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Fig. S1. Dynamic model of cancer cell migration in an elastic ECM fiber network. (A) Integrated 

cancer cell migration model consisting of cellular membrane (yellow), transduce layer (green), nuclear 

membrane (blue), and filopodial membrane (red). The cellular membrane is not only connected by actin 

stress fibers (SFs), but also anchored to the elastic substrate by forming focal adhesions (FAs), and 

viscoelastic behaviors in cellular membrane is modeled using Kelvin-Voigt model. (B) The free body 

diagram of the i-th filopodial node in the circle marked in (A) where four external forces are acting. 
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Fig. S2. Mechanical interplay between filopodia and ECM fiber. Schematic showing integrin 

molecules on the filopodial membrane interacting with an extracellular matrix fiber, and illustrating a 

stochastic ligand-receptor bonding process at the focal complex site. Also, this schematic shows that 

filopodia can sense the strength of external force (or the magnitude of ,

f

FC iF ) from the surrounding ECM 

fibers, and adjust their myosin sliding rates (
mv ) with a function of the strength of external force. 

Contractile actin-myosin assemblies are located along to the shaft of filopodia.  Small blue arrows on the 

actin-myosin assemblies indicate directions of contractile actin filaments, small blue lines are integrin 

molecules at the tip of filopodium. 

 

 
Fig. S3. Composition of ECM fiber network model. (A) Segmented ECM fibers were generated 

between crosslink nodes. Yellow spheres indicate segmented ECM fiber nodes. (B) A magnified view in 

blue circle mark in (A) showing examples of three fibers’ connectivity with a crosslink node. Blue lines 

indicated crosslinks between an ECM fiber node and a crosslink node. 
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Fig. S4. Schematic diagram of signal pathway. (A) The extracellular signal pathway activates MMP-2, 

and degrades the integrity of ECM. (B) An example of simulated results showing MMP-2 concentration 

contour distribution over ECM fiber network model. 
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Fig. S5. Simulation of mechanosensing in a soft ECM model. (A) Uniaxial tensile force is applied 

along two different directions in a cubic-shaped soft ECM model with a length of 20 µm for 15 s until the 

ECM model is strained up to 0.3. Afterwards, a single ECM fiber in the center of ECM model is force to 

displace to calculate the CPS of surrounding ECM. (B)  During the event of fiber displacement, the ECM 

fiber is tensioned during the first period of 7.5 s (from 15 to 22.5 s) and relaxed during the second period 

of 7.5 s (from 22.5 to 30 s) under three different fiber strains of 0.1, 0.3, and 0.5 (unstressed length of 

reference fiber is 1 µm). Time-varying applied force curves show maximum values at the time-point of 

22.5 when the direction of the force is changed to the opposite direction. (C) Rate of applied force by 

time at the fiber shows three saddle points. (D) Characteristic curves of CPSs using continuum mechanics 

verses CPS using discrete fiber mechanics represent two linear regions (yellow marked i and ii), and one 

non-linear region (yellow marked iii). (E) Selected linear regressions at regions i (r
2
 = 0.966) and ii (r

2
 = 

0.976) between CPS using continuum mechanics  and CPS using discrete fiber mechanics in the case of 

fiber strain 0.3 in (D). 
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Fig. S6. Simulation of mechanosensing in a stiff ECM model. (A) Uniaxial tensile force is applied 

along two different directions in a cubic-shaped stiff ECM model with a length of 20 µm for 15 s until the 

ECM model is strained up to 0.3. Afterwards, a single ECM fiber in the center of ECM model is force to 

displace to calculate the CPS of surrounding ECM. (B)  During the event of fiber displacement, the ECM 

fiber is tensioned during the first period of 7.5 s (from 15 to 22.5 s) and relaxed during the second period 

of 7.5 s (from 22.5 to 30 s) under three different fiber strains of 0.1, 0.3, and 0.5 (unstressed length of 

reference fiber is 1 µm). Time-varying applied force curves show maximum values at the time-point of 

22.5 when the direction of the force is changed to the opposite direction. (C) Rate of applied force by 

time at the fiber shows three saddle points. (D) Characteristic curves of CPSs using continuum mechanics 

verses CPS using discrete fiber mechanics represent two linear regions (yellow marked i and ii), and one 

non-linear region (yellow marked iii). In particular, regions i and ii are related with the force build-up and 

the force drop-down, respectively. (E) Selected linear regressions at regions i (r
2
 = 0.924) and ii (r

2
 = 

0.999) between CPS using continuum mechanics and CPS using discrete fiber mechanics in the case of 

fiber strain 0.3 in (D). 
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Fig. S7. Characterization of Cell-Probed Stiffness. (A) Simulated plots showing that a single ECM 

fiber in the center of ECM models is forced to displace to calculate two kinds of CPSs of surrounding 

ECM after both soft and stiff ECM network models are strained up to 0.3. A blue arrow in each ECM 

model indicates the direction of stretching a single ECM fiber.  During the event of fiber displacement, 

the ECM fiber is tensioned during the first period of 7.5 s (from 15 to 22.5 s) and relaxed during the 

second period of 7.5 s (from 22.5 to 30 s) under three different fiber strains of 0.1, 0.3, and 0.5 

(unstressed length of reference fiber is 1 µm). Graphs show time-varying (B) CPS using continuum 

mechanics, and (C) CPS using discrete fiber mechanics for both soft and stiff ECM models. 
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Fig. S8. Mechanosensing of cell interacting with the ECM of varying stiffness. Simulated plots 

showing cell migration towards stiffer ECM fiber network at two different time points of (A) t+80s and 

(B) t+130s. In (A), and (B), yellow shade plots indicate the cellular and filopodia membrane, blue shade 

plot indicates the nuclear membrane, and black lines are ECM fibers. Time-varying effective Cell-Probed 

Stiffness (CPS) at the filopodial tip is examined at two time ranges of (C) 78~90s and (D) 124~136s, and 

values of effective CPS are found to be higher as the filopodium approaches more towards stiffer ECM. 

(E) and (F) Statistical distributions of CPS at selective four time points (blue points in (C) and (D). Bold 

lines indicate effective CPS ( *E ), and they are calculated by using Eq. (5). r indicates the distance 

between the tip of filopodia and a node of ECM.  

 

 

Fig. S9. Comparisons between *E and  *

fk  at protrusive and retractile phases of filopodia. Graphs 

showing time-varying CPS for the two methods of continuum mechanics and discrete ECM fibers 

mechanics at the filopodial (A) protrusive and (B) retractile phases. (C) Linear regressions of protrusive 

phase (r
2
=0.890) and retractile phase (r

2
=0.809) between calculated two CPSs in (A) and (B), respectively.  
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Fig. S10. Experimental observation of filopodial mechanosensing.  Time-varying data of (A) force, (B) 

rate of force by time, and (C) two CPSs using continuum mechanics and discrete fiber mechanics at the 

filopodia ‘b’ shown in Fig. 2A and G. 
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Fig. S11. Experimental measurements of filopodial mechanosensing local ECM stiffness.  (A) 3D 

confocal images showing filopodia protrusive and retractile motions in GFP-transfected HUVECs, 

collagen type 1 fiber network (gray), and fluorescent beads (red). Scale bar = 5 µm. A 3D shade plot in (B) 

indicates 3D reconstructions of filopodia (yellow) and beads (red). Time-varying data of (C) force, the 

rate of force by time, and (D) two CPSs using continuum mechanics and discrete fiber mechanics at the 

filopodia (circle mark in (B)). (E) Linear regressions of protrusive (r
2
=0.82) and retractile phases (r

