieur Project (https://
clinicaltrials.gov; identifier: NCT01699893) includes 1,000 healthy
donors (500 men and 500 women) aged 20–69 y old equally
distributed across five decades of life (200 individuals per decade).
Donors were selected on the basis of stringent inclusion and exclu-
sion criteria as previously described (1). Donors could be included in
this cohort only if they had no signs or history of neurological or
psychiatric disorders or severe/chronic/recurrent pathological con-
ditions. Other exclusion criteria included seropositivity for major
chronic viral infections (HIV, hepatitis B virus, hepatitis C virus),
abnormal laboratory test results, history or evidence of alcohol
abuse, recent use of illicit drugs, and recent vaccine administration.
We eliminated any effect of hormonal fluctuations in women during
the perimenopausal phase by including only pre- or postmenopausal
women. To avoid population stratification in the cohort, we
recruited only individuals of western European descent (i.e., French
citizens for whom the last three generations of ancestors were from
mainland France).

Whole-Blood TruCulture Stimulation.TruCulture tubes were prepared
in two batches (A and B) with the stimulus indicated: heat-killed
Escherichia coli (O111:B4), live BCG, Staphylococcus aureus, en-
terotoxin SEB (Bernhard Nocht Institute), Candida albicans (Invi-
vogen), or live stocks of attenuated H1N1 IAV (Charles River). We
also prepared a nonstimulated control. Each tube contained 2 mL
buffered media and was maintained at −20 °C until use. We per-
formed stimulation experiments with 1 mL whole blood for 22 h as
previously described (2). The time point of 22 h was chosen based on
a detailed kinetic analysis that was performed for selected stimuli,
the results of which were recently described (3). Because of the
logistics of recruiting 1,000 donors in a highly standardized manner,
a single time point was selected that was in the maximal plateau
for the majority of immune responses examined.

Gene Expression Analysis. RNA samples were processed as pre-
viously described (4). Briefly, we used a specific chloroform-free one-
step protocol based on a modified version of the NucleoSpin 96
RNA tissue kit protocol (Macherey-Nagel) and adapted for use with
the Freedom EVO integrated vacuum system. RNA concentration

was estimated with the Qubit RNA HS Assay Kit (Life Technol-
ogies), and RNA integrity was assessed with the Standard RNA
Reagent Kit on a LabChip GX (Perkin-Elmer). The RNA Quality
Score (RQS) was calculated with LabChip System software, and all
samples with an RQS > 4 were processed for gene expression
analysis. The NanoString nCounter system, a hybridization-based
multiplex assay, was used for the digital counting of transcripts. We
hybridized 100 ng of total RNA from each sample according to the
manufacturer’s instructions with the Human Immunology v2 Gene
Expression CodeSet, which contains 594 endogenous gene probes,
8 negative control probes (NEG A to NEG H), and 6 positive
control probes (POS A to POS F) designed against six in vitro-
transcribed RNA targets premixed with the CodeSet at a range
of concentrations (from 128 to 0.125 fM). We used three batches of
the nCounter Legacy formulation to measure the gene expression
induced by E. coli, S. aureus, and BCG and that in the nonstimulated
control. The expression induced by C. albicans, IAV, and SEB was
measured with a single batch of the nCounter XT formulation. We
accounted for the slight differences in performance between these
two formulations in the normalization procedure.

