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Supplementary Material 

1. Study design and data generation 

We selected 1,034 individuals from 20 pedigrees that are part of San Antonio Family Heart Study 
(SAFHS) (Mitchell et al. 1996; McClellan and King 2010) and San Antonio Family Diabetes/Gallbladder 
Study (SAFDGS) projects  (Hunt et al. 2005; Puppala et al. 2006). Prevalence of type 2 diabetes (T2D) 
in the families was 30%, significantly higher than the estimated prevalence of 15.7% in general Mexican 
American population of the region. Estimated heritability within 1,034 pedigree samples was 0.47 for 
T2D, 0.41 for fasting glucose, and 0.63 for fasting insulin. Each individual has T2D and glycemic trait 
measured longitudinally up to five times.  

1.1. Sequencing and initial variant calling 

We used ExomePick software (Sidore et al. 2015)  to select 600 individuals to be whole genome 
sequencing to gain maximal genetic information for sample size 600. Almost all individuals in our dataset 
had been previously genotyped using GWAS genotyping arrays providing the scaffold of our imputation 
protocol. Whole-genome sequencing and initial variant calling was done by Complete Genomics (CGI). 
CGI sequencing generates reads based on self-assembling DNA nanoballs (DNBs). Each DNB generate 
70 base reads, which corresponds to paired-end reads of 35 bases at each end in other sequencing 
technologies (e.g. Illumina). DNB reads are mapped against reference genome and reads in the regions 
that are likely to differ from reference sequence are assembled by local de novo assembly. NCBI build 
37 human reference genome was used with CGI pipeline version 1.0. Details on CGI sequencing 
technology is described in (Drmanac et al. 2010) and details about CGI computational pipeline including 
mapping, local assembly, and variant calling is described in (Carnevali et al. 2012). 

1.2. Sequenced sample quality control 

We first examined sample identity, pedigree info, and sequencing quality outliers on sequenced samples 
using initial variant calls, the reported pedigree structure as defined by the San Antonio family studies, 
and summary reports generated by the CGI pipeline about sequencing metrics and variant calling 
statistics.  

Pedigree verification: We validated the kinship structure of reported pedigrees and to avoid potential 
sample mix-up using KING (Manichaikul et al. 2010). We calculated pairwise kinship coefficients between 
all subject pairs and compared these to kinship coefficients expected from the reported pedigrees. From 
kinship analysis, we identified two errors in reported pedigrees due to incorrect sample IDs and corrected 
them before further analysis. 

Principal components analysis: We visualized population structure using principal components 
analysis to identify potential outlying ancestral differences using EIGENSTRAT (Price et al. 2006). 
Population outliers were not excluded and this information was taken into account when examining 
summary data output from the sequencing pipeline to identify poor quality subjects.  
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Sample exclusion: All summary data output from the CGI pipeline were pooled together to generate 
distributions for all metrics provided. Subjects were filtered based on the number of outlying metrics by 
variant class. 

• Outlier variant statistics: Subjects were excluded from SNV analysis if they have ≥3 outlying 
(|z-score| ≥3) metrics (which may have included coverage variability) or a disproportionately high 
number of novel variants. However, we utilized ancestry information inferred from the PCA 
analysis so that we did not filtered out samples with African ancestry even if they presented 
outlying number of SNPs (|z-score|≥3). 

• Mendelian Inheritance Errors: We also eliminated individuals from the analysis if they presented 
relatively high numbers (|z-score|>3) of Mendelian inheritance errors where data were available.  

1.3. Variant identification and quality control 

Initial variant calls were produced by the standard CGI variant calling pipeline by processing samples 
individually. It has been reported that multi-sample filtering, which leverages information across samples, 
is more effective to filter out possible experimental artifacts. We used the GotCloud pipeline to filter out 
variants using multi-sample statistics (Jun et al. 2015). GotCloud uses a support vector machine (SVM) 
classifier, a machine-learning algorithm, to separate likely true positive and false positive variant sites. 
For SVM filtering, we collected a series of features related to the quality of each potential variant site, 
including sequencing depth, fraction of samples with coverage, fraction of reference bases in 
heterozygous individuals (allele balance, ideally close to 50%), correlation of alternative alleles with 
strand and read position (strand and cycle bias), and fraction of Mendelian inconsistencies in genotypes.  
The features were collected from sequence reads on each variant site, which were stored in the CGI-
generated BAM files containing reads from the variant regions.    We also applied stringent call rate filters 
by removing SNVs with call rates less than 97% and indels and substitutions with call rates less than 
99%. Different cut-offs were used to ensure comparable genotype accuracies for SNVs and other 
categories, because indels had higher genotype error rates than SNVs with the same call rates. Genotype 
error rates were measured by Merlin using Mendelian inconsistencies within extended pedigrees 
(Abecasis et al. 2002).  