2
=0.71) 

between calculated two CPSs of the local ECM at filopodium in (D), respectively. (F) Series of still shots 

with time-interval of 200 seconds for 3600 seconds. P and R indicate motion modes of protrusion and 

retraction, respectively.   
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Fig. S12. Simulations of stretching ECM models. Selected examples of deformed ECM network 

models of (A) soft ECM, and (B) stiff ECM at three different times of 0, 15, and 30 s, respectively. (C) 

Curves of strain verses stress for soft and stiff ECMs. Slopes of linear fits for soft and stiff ECMs indicate 

bulk moduli of 2558 and 4999 Pa, respectively. Bar graphs of frequency count for pore sizes of (D) soft 

ECM (3.12±0.57 µm) and (E) stiff ECM (1.81±0.34 µm).  
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Fig. S13. Volume exclusion effect of the cell. Top view plots of (A), and (B) show distributions of ECM 

fibers with the cell, and without the cell, respectively. Side view plots of (C), and (D) show distributions 

of ECM fibers with the cell, and without the cell, respectively. Note slice thickness of both plots were set 

to be 5 µm to visualize the volume exclusion effect of the cell clearly.  
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 Fig. S14. Effect of separation distance in directed cell migration towards stiffer ECM. Selected 

examples of (A) displacement (left panel) and (B) maximum principal stress (middle panel) contour slices 

along both migrating cell and the domain of ECM as a function of separation distance from the surface of 

the stiffest ECM in which the cell migrates from three different separation distances of 10, 20, and 30 µm. 

White meshes on the vertical slice indicate ECM fiber network. (C) Variations of absolute displacements 

of x, y, and z directions, and total displacement along to the x coordinate (black lines in (A)). 
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Fig. S15. Computations of stress tensors at a node of x. The node of x is connected with neighboring 

nodes of 1 2 3, , ,   and 4 where forces of 1 2 3, , ,F F F and 
4

F are exerted, respectively. Bold lines, yellow 

circles, and red arrows indicate ECM fibers, nodes on ECM fibers, and force vectors, respectively. 

 

 

 

 
Fig. S16. Motion of a continuum body with discrete ECM fibers. Labels of Boundary

0 and 
1

represent discrete ECM fiber system in reference and current configurations, respectively.   
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Fig. S17. Time-varying cellular polarity angle.  A graph showing temporal variation in cellular polarity 

angle (PA) during the directed cell migration towards the stiffer ECM shown in Fig. 4. 

 

Fig. S18. Cancer cell simulations with numerous and long (or short) filopodia. Selected plots of 

simulation for the directed cancer cell migration towards the stiffer ECM by tuning filopodial lengths (L) 

of 1, 3, and 5 µm (rows) and numbers of filopodia (N) of 5, 10, and 15 (columns) at the time-point of 

500s. Blue arrow indicates the direction of cellular polarity. Pore sizes of soft (left) and stiff (right) are 3 

and 1 µm, respectively. A full image of Fig. 6A. 
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Fig.  S19. Probability distributions of the speed at filopodial tip. Graphs show probability distributions 

of the speed at filopodial tip for nine cases under three different unstressed filopodial lengths of (A) 1, (B) 

3, and (C) 5 µm, and three different filopodial numbers of 5, 10, and 15. 
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Fig. S20. Simulation of mechanosensing in an ECM model with low fiber density. (A) Uniaxial 

tensile force is applied along two different directions in a cubic-shaped softest ECM model with a length 

of 20 µm for 15 s until the ECM model is strained up to 0.3. Afterwards, a single ECM fiber in the center 

of ECM model is force to displace to calculate the CPS of surrounding ECM. (B)  A bar graph indicates 

frequency count for pore sizes of softest ECM (4.62±0.77 µm). Graphs show time-varying (C) CPS using 

continuum mechanics, and (D) CPS using discrete fiber mechanics for the softest ECM model. (E) 

Characteristic curves of CPSs using continuum mechanics verses CPS using discrete fiber mechanics. 

Selected linear regressions at regions of force build-up (r
2
 = 0.18) and force drop-down (r

2
 = 0.98) 

between CPS using continuum mechanics and CPS using discrete fiber mechanics in the case of fiber 

strain 0.1 in (E). 
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Fig. 21. A schematic showing an increase in effective stiffness (kf) of a single ECM fiber (consisting 

of series of elastic springs) during the tugging phase of filopodia dynamics (crawling motion of filopodial 

tip on the ECM fiber). A) At time of 0t , a tip of filopodium starts tugging on the unstressed single ECM 

fiber towards the grounded wall. Integrins are clustered on the filopodial tip, and its tip crawls on the 

unstressed ECM fiber with a sliding rate (vs). L0 indicates the unstressed length of one ECM fiber unit, 

and an integrin clustering is formed on the 6-th ECM fiber unit from the grounded wall. B) At time of 

0 ,t t  the length of stressed part (or the number of ECM fiber units) is reduced more as filopodial tip 

crawls on the single ECM fiber more towards the left side, but two ECM fiber compartments on the right 

side become relaxed after the filopodial tugging motion is over. 
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Fig. S22. Cell-Probed Stiffness (CPS) verses MT1-MMP secretion rate. Contour plots of (A) MMP-2 

and (B) TIMP-2 concentration distributions at t = 1200 s using simplified reaction-diffusion model for 

MMP-2 activation. Variations of (C) cellular traction force and (D) CPS by interactions between tips of 

the filopodia and the surrounding local ECM fibers under two different MT1-MMP secretion rates of 0.01 

and 0.1 s
-1

. Error bars indicate standard error of means (n=5). 
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Table S1. List of simulation parameters. 

Parameter Definition Value Sources 

A Area [µm
2
]    

AAM Averaged AMs' cross-sectional area in a filopodium [µm
2
] 7.07×10

-2
 [1] 

Af Averaged  cross-sectional area of a single fiber [µm
2
] (0.615~1.32)×10

-3
  

Cc Friction coefficients associated with the energy dissipation at the 

integrin node [N s m
-1

] 

0.001 C 

Ccort Drag coefficients associated with viscoelastic behaviors in actin 

cortex 

0.006 C 

Ce Friction coefficients associated with the energy dissipation at the 

ECM fiber node [N s m
-1

] 

0.001 C 

Cf Friction coefficients associated with the energy dissipation at the 

filopodial node [N s m
-1

] 

0.001 C 

Ct Friction coefficients associated with the energy dissipation at the 

transduce node [N s m
-1

] 

0.001 C 

Cn Friction coefficients associated with the energy dissipation at the 

nuclear node [N s m
-1

] 

0.001 C 

F Force [N]   

,max
f

PF  Maximum value of the force due to actin polymerization [nN] 2 C 

EAM Young's modulus value of AMs [kPa] 230 [20] 
e

fE  
Young’s modulus value of single fiber [MPa] 1 C 

AM  Total elastic energy stored in the AMs in the filopodium [pJ]   

L Length   

Lb Stretched length of bonds between receptors and ligands   
1

,AM iL  Length of the i-th single unit of AMs at the present time [nm]   
0

,AM iL  Length of the i-th single unit of AMs at the previous time [nm]   
e

i jL  
Stressed length of  the j-th segment of the i-th fiber [µm]   

0e

i jL  
Unstressed length of  the j-th segment of the i-th fiber [µm]   

Nf Number of nodes at filopodial membrane 60~180  

Ne Number of nodes at ECM fiber networks 30k~234k  

Nc Number of nodes at cellular membrane 549  

Nt Number of nodes at transduce layer 549  

Nn Number of nodes at nuclear membrane 549  
e

i
N

 
Number of nodes at the i-th fiber   

AMN
 

Number of contractile compartments of AM assemblies   

,AM jd  Distance of the j-th contractile compartment  of AM assemblies 

[nm] 

  

hp Height from the surface to the i-th integrin node [nm]   

cort  Effective spring constant of line elements of the actin cortex 

[N/m] 

8×10
-3

 C 

LR  Effective spring constant of ligand-receptor bond [pN/nm] 1.0 [9] 

,AM j  Effective spring constant of the j-th AM  assemblies  in the 

filopodium [pN/nm] 

20.32~33.87 C 

,

e

f s  The stretching modulus of a fiber [nN] 0.615~1.32 C 

,

e

f b  The bending modulus of a fiber [pN µm
2
] (3.02~12.81)×10

-3
 C 
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*
C means “current work”. 