Mapping NanoString Probes to the Human Genome. NanoString
probes were derived from cDNA sequences and often spanned
multiple exon/intron junctions. We, therefore, mapped them against
the human genomic sequence (GRCh37/hg19) with Genomic Short-
Read Nucleotide Alignment Program (GSNAP) (5), a splice-aware
aligner. We ran GSNAP with two flags to detect splice junctions: -N
for the detection of novel splice sites and -S for the detection of
known splice sites. We found that 573 of 594 probes mapped onto
the genome with 100% identity. Twelve probes mapped with one to
two mismatches in the middle of the sequence, eight probes were
misaligned in the first/last 1–9 bp, and one probe did not map at all
(PECAM1 located on HG183 PATCH). The misaligned probes
were realigned manually with BLASTN against the Ab-initio cDNA
database (grch37.ensembl.org/Homo_sapiens/Tools/Blast). Only the
KIR_Activating_Subgroup_1 probe remained unaligned over its
first 9 bp and was removed from the analysis; 15 of 594 NanoString
probes mapped to more than one genomic location, and 4 of these
probes mapped to different chromosomes (CCRL1, ITGB1,
EEF1G, and TUBB) and were removed from the analysis. We then
used Bioconductor biomaRt package (6), version 2.24.0, to query
Ensembl (release 75) and retrieve exonic variants mapping to the
same regions as the NanoString probes. For each of these SNPs,
we retrieved the chromosomal position, strand, possible alleles,
and minor allele frequency (MAF) for all individuals from the
1,000 Genomes Project (1000G) Phase 1. We then queried the
1000GENOMES-phase_1_EUR.vcf file (downloaded from
ftp://ftp.ensembl.org/pub/release-75/variation/vcf/homo_sapiens/)
to retrieve the MAFs of the corresponding SNPs in Europeans from
the 1000G cohort (1000G MAFs were highly consistent with MAFs
of the Millieu Intérieur cohort). In total, 47 probes had at least one
common SNP (i.e., MAF ≥ 0.05) in their sequence. Five probes with
at least three SNPs (HLA-DQB1, HLA-DQA1, HLA-DRB1,
HLA-B, and C8G with 12, 9, 7, 3, and 3 SNPs, respectively)
were removed from subsequent analyses. Finally, we identified
the genomic location of the genes covered by the NanoString
probes. We used the biomaRt package to query Ensembl (release
75) and to retrieve the start/end positions and HUGO Gene No-
menclature Committee symbols of the genes in the regions covered
by NanoString probes. If genes were present on both strands, only
the strand consistent with GSNAP mapping was considered. Full
annotation of the NanoString probes is provided in Dataset S25.

*Unless otherwise indicated, partners are located at Institut Pasteur, Paris.

**Joint coordinators of the Milieu Intérieur Consortium. Additional information can be
found at: www.milieuinterieur.fr/en.
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Quality Control of the NanoString Data.Quality control for our data
involved checking the followingmetrics: fields of view counted (flag
if <0.75), binding density (flag if not in the 0.05–2.75 range), lin-
earity of positive controls (flag if R2 < 0.9), and limit of detection
for positive controls (flag if 0.5 fM positive control <2 SDs above
the mean of the negative controls). For calculations of the mean
and SD of negative controls, we excluded two probes (NEG B and
NEG H) that varied considerably between conditions, probably
because of cross-reaction with bacterial nucleic acids present in the
TruCulture stimulation systems. In addition to the quality control
metrics proposed by the NanoString, we also determined total
counts (flag if not in the 100,000–1,910,000 range). Three samples
were removed because of very low total counts (<100,000).

Calibration Between Chemistries and Positive Control Normalization.
Three different batches of Legacy chemistry reagents were used
to assess the expression induced by E. coli, S. aureus, and BCG
and that in the nonstimulated control, whereas a single batch of
XT chemistry reagents was used to assess the expression induced
by C. albicans, IAV, and SEB. However, for 25 samples, ex-
pression levels were measured with both Legacy (lot 1) and XT
formulations in all seven conditions, making it possible to cal-
culate calibration factors for the samples analyzed with XT
chemistry.
We first performed positive control normalization on 25 × 7

samples analyzed with Legacy chemistry. NanoString provides six
positive control probes to make it possible to control for differ-
ences between experimental variables (e.g., hybridization, purifi-
cation, or binding efficiency). Counts of positive control probes
are expected to vary between samples but independently of the
stimulus. However, for all positive control probes, counts were
higher in the absence of stimulation than in stimulated conditions
(Fig. S8). This may reflect higher levels of expression for the
targeted genes in the presence than in the absence of stimulation,
leading to stronger competition between the positive control
probes and gene probes for binding to the surface of the slide. The
differences in positive control probe binding between stimulated
and nonstimulated conditions were specific to the control RNA
concentration [i.e., the difference in binding was largest for probe
POS A (128) and smallest for probe POS F (0.125)].
The normalizationmethod recommended by NanoString does not

correct for this aspect. We, therefore, developed an alternative
method. We log2-transformed the probe counts of the 25 × 7 sam-
ples assessed with the Legacy chemistry and then normalized them
as follows: for five positive control probes (POS A to POS E; POS F
was excluded, as the signal was too low), we calculated the median
counts in the 25 nonstimulated samples. This resulted in five ref-
erence values for the Legacy chemistry. Then, for each sample, we
fitted a linear regression model with the reference values as de-
pendent variables and the five positive control counts as in-
dependent variables. This defined the mapping from original to
normalized counts. Finally, we projected each probe count (both
control and gene probes) onto the regression line and obtained the
corresponding normalized values.
We performed an independent analogous normalization for