Copy number variations (CNV) reported by the default CGI pipeline were generated by processing each 
sample’s sequencing depth information only, without further using read mapping or multi-sample 
statistics. Consequently, default CG CNV variant calls are based on each 2Kb genomic intervals and 
have relatively higher error rates than short variants. We developed a novel algorithm that first identifies 
candidate intervals for large deletions by read mapping information and genotypes using multi-sample 
distribution of sequencing depths. In this method, we utilize SV candidate information based on read 
junctions generated by CGI software pipeline in addition to the depth-based CNV candidates in the 
standard CGI CNV calls. Then we collect GC-corrected read depth information on all candidate regions 
from all samples and perform expectation-maximization (EM)-based clustering with mixture of Gaussian 
models. Clustering results are then filtered based on the overlap of Gaussian components and Bayesian 
information criterion (BIC). We identified 3,144 bi-allelic large deletions in from sequenced samples with 
estimated genotype error rate of 0.95%, as measured by Merlin. The same algorithm was also applied to 
generate CNV calls on 433 CGI-sequenced samples in the 1000 Genomes Project Phase 3. Details 
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about this algorithm is described in the supplementary material (Section 5.5) of the 1000 Genomes 
Project’s structural variation paper  (Sudmant et al. 2015). 

1.4. Pedigree-based imputation 

We applied a family based imputation procedure to infer rare genotypes for individuals who were not 
sequenced using available GWAS data as a scaffold. These individuals were genotypes using four district 
GWAS platforms: Illumina HumanHap550v3, Human1M-Duov3, Human1Mv1, and Human660W-
Quad_v1 GWAS array. Initially we defined the set of genetic variants present in all platforms and using 
this information we imputed the genotypes of all missing genetic variants. The known pairwise sample 
relationship was used to detect and correct any Mendelian inheritance errors. The whole genome 
sequencing imputation method consisted of two steps: 1) construction of sub-pedigree around the 
imputed sample and 2) imputation within sub-pedigree. 

For construction of sub-pedigree around the imputed sample, we first selected the five most closely 
related sequenced individuals for a given GWAS sample. Next, to improve IBD estimation, we added the 
sequenced parents of each selected individual. Finally, we generated sub-pedigrees by removing all 
uninformative individuals (not selected and not needed to connect selected individuals in the pedigree). 

For imputation within each sub-pedigree, we used Merlin (Abecasis et al. 2002). The resulting output 
contained the expected number of copies for the tested allele (dosage), the posterior probabilities for the 
three alternative genotypes, and the most likely genotype (the genotype with the highest posterior 
probability, set to missing if the highest posterior probability < 0.5). 

Family-based imputation provides highly accurate imputation especially for rare variants because there 
is little ambiguity in the transmission of rare alleles. We evaluated accuracies of imputed genotypes with 
ExomeChip genotypes. Genotype accuracy was 96.7% for rare (MLE MAF<1%) variants imputed as 
heterozygotes, and it was 99.3% for rare variants imputed as homozygotes, much higher than 60% 
accuracy for population MAF<1% variants by population-based imputation as reported in the 1000 
Genomes project. 

2. Statistical analysis 

2.1. Phenotype transformation and covariate selection 

We analyzed T2D related metabolic traits: fasting glucose, fasting insulin, 2 hour glucose, 2 hour insulin 
total cholesterol level, LDL cholesterol level, HDL cholesterol level, and triglyceride level. Trait values 
were measured at up to five exams.  Regressions were performed at each exam adjusting for covariates 
as appropriate, producing exam-specific residuals. The exam-specific residuals were then averaged over 
multiple measurements and an inverse-normal transformation was applied to averaged residuals.  
Covariates were chosen to align with strategies taken by consortia participating in meta-analysis of 
GWAS of the given traits, as well as the T2D-GENES and GoT2D consortia’s trait transformation strategy 
(Fuchsberger et al. 2016) and included age, age2, sex, and BMI. T2D samples were excluded from 
glycemic trait analyses and cholesterol levels were pre-adjusted by a fixed amount per lipid medication 
status.   
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2.2. Empirical kinship estimation 

To account for known and unknown relatedness among study participants, we used empirically estimated 
kinship matrices. We estimated kinship matrices using EMMAX (Kang et al. 2010)  included in the 
EPACTS (http://genome.sph.umich.edu/wiki/EPACTS) software package. Kinship coefficients were 
estimated from GWAS genotypes for most of the samples. For 10 samples with sequence data only, 
sequenced genotypes overlapping with GWAS markers were used for kinship estimation.   