  

memb  Effective spring constant of line elements of the cell membrane 

[N/m] 

5.0×10
-5

 [4] 

e

i j  Stressed angle at the j-th node between two segments in the i-th 

fiber 

  

0e

i j  Unstressed angle at the j-th node between two segments in the i-th 

fiber 

  

koff Kinetic dissociation rate [s
-1

]   
0

offk  Kinetic dissociation rate at an unstressed state [s
-1

] 1 C 
k

bn  Number of bonds between integrins and ligands at the k-th 

filopodial node 

  

,
ˆ f

R kn  Unit vector normal to the local surface of the k-th filopodial node   

ˆ
wn  Unit normal vector at the local surface of the fiber   

t Time [s]   

,î kt  Tangential unit vector at the k-th segment in the i-th fiber   

v Velocity vector [nm/s]   

vm Sliding rate of non-muscle myosin II on the actin filaments [nm/s]   C 

0mv  Sliding rate of  non-muscle myosin II  in the absence of load 

[nm/s]  

  

x Location vector [µm]   

xL,i Root of ligand-receptor bonds on the local surface of a fiber [nm]   
e

ijx  
The j-th location vector along to the i-th fiber [µm]   

λ Equilibrium distance of an integrin [nm] 30 [10] 

Sup    

c cytoskeleton   

e extracellular matrix   

f filopodia   

n nucleus   

i i-th node   

t transduce layer   

0 Previous time or initial state   

1 Present time   

Sub    

AM Acto-myosin    

E Elastic   

FA Focal adhesion   

FC Focal complex   

P Actin polymerization   

SF Stress fiber   

T Transduce layer   

b bonds   

c cytoskeleton   

e extracellular matrix   

f filopodia   

n nucleus   

t transduce layer   
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Method S1: Computational model for simulating cell invasion into a discrete ECM fiber network 

1) Simulation of filopodia penetration dynamics 

We assume that filopodia penetration dynamics into 3D ECM consists of four different phases, such as 1) 

an outgrowing phase due to protrusive actin polymerization (1-3), 2) a retractile phase due to zero or 

weak focal complex (FC) force at the filopodial tip (4), 3) a contractile phase due to strong FC forces at 

the filopodial tip, and 4) a tugging phase (filopodial crawling motion on ECM fiber) due to the attachment 

of a filopodial tip to an nearby ECM (5). Depending on the strength and spatiotemporal properties of the 

FC formation, the bond of FC at the filopodial tip either ruptures or results in the generation of a 

significant traction force. This phase plays a critical role in switching among the other phases and 

coordination of the diverse filopodial dynamics, leading to either success or failure of cell migration 

depending on local ECM conditions. To solve the filopodia penetration dyanamics into 3D ECM, a 

dynamic equation at the i-th node on the filopodial membrane can be expressed as 

, ,, ,
, 1, , .

f
f f f fi

E i P iFC i AM if f

d
C i N

dt
    

x
F F F F                                          (S1-1) 

where 
f

C is a coefficient of dissipation energy for the filopodial membrane, f
ix is a position vector at the 

i-th filopodial membrane, and 
f

N is total number of nodes on the filopodial membrane. ,
f

E iF is an elastic 

force at the i-th node of the filopodial membrane, and it is obtained by using the virtual work theory in 

structural mechanics. To this end, the total elastic energy stored in the filopodial membrane is obtained. 

Two types of total elastic energy are considered. One is the total elastic energy associated with distance 

changes between the nodes (6, 7): 

 
2

0

12

f line
f f fL

L i i

i

H L L




                                                             (S1-2) 

where 
f

iL  is the length of the i-th line of the filopodial membrane mesh and is updated at every time-step. 
0f

iL is its relaxed length. 
f

L  is effective stiffness constants of the line elements of the filopodial 

membrane (5.0×10
-5

 N/m) (8). Similarly, the total elastic energy associated with area changes is given by 
2

0
0

0
12

f ff element
f fi iA

A if
i i

A A
H A

A





 
  

 
                                                    (S1-3) 

where
f

iA is the i-th mesh area of the filopodial membrane and 
0f

iA is its relaxed values. 
f

A  is an effective 

stiffness constant of area elements of the filopodial membrane (1.0×10
-4

 N/m
2
) (8). Then, ,

f
E iF can be 

obtained by differentiating the two kinds of total energy, 

 
0

0

, 0
1 1

f f f fline element
f f f f fi i i i

E i L i i Af f f
i ii i i

L A A A
L L

A
 

 

   
     

  
 F

x x
 .                           (S1-4) 

,
f

FC i
F is a focal complex force at the i-th node of the filopodial membrane, and it is expressed as 

  ,,,
ˆ f

R i

f

b i LR b

f
FC i n L   nF                                                        (S1-5) 
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where 
,

f

b in is the number of integrin-collagen bonds at the i-th node of filopodial membrane, LR is the 

spring constant of a single integrin-collagen bond (~1 pN/nm) (9), bL is the average stretched length of the 

integrin-collagen bonds,   is an unstressed length of bonds (~30nm) (10) and 
,

ˆ f

R i
n is a unit vector at the 

local surface of the i-th node of filopodial membrane toward the bonding site at the ECM fiber (Fig. S2). 

Here  bL  represents the stretched distance from the equilibrium. We utilize Bell’s model (11) to 

incorporate force-dependent reaction rates of ,

f

b in is expressed in following ordinary differential equation: 

  ,

,

,
f

on off b i

f
b i f

tot b i
n

dn
k n n k

dt
                                                          (S1-6) 

where totn is total available number of integrin molecules at the i-th node of filopodial membrane, onk is 

the kinetic associate rate for binding integrin molecules and ECM fiber, and it is expressed as  (12, 13) 

 
2

0

0

exp
2

LR bbind
on on

b

Ll
k

Z k T
k

  
  

  

                                                     (S1-7) 

where 
0

onk  is the zero forward reaction rate (1 molecule
−1

 s
−1

), bindl is a binding radius (30 nm) to check 

whether the i-th node of cellular membrane and the node on the fiber are sufficiently close, and bk T is the 

unit of thermal energy. 0Z is the partition function for a integrin molecule confined in a harmonic potential 

between   and bL  , and it is expressed as 

 0
2 2 2

b LR LR
b

LR b b

k T
Z erf L erf

k T k T

  
 



    
              

.                                    (S1-8) 

offk  is the kinetic dissociation rate, and it is known as Bell’s equation for the slip bond, which is defined 

by (11) 

 0 exp
LR b b

off

b

off

L x
k

k T
k

   
  

 
                                                               (S1-9) 

where 
0

offk is the zero kinetic dissociation rate in the absent of the force, bx is the distance between the 

minimum binding potential and the transition state barrier, and b

b

k T
x

represents an intrinsic force ~ 200 

pN. 