25 × 7 samples analyzed with XT chemistry. The five reference
values in this case were calculated from the probe counts
obtained with XT chemistry. Finally, we combined the normal-
ized samples to obtain a set of 25 × 7 × 2 (350) samples. We
calculated the calibration factors for XT chemistry by fitting the
following linear model for each gene separately:

Yi = α0i + α1i ·CHEM+
X

αji · STIMj,

where Yi, CHEM, and STIMj are 350-element vectors, in which
each element corresponds to the value of the variable for one
sample measured with one type of chemistry under one condi-

tion. Yi elements are the log2-transformed probe counts (after
positive control normalization) for gene i; CHEM elements are
equal to one if XT chemistry was used to measure gene expres-
sion and to zero otherwise. STIMj elements are equal to one if
the jth stimulus was used to induce the gene expression and to
zero otherwise (where j = {nonstimulated control, E. coli, BCG,
S. aureus, SEB, C. albicans, IAV}); α1i is the calibration factor
for gene i used to account for differences resulting from the use
of XT chemistry.

Normalization Procedure for the nCounter Legacy and XT Formulations.
We performed positive control normalization for all samples ana-
lyzedwith Legacy chemistry using the procedure described above (we
used five reference values calculated for Legacy chemistry). In ad-
dition, we verified whether code set input was too low for any of the
samples (e.g., because of evaporation) by, for each sample in a given
condition, (i) calculating the mean count of all gene probes and
determining whether this mean count was more than 2 SDs below
the average of all means within the condition and (ii) calculating the
mean count of the positive control probes (μPosi), and determining
whether the difference between the average of all means [(Σ μPosi)/n]
within the condition and the sample mean (μPosi) was bigger than
one. We excluded two samples that simultaneously fulfilled both
conditions i and ii.
Finally, we corrected for differences in RNA sample input by

calculating the mean of all gene probe counts for each sample. A
scaling factor for each sample was calculated as the difference
between the average across the means within the conditions to
which the sample belonged and the mean of the sample. For each
sample, we added its corresponding scaling factor to each gene
count. This approach was based on the assumption that total
count is the same for samples within one condition but potentially
different between conditions. Eleven samples with a very low
RNA input (i.e., with a scaling factor greater than two) were
excluded from the analysis. We retained 986 donors for whom
none of the four samples were excluded in the quality control and
normalization steps. We then adjusted counts for each gene for
the effect of the CodeSet batch used to measure the level of
expression. There were three batches, and we designated batch
1 as the reference batch.We estimated the effects of batches 2 and
3 by fitting the following linear model for each gene separately:

Yi = β0
i + β2

i ·Lot2+ β3
i ·Lot3+

X
βj

i · STIMj,

where Yi, Lot2, Lot3, and STIMj are (986 × 4)-element vectors,
in which each element corresponds to the value of the variable
for one donor measured in one condition. Yi elements are the
normalized probe counts (log2 scale) for gene i. Lot2 elements
are equal to one if batch 2 was used to measure gene expression
and zero otherwise. Lot3 elements are equal to one if batch
3 was used and zero otherwise. STIMj elements are equal to
one if the jth stimulus was used to induce gene expression and
zero otherwise (where j = {nonstimulated control, E. coli, BCG,
S. aureus}). For each sample run with batch 2 (or batch 3), we
subtracted β2 (β3 for batch 3) from the count for gene i. This
procedure rendered gene expression levels comparable between
the three batches.
For normalization of the samples analyzed with the nCounter

XT formulation, we performed positive control normalization as
described above (using the five reference values calculated for XT
chemistry). We also corrected for RNA sample input differences
and determined, as described above, whether any of the samples
had too low CodeSet or RNA input (no samples were filtered
out). Finally, we subtracted the corresponding chemistry cali-
bration factor (α1i) from the level of expression for each gene.
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Gene Probe Filtering.We estimated the background level for each
sample as the mean plus 2 SDs of the six negative probe counts,
excluding NEG B and NEG H, for which we observed significant
differences in counts between conditions as previously explained
(4). Rather than subtracting the background from gene counts, we
flagged the genes as present or absent if expression levels were
above or below the background level, respectively. We removed
24 gene probes (C1R, C7, C8B, C9, CCL16, CCL26, CD1A,
CD34, CDH5, CLU, CX3CL1, DEFB103B, IFNB1, IL1RL2,
IL22RA2, IL29, IL9, ITLN2, KIR3DL3, MASP1, MBL2,
PLA2G2A, THY1, VCAM1) for which expression was absent
from more than 90% of the samples in each condition. Some
genes were absent in more than 90% of samples in one condition
but not in the others. We facilitated the identification of genes
absent in a high proportion of samples for a given condition by
calculating for each gene in each condition the percentage of
samples with expression levels above the background (the gene
score). In this study, results are presented exclusively for genes
with a gene score >0.5. The scores for each gene in each con-
dition are presented in Dataset S26.