2.3. T2D association analysis 

We tested for association with each genetic marker using a mixed model variance component approach 
implemented in SOLAR (Blangero et al. 2013). For residual non-independence, we used the empirical 
kinship matrix described above. The variance component approach uses a likelihood ratio test employing 
a standard measured genotype fixed effect to identify associated variants. Recent simulation results 
suggest that simple analysis of affection status as a binary pseudo-quantitative trait recovers a valid test 
and the original parameters of the true liability scale after suitable transformation. We performed our 
analyses using this much faster approximation and confirmed that the results from pseudo-quantitative 
approach conform well to the probit model (Duggirala et al. 1997; Williams et al. 1999).   

2.4. Quantitative trait analysis 

For association analyses of quantitative and expression traits, we used FamRVtest (Feng et al. 2015) 
with a variance component model using the empirical kinship matrix estimated by EMMAX.   

2.5. eQTL analysis 

We obtained whole-genome expression profiles using the Illumina Sentrix Human Whole Genome (WG-
6) Series I BeadChip. After performing both BLAT (Kent 2002) and LiftOver (https://genome.ucsc.edu/cgi-
bin/hgLiftOver) analyses on 47,293 probe sequences, we removed probes that could not be mapped, 
probes that were previously reported as not expressed, and probes that harbored a sequenced variant 
nearby that had a potential to cause hybridization artifacts. We performed single variant eQTL association 
analysis using FamRVtest on the remaining 21,677 transcripts.  We defined a cis-region as 1Mb from a 
gene or probe’s start and end coordinates, and defined trans as all other regions. We set the significance 
threshold of 𝛼 = 7.0×10)* for cis-eQTL based on an estimated FWER of 5% by permuting cis-regions 
with random genes in different chromosomes. Using the permuted expression traits, we set the FWER 
threshold by sorting the top signals from all expression traits and selecting the p-value at the 5% (1083-
th out of  21,677) point.  

2.6. Gene-based rare variant aggregated test 

We aggregated rare variants with MLE MAF < 1% in exonic regions for gene-based tests using MAFs 
estimated by SOLAR using maximum-likelihood estimation (Blangero et al. 2013). We generated four 
different masks based on the functional annotations as explained in the main text. We categorized protein 
truncating variants (PTVs) and missense variants using five different functional prediction algorithms 
(LRT, Mutation Tester, PolyPhen2-HumDiv, PolyPhen2-HumVar, SIFT) into variants predicted to be 
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deleterious by at least one of five algorithms (NSbroad) and variants predicted to be deleterious by all five 
algorithms (NSstrict) (Chun and Fay 2009; Kumar et al. 2009; Adzhubei et al. 2010; Schwarz et al. 2010).     

We performed aggregation tests for T2D and quantitative traits using FamRVtest in a variance 
component framework. We employed the collapsing test (CMC count) (Li and Leal 2008), collapsing with 
differential weighting(Madsen and Browning 2009), kernel-based (SKAT) (Wu et al. 2011), and variable 
threshold (VT) tests (Price et al. 2010).  

3. Power analysis 

3.1. Single marker power for private variants - quantitative traits 

We computed the power to detect a private risk variant (defined as a singleton among founders) in our 
pedigrees via simulation. We first created realizations for the segregation of private alleles within these 
pedigrees using the gene-dropping simulation routine in Merlin. For each of the 413 founders, we 
simulated the segregation of 10,000 unlinked singleton variants through their respective pedigree lineage 
and recorded the observed allele count (AC) in sequenced or genotyped/imputed samples. We estimated 
the probability distribution for private variant observed AC in our pedigrees, 𝑃𝑟 𝐴𝐶 = 𝑘 ,	as the fraction 
of gene-drop realizations with exactly 𝑘 observed alleles in the pedigrees. 