    ,
f

P iF is a polymerization force at the tip node of the filopodial membrane, and it is only nonzero nonzero 

during the outgrowing phase. The polymerization of actin filopodia in a filopodium generate protrusive 
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force against the membrane of the filopodial tip, and the magnitude of ,

f

P iF is assumed to be ~2 nN since 

the diameter of filopodium is ~ 300nm consisting of > 30 actin filaments. The direction of ,

f

P iF is assumed 

to be identical to the direction of normal unit vector at the filopodial root. 

    ,
f

AM i
F  is an actin-myosin contractile force at the i-th node of the filopodial membrane. The filopodial 

model is geometrically composed of NAM compartments of actin-myosin (AM) assemblies; the first 

compartment is attached to the root of filopodium and the last compartment is connected to the tip of 

filopodium (Fig. S2). We model filopodial contractile motion using AM assemblies as shown in Fig. S2. 

We assume that the stiffness of an AM is variable as the length of the AM ( 1

,AM jL ) is decreased by time. 

Thus, the length of each AM contracts at both ends according to the myosin II sliding rate, and rate of 

change for 1

,AM jL is expressed as, 

1

,

,2
AM j

m j

dL
v

dt
  . The stiffness of an AM is expressed as,  

, 1
,

, 1..
AM

AM AM
AM j

AM j

E A
j N

L
   . Note that 1

,AM jL  is an unstressed length of a single compartment of the j-th 

AM. In addition, to incorporate mechanical interplay between the filopodia and ECM, we adopt the force-

velocity relation of muscle myosin II, first proposed by A.V. Hill (14), as following: 

                          
0

stall TR
m m

stall m TR

F F
v v

F c F





                                                                  (S1-10) 

where 
0mv is the sliding rate of myosin in the absence of load, 

stallF is the stall force of 1 nN, 
mc is a 

dimensionless myosin parameter of 0.1, and 
TRF  is the magnitude of sensed elastic force from the ECM at 

the tip of filopodium. The total elastic energy stored in the AMs in the filopodium is given by 

               
2, 1

, ,

1 2

AMN
AM j

AM AM j AM j

j

d L





 

  
  

                                                         (S1-11)                                                                

where  ,AM jd represents the distance of the j-th contractile AM compartment under tension. Using the 

virtual work theory, forces due to contractile myosin motor activity at the j-th node of filopodial shaft is 

given by 

        , , 11 1

, , , , , 1 , 1 , 1

1

.
AM j AM jf AM

AM j AM j AM j AM j AM j AM j AM jf f f

j j j

d d
d L d L 



  




 

     
  

F
x x x

            (S1-12) 

2) Simulation of intracellular mechanics 

The intracellular mechanics is other key mechanisms involved in cell migration in 3D ECM. The essential 

equations in the model include: 1) an equation for FA dynamics based on Monte-Carlo simulations of 

ligand-receptor bonds, 2) three equations for deformations of double viscoelastic cellular membranes: an 

outer cell membrane and an inner transduce membrane, and a nuclear membrane, 3) an equation 

describing the contractile motion of actin stress fibers, which is extended from FAs on the cortical surface 
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to the nuclear membrane, and 4) lamellipodium protrusion by actin polymerization (15)
 
with a constant 

force of 300 pN. The detailed description of the equations in the model can be found in previous works 

(16, 17). Among them, the major extension in the model of intracellular mechanics presented here is FAs 

dynamics in 3D ECM fiber network model. The FA force acts between the i-th integrin node on the 

cellular membrane and points of ECM fibers where the extension of the unit vector normal to the cellular 

membrane interacts with the nearest point of ECM fibers. A dynamic equation at the i-th node on the 

outer cell membrane can be expressed as 

  , , ,,
, 1, ,

c t
c c c ci i

c ccort cort E i L i T iFA i

d d
C C C i N

dt dt
     

x x
F F F F                          (S1-13) 

where cC and cortC are coefficients of dissipation energy for the outer cell membrane and the actin cortex, 

respectively. In addition, cortC is a drag coefficient associated with viscoelastic behaviors in the actin 

cortex. c
ix is a position vector at the i-th node in the cellular membrane, and t

ix is a position vector at the i-

th node in the transduce layer. 
,

c
FA iF ,

,
c
E iF ,

,
c
L iF , and 

,
c

T iF are a FA force, an elastic force, a lamellipodium 

force, and a transduce force representing the elastic force of actin cortex at the i-th node of the outer cell 

membrane, respectively. ,
c
FA iF , can be expressed in a similar manner of focal complex force at the 

filopodia (See Eq. (S1-5)): 

 , ,, .ˆc c

FA i R i

c
LRb i bn L  F n                                                    (S1-14) 

where ,

c

b in is the number of integrin-collagen bonds at the i-th node of cellular membrane, and 
,

ˆ c

R i
n is a unit 

vector at the local surface of the i-th node of cellular membrane toward the bonding site at the ECM fiber. 

The elastic force, ,
c
E iF  , is also can be similarly expressed like Eq. (S1-4): 

 
0

0

, 0
1 1

.

c c c cline element
j j j jc c c c c

E i L j j Ac c c
j ji j i

L A A A
L L
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 
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where 
c

iL  is the length of the i-th line of the cell membrane mesh and is updated at every time-step. 
0c

iL is 

its relaxed length. 
c

L  is effective stiffness constants of the line elements of the cell membrane (5.0×10
-5

 

N/m) (7, 8). 
c

iA is the i-th mesh area of the cell membrane and 
0c

iA is its relaxed values. 
c

A  is an effective 

stiffness constant of area elements of the cell membrane (1.0×10
-4

 N/m
2
) (7). 

,
c
L iF  is a characteristic 

feature at the leading edge of migratory cells. It is believed to be the actual motors which push the cortical 

cytoskeleton forward during the process of cell migration (18). Normally, cells experience a small 

protrusive pressure that results from osmotic pressure or actin branches stimulated by activated arp2/3. 
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Here we assume that the magnitude of the lamellipodium force is constant at 300 pN, and exists at only 

leading edges of the cell. 
,

c
T iF  represents the elastic force of actin cortex in the Kelvin-Voigt model (Fig. 

S1) at the i-th node of the outer cell membrane and expressed as 

 ,

,0

, ,

c

T i

T i

cort T i T i c

i

L
L L


  


F

x
                                                           (S1-16) 

where cort is an effective spring constant of line element of the actin cortex (8.0×10
-3

 N/m),  ,T iL  is the 

length of the i-th line in the actin cortex, and it is updated at every time-step.  0

,T iL is its relaxed (zero force) 

length (500 nm). 

     A dynamic equation at the i-th node of the inner transduce membrane can be expressed as 

  , ,,
, 1, ,

c t
t t ti i

cort t cort tE i T iSF i

d d
C C C i N

dt dt
     

x x
F F F                                 (S1-17) 

where tC is a coefficient of dissipation energy for the inner transduce membrane (0.001 Ns/m). ,
t
E iF ,

,
t
SF iF ,and ,

t
T iF are an elastic force, an actin stress fiber (SF) force, and a transduce force at the i-th node of 

the inner transduce membrane, respectively. The elastic force, ,
c
E iF  , is also can be similarly expressed like 

Eq. (S1-4): 

 
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0

, 0
1 1

.

t t t tline element
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where 
t

iL  is the length of the i-th line of the transduce layer mesh and is updated at every time-step. 
0t

iL is 

its relaxed length. 
t

iA is the i-th mesh area of the cell membrane and 
0t

iA is its relaxed values.  