Flow Cytometry Analysis. CD45+ cell populations from whole-
blood samples were analyzed with an eight-color flow cytometry
panel as previously described (7). We first identified CD45+ cells
and then excluded doublets. We then used expression of CD19 to
identify B cells. T cells were identified among the CD19− cells on
the basis of their CD3 expression and were analyzed for the ex-
pression of CD4 and CD8β. Within the CD3− cell population, NK
cells were identified as CD56+. In the population of CD56− cells,
monocytes were identified as CD16+SSClow, and neutrophils were
identified as CD16+SSChi [figure 2 in Hasan et al. (7)]. We ex-
cluded from the analyses 50 individuals whose immune cell pro-
portions could not be quantified by flow cytometry because of
staining and/or cell lysis issues. In total, 936 donors were retained
for additional analyses.

Differential Expression Analysis. For each gene in each stimulated
condition, we performed a paired t test to compare the expression
in stimulated and nonstimulated states [the effect of TruCulture
batches was first eliminated with the ComBat function of the R
Surrogate Variable Analysis (SVA) package (8)]. We controlled
globally for FDR. Gene expression change was considered sig-
nificant if FDR < 0.01. We estimated the proportion of true null
hypotheses (π0) to be much less than one; thus, we used the
Bioconductor qvalue package (9) to compute the FDR.

Linear Regression Models. For each gene, we built seven multiple
regression models to estimate the effects of age and sex on gene
expression in the absence of stimulation and in the six stimulation
conditions. We adjusted the models for the proportions of im-
mune cell populations to account for interindividual differences
and for the batch of TruCulture tubes to correct for possible
differences in the manufacturing process. The full model was as
follows:

Yi = γ0
i + γ1

i ·AGE+ γ2
i · SEX+ γ3

i ·TC+
X

γj
i ·Xj,

where Yi, AGE, SEX, TC, and Xj are 936-element vectors, in
which each element corresponds to the value of the variable for
one donor. Yi elements are equal to log2(counts) for gene i.
AGE elements are the donor’s age in years. SEX elements are
equal to one for men and zero for women. TC elements are
equal to one if a TruCulture tube from batch B was used for
the stimulation and zero otherwise, and Xj elements are equal to
the jth cell count proportions (i.e., #cellj/#CD45+, where cellj =
{CD19+, NK, CD4+, CD8+CD4+, CD8+, CD4−CD8−, mono-
cytes, neutrophils}). Proportions of CD45+ cell populations were

preadjusted for age and sex effects to obtain estimates of the
total effects of the covariates of interest on gene expression. We
ensured that there were no hidden technical batch effects (an
unknown source of noise) other than the known effects already
included in the model for each stimulus by performing an SVA
analysis [with the sva package of R (8) that provides functions for
identifying and building surrogate variables for high-dimensional
datasets]. No latent variables were identified for any of the stim-
uli. We controlled for FDR separately for age and sex but glob-
ally for conditions (P values for all conditions were combined,
and then, FDR was calculated). Only effects with an FDR <
0.01 were considered significant. We estimated the proportion
of true null hypotheses (π0) to be much less than one for both
age and sex; thus, we used the Bioconductor qvalue package (9)
to compute the FDR.

ANOVA for Age Groups. For each gene in each condition, we used
ANOVA to detect differences in expression between five age
groups (20–29, 30–39, 40–49, 50–59, 60–69). We controlled for
FDR separately for each condition, and effects with an FDR <
0.01 were considered significant. For each gene for which a
significant effect was detected, we checked whether its expres-
sion was also associated with age in linear regression analysis.
Only for IAV stimulation, we observed a large number of genes
not associated with age in linear regression analysis (i.e., non-
linear associations between gene expression and age). For these
genes, we used the Tukey Honest Significant Differences (HSD)
test to identify the pairs of age groups for which the difference
between mean expression levels was most significant. Dataset S4
shows the genes with a Tukey HSD P < 0.05 and those for which
the most significant difference in expression was that between
the 20- to 29- and 30- to 39-y-old age groups. For IAV stimulation,
we confirmed the relevance of the selected age groups by a sliding
window analysis. For each gene and each age (from 25 to 65 y
old), we performed a t test to assess the difference in expression
means between the 5 preceding years and the 5 following years.
For example, for an age of 25 y old, we compared the gene ex-
pression of 20- to 24-y-old donors with that of 25- to 29-y-old
donors. We controlled for FDR separately for each age. Fig.
S3 reports the number of genes with an FDR < 0.01 for each age.

Mediation Analysis. We used structural equation modeling (i.e., a
multivariate statistical method used to analyze complex rela-
tionships between independent and dependent variables) (10) to
estimate (i) the direct effects of age and sex on gene expression
and (ii) the mediated effects by which age and sex indirectly
affect gene expression through the proportions of the eight immune
cell populations (i.e., indirect effects). By contrast to the other
analyses, the proportions of CD45+ cell populations were not pre-
adjusted for age and sex, because this would have prevented the
detection of indirect effects. Path diagrams representing the struc-
tural equation models used for the analyses are shown in Fig. S5.
We estimated the direct and indirect effects of age independently
for each condition and only for genes with a significant total effect
detected by regression analysis. Bonferroni correction was applied
separately for each condition. Dataset S6 shows Bonferroni-
corrected levels of significance for each condition. We then
selected the genes with at least one significant age effect (direct or
indirect). For these genes, we calculated the proportions of genes
with direct and indirect effects. Note that the number of genes with
at least one significant age effect in structural equation modeling
was smaller than the number of genes found to be associated with
age in regression analysis. This discrepancy was caused by differ-
ences in the multiple testing correction method used (Bonferroni
and FDR). Similar analyses were performed for the sex effects.

DNA Genotyping and Imputation.All individuals were genotyped at
719,665 SNPs on a HumanOmniExpress-24 BeadChip (Illumina).
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The coverage of rare functional variants was increased by gen-
otyping an additional 245,766 SNPs on a HumanExome-12 Bead-
Chip (Illumina). After strict quality control filters and merging the
two datasets, we retained a total of 723,341 SNPs. Next, we per-
formed genotype imputation with IMPUTE v.2 (11) using the 1000G
Project imputation reference panel (Phase1 v3.2010/11/23). After
quality control filters, we obtained a dataset of 5,699,237 high-quality
SNPs with an MAF > 0.05. Finally, all variants with multicharacter
allele codes were excluded [with the snps-only option in PLINK 1.9
(12)], yielding a final dataset of 5,265,361 SNPs that were used for
eQTL association analysis.

Expression eQTLMapping.The eQTL analysis was performed with a
linear mixed model implemented in the GenABEL package (13).
Genetic relatedness matrices (GRMs) were estimated for each
nonsex chromosome separately using the remaining 21 chromo-
somes to exclude potentially associated SNPs from the GRM [the
so-called “leave-one-chromosome-out” approach (14)]. For local
eQTL mapping, we considered SNPs located within 1 Mb distance
from the start or end of a given gene (2,173,933 tests for 542
genes; 18 of 560 genes were located on sex chromosomes and were
not considered in this analysis). For trans-eQTL mapping, we
considered all of the remaining SNPs (2,946,428,227 tests for
560 genes). In each condition, we tested the associations between
SNPs and gene expression [log2(counts)]. We adjusted the linear
mixed model for age, sex, proportions of CD45+ cell populations,
and TruCulture batch. The proportions of CD45+ cell populations
were preadjusted for age and sex. Bonferroni correction for
multiple testing was applied separately for each condition. Local
eQTLs were considered significant if P < 2.3 × 10−8 (0.05/
2,173,933), and trans-eQTLs were considered significant if P <
1.7 × 10−11 (0.05/2,946,428,227). All statistically significant local
and trans-genetic associations are reported in Dataset S22. If the
distance between two significant trans associations was less than
500 kb, we considered them to belong to a single trans-acting locus
(Table S2). All eQTLs detected for genes for which expression
was assessed with probes hybridizing to a region containing one or
two common SNPs (Dataset S25) should be interpreted with
caution.
To verify that the detected trans-eQTLs were true master