    The actin SF is a bundle of actin microfilaments assembled by actin-myosin II interactions. In the 

model, the i-th node of the inner transduce membrane is connected to the j-th node of nuclear membrane 

by a SF. Its connection to the j-th node of nuclear membrane is determined by the nearest distance from 

the i-th node of the inner membrane to the nucleus. The stiffness of a SF is variable. According to the 

literature, the stiffness increases with a contractile agonist (histamine) and decreases with a relaxing 

agonist (isoproterenol) (19). These characteristics must be reflected in the formulation of the SF stiffness: 

1

,

SF SF
SF

SF i

E A

L
                                                             (S1-19) 

where SFE is Young’s modulus of SFs (230 kPa) directly measured from isolated smooth muscle cells 

(20), SFA  is the average cross-sectional area of SFs (250 nm in radius (21)), and 
1

,SF iL is  the length of a 

single compartment of the i-th SF. Similarly, the elastic energy stored in the i-th SF is given by 
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where SFN  is the number of contractile compartments in the i-th SF, ,SF id represents the distance between 

i-th node of inner membrane and the j-th node of nuclear membrane for a SF connected to the nucleus. It 

should be noted that ,SF id physically means the length of SFs under tension and 1

,1SFL  represents the length 

of a single unstressed bundle of SFs. Using the virtual work theory, forces due to actin SFs’ motor 

activity at the i-th node of inner membrane and the j-th node of nuclear membrane is given by 

 , ,1

, , ,

SF i SF it SF
SF i SF i SF SF it t

i SF i

E d
d N L

N

 
    

 
F

x x
                               (S1-21)                                                                               

Actin motor activity is assumed not to start until the other end of a SF is connected to the nucleus. The 

myosin II’s sliding rate is known to fluctuate (i.e. is non-uniform) unlike myosin I which slides with a 

uniform rate. Furthermore, the sliding rate of myosin II is adjusted by sensing the transmitted focal 

adhesion force from the ECM (22). To incorporate these characteristics into the model, force-velocity 

relation of muscle myosin II is similarly adopted like Eq. (S1-10). Initially, the length of sarcomere unit is 

800 nm ( 1

,SF iL  =800 nm at t=0s), which contracts until 60 % of the initial length has contracted. As the 

contraction takes place at both sides of each sarcomere unit, the minimum time required for 60 % 

contraction is calculated as 16 s with 0mv . Furthermore, an additional condition for terminating actin 

motor activity is also considered when integrin nodes are broken from FA formations.  

    The transduce force, ,
t

T iF ,is expressed as 

  ,0

, ,, ,
T i

cort T i T i t

i

t c
T i T i

L
k L L


    

x
F F .                                               (S1-22) 

   Lastly, a dynamic equation at the i-th node of the nuclear membrane can be expressed as 

, ,
, 1, ,

n
n ni

n nE i SF i

d
C i N

dt
  

x
F F                                                       (S1-23) 

where nC is a coefficient of dissipation energy for the nuclear membrane (0.001 N s m
-1

), and n
ix is a 

position vector at the i-th node in the membrane of nucleus. 
,

n
E iF  and 

,
n

SF iF are an elastic force and a SF 

force at the i-th node of the nuclear membrane, respectively. The elastic force, ,
n
E iF , can be expressed in a 

similar manner of the Eq. (S1-4) as 
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where 
n

iL  is the length of the i-th line of the nuclear membrane mesh and is updated at every time-step. 

0n

iL is its relaxed length. 
n

L  is effective stiffness constants of the line elements of the nuclear membrane 

(5.0×10
-3

 N/m) (23). 
n

iA is the i-th mesh area of the nuclear membrane and 
0n

iA is its relaxed values. 
n

A  is 

an effective stiffness constant of area elements of the nuclear membrane (1.0×10
-4

 N/m
2
). The SF force,

,
n

SF iF  at the i-th node of the nuclear membrane is expressed as 

 , ,1

, , , ,

SF i SF in tSF
SF i SF i SF SF i SF in n
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E d
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F F
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    In particular, Equations (20) and (24) are coupled with the viscoelastic actin cortex using kelvin-voigt 

model (a spring and a dashpot together in parallel). To solve these ordinary differential equations 

numerically, they should be converted with respect to vectors ,

Tc t
i id d

dt dt

  
 
  

x x
as followings:  
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3) Simulation of discrete ECM fiber mechanics 

We assume the ECM fiber network to be composed of elastic ECM fibers and crosslinks, which make 

strong bonds between adjacent fibers (24). The elastic energy stored in the ECM fiber network can be 

expressed in terms of the stretching and bending properties of the constituent fibers. The stretching 

modulus of a fiber is given by  ,

e e

f s f fE A  , where 
e

fE and  2

f fA r
 
are the Young’s modulus (1 

MPa) and the cross-sectional area of a single fiber, respectively. The bending modulus of a fiber is given 

by  ,

e

f b f fE I  , where  4 4f fI r (25). The stretching elastic energy of the j-th segment of the i-th 

fiber is given as a function of the difference between the stressed ( e

i jL ) and unstressed ( 0e

i jL ) lengths, and 

the bending elastic energy as the one of stressed ( e

i j ) and unstressed ( 0e

i j ) angles at the j-th node 

between two segments in the i-th fiber (Fig. S3). The total elastic energy in the i-th ECM fiber in the 

network can be expressed as following: 
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Here, it should be noted that the elastic energy at the j-th node in the i-th fiber is summed only for coaxial 

neighbouring nodes. Similarly, the elastic force at the j-th node in the i-th fiber,
,

e

E i jF , can be derived by 

using the virtual work theory: 

 0 01 1
,

, , ,0 0
1

( )
e e e e e ee j j
i k i k i k i k i k i kf ie e e

E i j f s f be e e e e
k j k ji j i k i j i k i j

L L L

L L

  
 

 

  

   
    

  
 F

x x x
                             (S1-28) 
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where  1

, , 1
ˆ ˆcos ,e

ik i k i k 

 t t ,î kt and , 1î kt are tangential unit vectors at the k and k+1-st segments in the i-

th fiber, respectively, and 
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 To solve the dynamics of 

ECM fiber network, a dynamic equation at the i-th ECM fiber node can be expressed as 

,, ,
, 1, , .

e
e e ei

e eE iFA i FC i

d
C i N

dt
   

x
F F F                                                        (S1-29) 

where eC is a coefficient of dissipation energy for the ECM fiber. 
,

e
FA iF and 

,
e
FC iF are a FA force and a FC 

force at the i-th ECM fiber node, respectively. Note that dynamics of ECM fibers is coupled with 

intracellular mechanics and filopodia penetration dynamics through two equations of
, , 0e c

FA i FA i F F , and 

, ,
0

fe
FC i FC i

 F F , respectively. 

4) Simulation of reaction diffusion mass transfer 

To consider chemical interactions of the ECM fiber network with a cancer cell, we model the degradation, 

proteolysis, and haptotaxis of the ECM fiber network. Six reaction-diffusion equations for concentrations 

of MMP-2 ( 1 ), TIMP-2 ( 2 ), MT1-MMP ( 3 ), a ternary complex of MT1-MMP:TIMP-2:proMMP-2 

( 4 ) (26), ligands ( 5 ) (or collagen molecules) and ECM ( 6 ) are numerically solved using Finite 

Volume Method (FVM) (27). Constitutive partial differential equations for the six biochemical 

concentrations are summarised in followings (See Fig. S4): 
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where
1

decayk and 
5

decayk are decay coefficients of MMP-2 (0.0017 s
-1

), and ligands (0.0001 s
-1

), respectively. 

5

degk is a degradation coefficient of ECM (1.04×10
6
 M

-1
s

-1
). 

1 2:

onk  is a kinetic association rate constant for 

binding TIMP-2 with MMP2 (5×10
5
 M

-1
s

-1
) and its term physically represents the reduction of MMP-2 by 

the endogenous soluble inhibitor TIMP-2. 
3 4:

onk 
is a kinetic association rate constant for binding the 
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ternary complex with MT1-MMP (1.95×10
4
M

-1
s

-1
), which results in the release of activated MMP-2. 

2 3:

onk  is a kinetic association rate constant for binding TIMP-2 with MT1-MMP (2.74×10
6
M

-1
s

-1
), and 

4

offk

is a kinetic dissociation rate constant of the ternary complex for unbinding TIMP2 and MT1-MMP (2×10
-

4
s

-1
).  

2

f

basex and  
3

f

basex represent secretion rates of TIMP2 (1.0×10
-3

M s
-1

) and MT1-MMP (1.0×10
-

1
M s

-1
) at the root of a filopodium, respectively. In particular, f

basex  indicates the bases of filopodia, and 

MT1-MMP and TIMP-2 secretions at the membrane near the bases of filopodia are modelled as source 

terms (28). 

 

Method S2: Mathematical derivation of Cell-Probed Stiffness using Continuum Mechanics 

Displacements  iu x at the point i ix  by the force iF applied at i are expressed as    

 i ij ju x G F                                                                           (S2-1) 

where ijG is a component of Green’s function (30), and it is expressed as 
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                                         (S2-2) 

where E is Young’s modulus,  is Poisson’s  ratio, and r  x . For simplicity, Eq. (S2-1) can be 

expressed as following: 
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                                                                            (S2-3) 

where 
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 . Inversely, applied force iF can be 

expressed by displacements  iu x at the point i ix   as following: 

1

i ij jF G u                                                                               (S2-4) 

where 
 

1

ij ij i j

r r
G n n




   

  


. Total time derivative of force, 
 ii

dFdF

dt dt


u
,  can be expressed as 

.
ji i i

j

udF F F

dt t u t

 
 
  

                                                               (S2-5) 

 

Since iF

t




=0, and 

 1

1ij ji
ij

j j

G uF
G

u u






 
 

, the equation (S2-5) becomes 

1 .
ji

ij

udF
G

dt t







                                                                     (S2-6) 

The magnitude of rate of force vector by time
d

dt

F
can be calculated as follows: 
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Since 

2 2 2

t t t

   
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u u u
n n , Eq. (S2-9) can be expressed as 
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Substituting 
  
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
into Eq. (S2-9) yields  
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Since 
t






u
v is velocity vector of displacement with time ( v ) at i ix  , and Eq. (S2-10) can be converted 

as 
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Thus, the equation for calculating the effective local stiffness, *E , at the point i ix   can be expressed 

as 

 
*

1

2 t

d

dt
E

r v









F

                                                                      (S2-12)  

where tv is a total speed of displacement implies a vector summation of two orthogonal components of an 

axial speed  v n and a transverse speed
 

 

4 1

3 4





 
 
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v n , and it is expressed as 
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3 4
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
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
v n v n                                                           (S2-13) 

To compute effective Cell-Probed Stiffness (CPS), *E , at the i-th filopodium which has a finite number of 

focal complexes (FCs) and interacts with a number of ECM fiber nodes, an error, km , between the k-th FC 

and the m-th ECM fiber node as the square of the difference
k

d

dt

F
at the k-th FC and 

 

*

,2

1

km t kmE r v


is 

defined by 
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where ,k m m kr  x ,  
 

 

2

22

, 2
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3 4
t km m km m kmv
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
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
v n v n , mv is a velocity vector at the m-th fiber 

node, and kmn is a unit vector in the direction of  m kx .  

From the simulation of filopodia-ECM fiber interactions, a time series of force F and displacement u are 

available. The local stiffness *E can be selected to best approximate these data. Considering the least 

square error among all of neighboring nodes of ECM fibers (total number of ECM fiber nodes is M) 

which are interacted by the k-th filopodium, and summed least square error at the k-th filopodium is 

expressed as 
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When a total number of FC is K on the i-th filopodial tip, summed least square error, i , at the i-th 

filopodium is expressed as 
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The effective CPS, *E ,is solved by minimizing i with respect to *E . Thus, 
*

0i

E





is expressed as 

 

*

,

,*
1 1

2
0.

1

K M
km t kmi

km t km

k m k

E r vd
r v

E dt



 

 
      


F
                                             (S2-17) 

Thus, *E is expressed as 

 
 

 

 

,

1 1*

2

,

1 1

1
.

2

K M

km t km

k mk

K M

km t km

k m

d
r v

dt
E

r v





 

 

 
 

  


 



F

                                                       (S2-18) 

Method S3: Mathematical derivation of Cell-Probed Stiffness using discrete ECM fiber Mechanics 

Approach 1) 

Elastic energy of an ECM fiber can be expressed as 

 
2

1 0

1

2

f f

f fE k L L                                                                    (S3-1) 

where fk is line stiffness of ECM fiber, 0L and 1L are lengths of unstressed and stressed ECM fiber, 

respectively. 1 1 2

f f fL  x x . Using the virtual energy method, elastic force, iF , acting on 1

f
x can be 

expressed as 
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The rate of elastic force by time can be expressed as 
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where 
1

f

iv and 
2

f

iv are i-th components of velocities of nodes, 
1

f
x and 

2

f
x , respectively. Then,

2
dF

dt
is can 

be calculated as followings: 
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Equation (S3-4) can be simplified as 
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Since 
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n , equation (S3-5) can be further simplified as 

   

       

2

21 1
2 2

0 1 0 0 1 2

2
2 221

1 0 1 2 1 2

2
f f

f f f f f f f

f

f

f f f f f f f f

dL L
L L L LkdF dt t

dt L
L L

   
     

  
 
       
 

v v n

v v n v v n

                          (S3-6) 

or, 

        
22 2

22
21

0 1 0 1 2 0 1 0 1 22

1

.
f

f f f f f f f f f f f f f

f

k dLdF
L L L L L L

dt L dt

  
          
   

v v n v v n           (S3-7) 
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Thus, the equation for calculating the effective stiffness of fiber, 
*

fk , can be expressed as 

* f

f t

dF
k v

dt
                                                                  (S3-9) 
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where 
dF

dt
represents the rate of traction force by time at the filopodial tip with an assumption that the 

rate of traction force by time and the rate of elastic force of ECM fiber by time are equal, and f

tv is the 

total speed of displacement of the fiber.  

Approach 2) 

Total time derivative of force at the first node of fiber, 
 1 1 21
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Let 
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be is a component of the stiffness matrix K , 
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 
be the difference of 

velocity between two nodes on the fiber, and 1i idF dF

dt dt
   be the rate of force by time at the filopodial tip, 

the equation (S3-12) becomes 

  1 2

f fi
ij j j

dF
K v v

dt
                                                                     (S3-13) 

   1 2 1 20 0

1 1 1 1

1 .

f f f ff f
i i j j

ij f ijf f f f

x x x xL L
K k

L L L L


   
    
   

                                         (S3-14) 

For simplicity, Eq. (S3-14) can be expressed using the indicial notation as following: 
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Therefore, the equation for calculating the effective stiffness of fiber, 
*

fk , is identical as Equation (S3-9). 

Similarly, to compute effective Cell-Probed Stiffness of fiber (CPSF), 
*

fk , at the i-th filopodium which 

has a finite number of focal complexes (FCs) and interacts with a number of segmented ECM fibers (M). 