regulators of gene expression and not quantitative trait loci of
specialized immune cell subpopulations that were not among the
eight major immune cell types included in our model, we tested
if trans-eQTL SNPs were associated with any of the 105 cell
proportions measured by flow cytometry in the Milieu Intérieur
cohort. Only 4 of 15 trans-eQTLs were significantly associated
with a flow cytometric measure (linear mixed model-adjusted
P < 0.05). We then performed eQTL mapping for all genes af-
fected in trans by the corresponding SNPs, adjusting for the as-
sociated proportions of immune cell subpopulations in addition
to the eight major cell populations initially included. Adjusting for
these additional cell proportions did not affect the summary sta-
tistics of the four trans-eQTLs, providing strong statistical support
that they have true trans-acting effects on gene expression.

SNP × SEX and SNP × AGE Interactions. We estimated the SNP ×
SEX and SNP × AGE interaction effects on gene expression
using ProbABEL v.0.4.5 from the GenABEL suite of programs
(15). The analysis was performed separately for each of seven
conditions. For each gene, we ran the polygenic function of
GenABEL, including age, sex, proportions of CD45+ cell pop-
ulations, and TruCulture batch as covariates. We then ran the
palinear function of ProbABEL separately for SNP × SEX and
SNP × AGE using polygenic residuals (h2.obj$residualY, where
h2.obj is the object returned by the GenABEL polygenic func-
tion) as the phenotype and the inverse variance–covariance
matrix (h2.obj$InvSigma) as the –mscore argument with the
–interaction option. Only SNPs located within 1-Mb distance

from the gene were tested. We used a Bonferroni-corrected level
of significance, α = 2.3 × 10−8 (0.05/2,173,933). For the esti-
mation of SNP × AGE interaction effects, we created a binary
variable for AGE, with zero corresponding to young (20–39) and
one corresponding to old (50–69) individuals. Individuals in the
40- to 49-y-old age group were excluded to maintain equal group
sizes and to maximize the possible differences between the
groups (assuming a monotonic effect of age).

Power Calculation. We used simulations to evaluate the statistical
power of the analysis to detect SNP × SEX and SNP × AGE
interactions. We assumed total sample sizes of 936 (for sex) and
775 (for age) individuals, which we divided equally between men
and women and between young and old subjects, respectively.
We set three different effect sizes for women (or young indi-
viduals), and we paired them with a range of effect sizes for men
(or old individuals). The choice of effect sizes for women (or
young individuals) was based on the standardized main effects
detected in local eQTL mapping in the absence of stimulation
(Dataset S8). We selected effect sizes for women (or young in-
dividuals) corresponding to the 5th, 50th, and 95th quantiles of
the observed effect sizes (i.e., β = 1, 0.5, and 0.3, respectively).
For each of the three selected effect sizes, we chose a candidate
gene (i.e., ATM for β = 0.3, IKBKAP for β = 0.5 and CTSC for
β = 1). For each of these genes, we assigned female (or young)
donors into three groups on the basis of genotype for the most
significant SNP. In each group, we simulated the expression of
the gene with a normal distribution with a mean equal to the
observed mean for expression of the gene in the given group and
an SD equal to the mean of SDs for the three groups. We did the
same for men after multiplying the means for the three groups by
0, 0.2, 0.4, 0.6, and 0.8. This resulted in total of three × five
different SNP × SEX (or SNP × AGE) interaction effects. For
each interaction effect, we assumed to run a total of 2,173,933
tests corresponding to the number of SNPs located in the vicinity
(±1 Mb) of the 542 genes. After Bonferroni correction for
multiple testing, the significance level α was equal to 2.3 × 10−8

(0.05/2,173,933). We calculated the power of our test assuming
six different MAFs (i.e., 0.05, 0.1, 0.2, 0.3 0.4, 0.5). For each
combination of MAF and interaction effects, we repeated the
simulation 1,000 times. The power was then calculated as the ratio
between the number of times that the interaction effect was con-
sidered significant and the total number of simulations (i.e., 1,000).