Since the fiber is serially connected, effective stiffness of the fiber can be expressed as 
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Then, error, k , between the k-th FC and serially connected ECM fibers (number of nodes on these fiber is 

M+1) as the square of the difference
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From the simulation of filopodia-ECM fiber interactions, a time series of force F and displacement u are 

available. The local stiffness 
*

fk can be selected to best approximate these data. Considering the least 

square error among all of neighboring of segmented ECM fibers (total number of segmented ECM fiber is 

M) which are interacted by the k-th filopodium, and summed least square error at the k-th node on the 

filopodium. 

When a total number of FC is K on the i-th filopodial tip, summed least square error, i , at the i-th 

filopodium is expressed as 
2
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The effective CPS, 
*

fk , is solved by minimizing i with respect to
*

fk . Thus, 
*

0i

fk





is expressed as 
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Thus, 
*

fk is expressed as  

,

1 1*

2

,

1 1

.

K M
f

t m

k mk

f
K M

f

t m

k m

d
v

dt
k

v

 

 

 
 
 


  
  
   

 

 

F

                                                       (S3-23) 

Method S4: Computation of stress and strain in 3D ECM 

1) Computation of strain fields  

The strain tensor   is symmetry and its components can be expressed with respect to x1, x2, and x3 

coordinate systems as following: 

11 12 13

12 22 23

13 23 33

[ ]

  

   

  

 
 

  
 
 

                                                                      (S4-1) 

Strain components: 

1

2

ji
ij

j i

uu

x x


 
  

   

                                                                      (S4-2)                                                   

In order to calculate i

i

u

x




and i

j

u

x




 using indicial notation, the Equation (S2-1) can be expressed as 

following: 

    
3

3 4 i i j j

i i j

x x
u F F

r r

     
                                          (S4-3) 

where 
 

 

1
.

8 1E




 





Then, if we differentiate iu  with respect to ix  and write 

    
3

3 4 i i j ji
i j i

i

x xu
F F x

r rx

     
    
 
 

, we would violate rules of indicial notation that the 

right-hand side of the equation has the subscript i appearing three times in one symbol grouping (29). In 

order to solve this difficulty, we make use of the fact the specific choice of the index in a dummy 

subscript is not significant and so we can rewrite 
    

3

3 4 p p q q

i p q

x x
u F F

r r

     
  . Then i

i

u

x





can be calculated as followings: 
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    

 
      

3

2 3 3 4

3 4

3
3 4

p p q qi
p q i

i

p q

q q p p p p q q

i i i
p q q q

i

x xu
F F x

r rx

x x r
x x x x

x x xr
F F F F

r x r r r

   

      
 

  
    
 
 

  
   

   
    



 (S4-4) 

Here, 
 p p p

i i

x xr

x r x

 


 
, and substituting 

i

r

x




into Equation (S4-4) yields  

          
2

3 3 3 5

3
3 4

p q p

q q p p p p q q
p p pi i i i

p q q q

i i

x x x
x x x x

x xu x x x
F F F F

x r x r r r

      
  

  
   

     
    

 

                            (S4-5) 

Since px and qx  are independent variables, it follows that p

pi

i

x

x






 and q

qi

i

x

x






.  

Using this above gives 

          
2

3 3 3 5

3 4 3p p pi q q p p qi p p q q pii
pi p q q q

i

x x x x xu
F F F F

x r r r r

           


     
    


                                  

(S4-6) 

By the substation rule, the above equation simplifies to 

          
2

3 3 3 5

33 4
.

j j i i j ji i i ii
i j i j

i

x x xx xu
F F F F

x r r r r

            
    


      (S4-7) 

Further simplifies to 

      
2

3 3 2

4 2 3
1 .

j ji i i ii
i j

i

xx xu
F F

x r r r

       
   
 
 

                          (S4-8) 

Similarly, we differentiate iu  with respect to jx , i

j

u

x




can be calculated as followings: 

 
      

2 3 3 4

3
3 4

p q

q q p p p p q q

j j ji
p q q q

j j

x x r
x x x x

x x xu r
F F F F

x r x r r r

      
 

  
   

   
    

 
  (S4-9) 
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Here 
 k k k

j j

x xr

x r x

 


 
 where k i , and substituting 

j

r

x




and 

p

j

x

x




=0 into Equation (S2-9) yields 

  
     

3 3 5

3
3 4

q k
p p p p q q k k

j jk ki k
p q q

j j

x x
x x x x

x xxu x
F F F

x r x r r

     
  

 
   

   
   

 
   (S4-10) 

By the substitution rule, the above equation simplifies to 

        
3 3 5

3 4 3j j p p p p q q j ji
p j q

j

x x x x xu
F F F

x r r r

             
   


      (S4-11) 

Or, by substituting p and q with i and k yields 

        
3 3 5

3 4 3j j i i j j k ki ii
i j k

j

x x x xxu
F F F

x r r r

           
   


         (S4-12) 

where k is a dummy subscript. Lastly, ii and ij can be expressed using Equations (S4-8) and (S4-12) as 

followings: 

      
2

3 3 2

2 2 1 3
1 .

j ji i i ii
ii i j

i

xx xu
F F

x r r r

    


   
    
 
 

                                 (S4-13) 

         
3 3 5

1

2

2 1 32 1

ji
ij

j i

j j i i j j k ki i

i j k

uu

x x

x x x xx
F F F

r r r



        

 
  

   

     
  

         (S4-14) 

Substituting 
 

 

1

8 1E




 





into above equations gives 

   

 

  
 

 
2

3 3 2

11 2 1 3
1 .

8 1 8 1

j ji i i i

ii i j

xx x
F F

E r E r r

    


   

     
   
  
 

            (S4-15) 

   
 

   

 

    

 

3 3

5

1 2 1 1 2 1

8 1 8 1

3 1

8 1

j j i i

ij i j

i i j j k k

k

x x
F F

E r E r

x x x
F

E r

     


   

   

 

     
 

 

   




                             (S4-16) 

2) Computation of stress fields  
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Stress tensor is symmetry, and its components can be expressed with respect to x1, x2, and x3 coordinate 

systems as following: 

11 12 13

12 22 23

13 23 33

[ ]

  

   

  

 
 

  
 
 

                                                                  (S4-17) 

In indicial notation, stress fields can be expressed using strain-stress relation for isotropic materials:  

 , , ,ij k k ij i j j iu u u      ,                                                           (S4-18) 

Diagonal components
ii can be expressed as followings: 

  1 1 1 2
ii ii kk

E E
  

  
 

  
                                                       (S4-19) 

Substituting Equation (S4-15) into the above equation gives  

  

 

 
 

 

 

   

 
 

 

2

3 3 2

2

3 3 2

4 2 3
1

8 1 8 1

2 3
.

1 28 1 8 1

j ji i i i

ii i j

j jk k k k

k kk j

xx x
F F

r r r

xx x
F F

r r r

  


   

  


   

   
    
  
 

   
  
  
 

                            (S4-20) 

Here the last term in the LHS vanishes because
 

2 2

2 2

3 3
3 0

k k

kk

x r

r r





    , and changing subscript k to j 

gives 

  

 

 
 

 
2

3 3 2

4 2 3
1 2 .

8 1 8 1

j ji i i i

ii i j

xx x
F F

r r r

  
 

   

   
    
  
 

                        (S4-21) 

Similarly, ,ij  where i j can be expressed as  

 1
ij ij

E
 





                                                                   (S4-22) 

Substituting Equation (S4-16) into the above equation gives 

  
 

  

 

   

 3 3 5

2 1 32 1
.