Annotation of eQTLs with Genome-Wide Association Study Hits. For
all sets of eQTLs listed in Datasets S8–S21, we considered those
identified in the absence of stimulation and the response eQTLs,
and we explored their implication in human diseases and traits
using hits from genome-wide association studies (GWAS) from
the January 30, 2017 version of the EBI-NHGRI GWAS Cata-
log. Only GWAS signals with P < 5 × 10−8 were used. A set of n
independent eQTLs was considered to be enriched in GWAS
SNPs if the proportion of eQTLs that were GWAS SNPs or in
linkage disequilibrium with GWAS SNPs (r2 > 0.8) in this set was
larger than that in 95% of 10,000 randomly sampled sets of n
SNPs. For local eQTLs, random SNPs were drawn from
92,133 independent SNPs selected from the 1,163,918 SNPs
tested for local associations [with the –indep pairwise 100 5
0.5 function of PLINK 1.9 (12)]. For trans-eQTLs, random SNPs
were drawn from 407,845 independent SNPs selected from all
5,265,361 SNPs (with –indep pairwise 100 5 0.5).

Decomposition of the Proportion of Variance Explained. For each
gene in each condition, we included age, sex, significant local and
trans-eQTLs, and proportions of CD45+ cell populations in a
single linear model [the effect of TruCulture batch was first
eliminated with the ComBat function of the sva package of R
(8)]. The proportion of the expression variance explained by each
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variable was calculated by averaging the sums of squares in all
orderings of the variables in the linear model using the lmg metric
in the relaimpo package of R (16). We reported the number of
genes found to be associated with age, sex, and local and trans-
eQTLs (in linear regressions and linear mixed models) and the
variance explained averaged across genes. For whole-blood cell
composition, we reported the number of genes for which at least
one cell population type explained at least 1% of the expression
variance. For these genes, we calculated the mean of the overall

variance explained by all eight cell population types. Dataset S24
reports the proportions of variance explained by each variable for
each gene and each condition.

Data Availability. Genotype data are available in the Euro-
pean Genome-Phenome Archive under the accession code
EGAS00001002460. Gene expression data can be found in Dataset
S1. All of the reported results can be explored and mined in the
accompanying web application (misage.pasteur.fr/).
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Fig. S1. Schematic overview of the study. Whole-blood samples from 1,000 healthy individuals of the Milieu Intérieur cohort stratified into groups of equal
size for age and sex. The genome-wide genetic diversity in all individuals was defined with the HumanOmniExpress and HumanExome BeadChips, which after
imputation, yielded a final dataset of ∼5 million SNPs per individual. In parallel, eight major leukocyte populations (CD45+ cells) were quantified in all in-
dividuals by flow cytometry, and whole-blood stimulation experiments were performed with three bacteria, a virus, a fungus, and a superantigen using the
TruCulture system. The induced expression profiles of 560 immune-related genes were assessed with NanoString hybridization arrays.
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Fig. S2. Expression of genes contributing the most to the first three PCs. (A) Top 15 genes for PC1. (B) Top 15 genes for PC2. (C) Top 15 genes for PC3. NS,
nonstimulated control.
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Fig. S3. Sliding window analysis for age groups relevance in response to IAV stimulation. On the x axis are shown the consecutive pairs of age groups
compared for expression differences. On the y axis are shown the numbers of genes with significant t test after controlling for FDR at 0.01. The highest
differences were observed for ages of 30 and 40 y old (in red), which support decade-long age groups division.
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Fig. S4. Comparison of proportion of expression variance explained by age between two regression models: model I (Yi = γ0i + γ1i·AGE + γ2i·SEX + γ3i·TC +
Σγji·Xj) and model II (Yi = γ0i + γ1i·AGE + γ2i·CMV + γ3i·SEX + γ4i·TC + Σγji·Xj,). Y

i, AGE, SEX, CMV, TC, and Xj are 936-element vectors, in which each element
corresponds to the value of the variable for one donor. Yi elements are equal to log2(counts) for gene i in a given condition. AGE elements are the donor’s age
in years. CMV elements are equal to one if the donor was infected with CMV and zero otherwise. SEX elements are equal to one for men and zero for women.
TC elements are equal to one if a TruCulture tube from batch B was used for the stimulation and zero otherwise, and Xj elements are equal to the jth cell count
proportions (i.e., #cellj/#CD45

+, where cellj = {CD19+, NK, CD4+, CD8+CD4+, CD8+, CD4−CD8−, monocytes, neutrophils}). Results are presented separately for
each stimulus and each age specificity group (from 1 to 6). NS, nonstimulated control.
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Fig. S5. Path diagrams representing structural equation models used to test mediation of (A) age and (B) sex effects on gene expression by the proportions of
CD45+ cell populations. Black arrows indicate direct effect, red arrows indicate indirect (mediation) effects, and gray arrows indicate additional (adjusting)
variables used in the model.

Piasecka et al. www.pnas.org/cgi/content/short/1714765115 10 of 14

www.pnas.org/cgi/content/short/1714765115


GG AG AA GG AG AA GG AG AA GG AG AA GG AG AA

8

10

12

14

rs28628889 (MAF = 0.29)

S
P

P
1 

ex
pr

es
si

on

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5
MAF

Po
w

er
 to

 d
et

ec
t A

G
E

 x
 S

N
P

 in
te

ra
ct

io
n

Interaction
 strength

βY=1 & βO=0
βY=1 & βO=0.2
βY=1 & βO=0.4
βY=1 & βO=0.6
βY=0.5 & βO=0
βY=0.5 & βO=0.1
other scenarios

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5
MAF

Po
w

er
 to

 d
et

ec
t S

E
X

 x
 S

N
P

 in
te

ra
ct

io
n

Interaction
 strength

βF=1 & βM=0
βF=1 & βM=0.2
βF=1 & βM=0.4
βF=1 & βM=0.6
βF=0.5 & βM=0
βF=0.5 & βM=0.1
other scenarios

A

B

C

20−29 30−39 40−49 50−59 60−69

Fig. S6. Effect of age and sex on genetic control of transcriptional response to immune stimulation. (A) eQTL presenting age-specific effect in response to
E. coli stimulation (AGE × SNP interaction). To test for interaction, we compared the effect of rs28628889 on SPP1 expression within 20- to 39-y-old (“young”)
and 50- to 69-y-old (“old”) groups. (B) Power of the tests to detect AGE × SNP interactions. Y stands for young (i.e., 20–39 y old), and O stands for old (i.e., 50–
69 y old). Other scenarios include βY = 1, βO = 0.8; βY = 0.5, βO ≥ 0.2; βY = 0.3 and βO ≥ 0. (C) Power of the tests to detect SEX × SNP interactions. F stands for
female, and M stands for male. Other scenarios include βF = 1, βM = 0.8; βF = 0.5, βM ≥ 0.2; and βF = 0.3, βM ≥ 0.
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Fig. S8. Differences in counts for positive control probes measured in experiments performed with two chemistries (Legacy and XT formulations) in non-
stimulated and six stimulated conditions. NS, nonstimulated control.

Table S1. Number of genes with sex- and age-dependent
expression in nonstimulated (NS) and six stimulated conditions

Intrinsic factors NS E. coli BCG S. aureus SEB C. albicans IAV

Age 206 277 252 270 227 252 217
Sex 328 336 343 348 372 347 347

Table S2. Number of genes with expression regulated by local and trans-eQTLs in the
nonstimulated (NS) and six stimulated conditions

Stimuli
Genes with
local eQTLs

Trans-acting
eQTLs

Trans-regulated genes
(maximum)

NS 135 4 5
E. coli 132 7 105
BCG 151 7 80
S. aureus 134 6 7
SEB 146 8 13
C. albicans 136 6 34
IAV 125 5 2
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Table S3. GWAS enrichment statistics for lists of eQTLs detected in nonstimulated (NS) state
and eQTLs detected after stimulations

eQTLs list Observed Expected P value Excess

Best.eqtls.cis.NS 11 3.1 0.037 3.5
Best.reqtls.cis.E.coli 6 1.5 0.045 4.0
Best.reqtls.cis.BCG 10 1.7 0.022 5.8
Best.reqtls.cis.S.aureus 7 1.4 0.027 5.2
Best.reqtls.cis.SEB 8 1.8 0.032 4.4
Best.reqtls.cis.C.albicans 11 1.5 0.017 7.3
Best.reqtls.cis.IAV 5 1.0 0.037 5.1
Best.eqtls.trans.NS 1 0.056 0.035 17.8
Best.reqtls.trans.E.coli 2 0.066 0.0098 30.3
Best.reqtls.trans.BCG 1 0.056 0.036 17.8
Best.reqtls.trans.S.aureus 2 0.046 0.0069 43.5
Best.reqtls.trans.SEB 2 0.06 0.008 33.3
Best.reqtls.trans.C.albicans 1 0.062 0.042 16.1
Best.reqtls.trans.IAV 0 0.036 1.0 0.0
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