8 1 8 1 8 1

j j i i j j k ki i

ij i j k

x x x xx
F F F

r r r

     


     

     
  

  
                  (S4-23) 

It should be noted that Eq. (S4-21) and (S4-23) are expressed without the modulus E. 
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As shown in Fig. S15, when a node of x is connected with neighboring nodes of 1 2 3, , ,   and 4 where 

forces of 1 2 3, , ,F F F and 4
F are respectively exerted, components of average stress tensor at the node of x 

can be expressed as followings: 

  
 

 
 

 
2

3 3 2
1 1

4 2 31 1
1 2 ,

8 1 8 1

m m m
N N

i i j j i im m m

ii ii i j

m m m m m

x x x
F F

N N r r r

   
  

    

    
     
  
 

                (S4-24) 

  
 

  
 

   
 

1

3 3 3
1

1

2 1 2 1 31

8 1 8 1 8 1

N
m

ij ij

m

m m m m m
N

j j i i i i j j k km m m

i j k

m m m m

N

x x x x x
F F F

N r r r

 

      

     







      
  

  





         (S4-25) 

where N is the number of neighboring nodes which connect with the node of x. Superscripts or subscript 

m of m

i , m

iF , and 
mr  indicate the m-th neighboring node.  

3) Discrete deformation gradient method 

In continuum mechanics, the finite deformation of a body maps initial location vector, X, in the reference 

configuration 
0 to current location vector, x, in the current configuration

1 , and its mapping  (Fig. 

S16) is indicated by 

 . x X                                                                               (S4-21) 

The derivative of this deformation is known as the deformation gradient F, and it is defined as 

 
.

 
 

 

X x
F

X X
                                                                 (S4-22) 

The Lagrangian or Green strain tensor, E, is given by 

 
1

.
2

T E F F I                                                                     (S4-23) 

Next, we consider the discrete deformation gradient which has been applied to the area of atomistic 

simulations of materials (30). We applied similar approach of the discrete deformation gradient to the 

discrete ECM fiber mechanics. As shown in Fig. S16, vectors ijX and ijx  represent relative positions of 

neighboring j-th node of a segmented fiber with respect to the i-th node of the fiber in configurations
0

and 
1 , respectively, and are expressed as 

ij j i  X X X , .ij j i  x x x                                                       (S4-24) 

When there is a unique linear mapping that transforms ijX to ijx , ijx can be expressed as 

ij i ij  x F X                                                                  (S4-25) 
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where iF is the deformation gradient at the i-th node. To compute optimal discrete deformation gradient at 

the i-th node, mapping error between fiber nodes i and j as the l2 norm of the difference between ijx and 

i ijF X  is defined by 

   
T

ij ij i ij ij i ij     x - F X x - F X                                                    (S4-26) 

where 
iF is the optimal discrete deformation gradient at the i-th node. Considering the weighted least 

square error among all of neighboring nodes of the i-th node, and summed weighted least square error at 

the i-th node is expressed as 

   
1 1

N N
T

i ij j ij i ij ij i ij j

j j

w w 
 

       x - F X x - F X                                       (S4-27) 

where jw is a weight function (70), and jw is given by 

 

2 3

2 3

1
1 6 6 : ,

2

1
2 6 6 2 : 1.0,

2

0 : 1.0.

j

r r r

w r r r r r

r


  




     






                                                     (S4-28) 

where r is the distance of ijx , and normalized with cutoff length of 0.75 µm.  

The optimal local discrete deformation gradient 
iF is solved by minimizing 

i with respect to nine 

components of
iF . Thus, nine equations of 0i

mnF





for 1 , 3m n   can be expressed as a tensor derivative: 

   
1

2 0
N

T
i

ij i ij i ij j

ji

w





    


 x - F X -I X

F
                                         (S4-29) 

where 
iI is the forth-order identity tensor, and the Equation (S4-29) becomes 

       
1 1

N N
T T

i ij i ij j ij i ij j

j j

w w
 

     F X I X x I X                                    (S4-30) 

Since  ia a a a  I , the Equation (S4-30) can be converted as 

   
1 1

.
N N

i ij ij j ij ij j

j j

w w
 

     F X X x X                                      (S4-31) 

The above linear algebraic equations for the optimal discrete deformation gradient can be easily solved by 

inverting matrix  
1

N

ij ij j

j

w


  X X as  

     
1

1 1

.
N N

i ij ij j ij ij j

j j

w w



 

  
      
  
 F x X X X                                    (S4-32) 
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Note, to avoid the singularity of matrix A, at least three neighboring nodes at the i-th node are required 

and these neighboring nodes should be placed on the non-planar plane. Once 
iF is obtained, the 

Lagrangian or Green strain tensor at the i-th node, 
iE , can be calculated using Eq. (S4-23): 

 
1

.
2

T

i i i E F F I                                                                   (S4-33) 

Text S1: Characterization of cell-probed stiffness 

First, we aim to simulate mechanosensing tests for the two ECM fiber network models (Fig. S7A) 

in order to characterize and compare *E and *

fk . Various simulations of mechanosensing tests for 

each ECM fiber network model were performed using a parameter of single fiber strain (Fig. S5 

and S6).  In both models of soft and stiff ECM, uniaxial tensile force was applied along two 

different direction in a cubic-shaped ECM fiber network model with a length of 20 µm for 15 s 

until each ECM model was strained up to 0.3 (Fig. S5A, and S6A). Afterwards, a single ECM 

fiber in the center of ECM fiber network model was forced to displace with the speed of a 

sinusoidal wave for 15 s, that is, single ECM fiber was tensioned during the first period of 7.5 s 

(from 15 to 22.5 s) and then was forced to relax during the second period of 7.5 s (from 22.5 to 

30 s). Magnitudes of applied forces take maximum values at the time-point of 22.5 as the 

direction of the force is changed to the opposite direction (Fig. S5B, and S6B), and each graph of 

the rate of force with time has three saddle points since the second derivative of the force with 

respect to time is zero (Fig. S5C, and S6C). We find that both the CPSs using continuum 

mechanics (Fig. S7B) and the CPS using discrete fiber mechanics (Fig. S7C) are increased as 

single fiber strain increased in each ECM model, and two positive linear correlations between *E

and *

fk  (yellow marks i and ii in Fig. S5D and S6D), and one negative correlation (yellow mark 

iii in Fig. S5D and S6D). In particular, regions of positive linear correlations physically represent 

the force build-up (or protrusion) and the force drop-down (or retraction), respectively. The 

region of negative correlation is resulted from the fact that the second derivative of the force with 

respect to time is zero. Selected linear regressions at regions A and B in each ECM model show 

good correlations between *E and *

fk  in the case of single fiber strain 0.3 (Fig. S5E, and S6E). 

 Second, we aim to simulate the mechanosensing of a cell interacting with the ECM of varying 

stiffness (Fig. S8). A computational model of ECM consisting of two distinct segments, soft and 

stiff, is constructed with two different pore sizes of 3.0 and 1.5 µm. Time-varying effective CPS 

was monitored at a filopodium (yellow circle marks in Fig. S8A and B). The effective CPS 

becomes higher as the filopodium starts interacting with stiffer ECM segment: a maximum value 

of effective CPS in Fig. S8C is ~10kPa, but a maximum value of effective CPS in Fig. S8D is 

~30kPa.  Furthermore, to justify our methods of calculating *E and *

fk , these two kinds of 

effective CPSs were also compared at two different filopodial phases of protrusion (Fig. S9A) 

and retraction (Fig. S9B), respectively. Both methods of calculating effective CPSs show a good 
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agreement over two filopodial phases of protrusive and retraction. Statistical analysis of linear 

regression was performed by comparing both methods in terms of effective CPSs at the identical 

time-point. Good correlations were found between the two with R
2
 = 0.801 and 0.890 for 

protrusive and retractile phases, respectively (Fig. S9C). 
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