Power to detect a private risk allele conditional on being sampled in a founder (Figure 2A): We 
computed the power to detect a private risk allele for a quantitative trait conditional on observed AC. For 
each simulated private variant, we augmented the observed BMI transformed trait value of carriers by an 
effect size of	𝛿 and tested each variant individually for single marker association using EPACTS. We 
used the empirical transformed BMI values as the baseline simulated phenotypes because (1) the trait 
showed no evidence of genetic effect for private variants and (2) using the empirical phenotypes retains 
any potential phenotypic correlations among pedigree members due to observed or unobserved covariates in the 
real data. We controlled for relatedness using the empirical kinship coefficient matrix in a mixed model 
framework. We computed the power at level 𝛼	for effect size 𝛿	conditional on a given allele count AC, 
𝑃34(𝛿, 𝛼),	as the fraction of gene drop realizations with exactly AC observations having association p-
value <𝛼. We then computed association power for a private variant observed in the dataset with effect 
size 𝛿 at level 𝛼 as	𝑃 𝛿, 𝛼 = 	 𝑃34(𝛿, 𝛼)×𝑃𝑟 𝐴𝐶34 .  

Power to sample and then detect a private risk allele (Figure 2B): Next, we accounted for the fact 
that a private variant must be captured by exactly one of the 413 pedigree founders (or 826 founder 
alleles) to be eligible for association testing. Assuming a private risk allele with population allele frequency 
𝑝  and effect size 	𝛿 , the power to capture and detect that risk allele is then 	𝑃 𝑝, 𝛿, 𝛼 =
826×𝑝× 1 − 𝑝 <=> ×𝑃 𝛿, 𝛼 .  Finally, if we assume that 𝑁 such private risk alleles each with population 

allele frequency 𝑝 and effect size	𝛿 exist in the population, our power to detect at least one of them in our 
pedigrees is 1 − 1 − 𝑃 𝑝, 𝛿, 𝛼

@ , and the number of such risk variants we expect to detect is 
𝑁×𝑃 𝑝, 𝛿, 𝛼 . 
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3.2. Single marker power for private variants - dichotomous traits 

We used a similar procedure to estimate power for dichotomous traits using the actual T2D phenotypes. 
In this analysis, for each private variant gene drop realization, we flipped the phenotype of carriers from 
an unaffected to a case with a fixed probability that we treated as a penetrance parameter. If a carrier 
was in truth a case we left it as a case. 

3.3. Power of single variant eQTL association tests 

To simulate eQTL power for both rare and common variants, we repeated the gene dropping technique 
used for private variants but allowed for the possibility of variants to enter the dataset through multiple 
founders. We first computed power conditional on a fixed allele count in founders	𝐴𝐶A.  For each	𝐴𝐶A, we 
simulated 10,000 realizations in which we dropped the risk allele through 𝐴𝐶A	randomly selected pedigree 
lineages and augmented the observed expression level of each carrier by effect size	𝛿. We selected an 
expression trait (hmm9375-S) that did not have any statistically significant eQTL results and therefore 
represented an approximate null trait distribution. The power 𝑃 𝛿, 𝐴𝐶A 	to detect an eQTL with effect size 
𝛿 sampled in 𝐴𝐶A pedigree founders was computed as the fraction of 10,000 gene drops realizations 
statistically significant at	𝛼 = 7.0×10)*.  

We estimated the power to sample and detect an eQTL of effect size 𝛿	 and MLE MAF 𝑝  is 
then	 𝑃 𝛿, 𝐴𝐶A = 𝑁 ×Pr 𝐴𝐶A = 𝑁	 𝑀𝐴𝐹@ )×Pr	(𝑀𝐴𝐹). We used the empirical site frequency spectrum 
derived from 3,886 Mexican-American chromosomes in a large, multi-ethnic exome sequencing study of 
T2D (Fuchsberger et al. 2016) as the prior for allele frequency	𝑃𝑟(𝑀𝐴𝐹), and used Monte Carlo draws to 
compute the above power. 

3.4. Possible limitations/pitfalls on power estimation 

The power simulations were designed in a fair and realistic manner. However, a major assumption of our 
simulations is perfect genotyping and imputation of alleles segregating through the pedigrees. As 
evidenced by Figure 2A of the main text, the power to detect an association is highly dependent upon 
the number of times that allele is observed in the pedigree, particularly when allele count is low. Not 
surprisingly then, imperfect genotyping and imputation would reduce power since fewer risk alleles will 
be called than actually exist in the pedigrees. Our evaluation of imputation accuracy showed that 
genotype calls are of high quality and likely to have minimal impact on the power analyses. We have also 
presented power results assuming relatively large effect sizes for rare risk variants. Whether alleles of 
such magnitude exist for our phenotypes is unclear. However, we clearly state that this enrichment 
through pedigree sequencing strategy would require very large effect sizes to be successful at the given 
sample sizes. 

4. Supplementary results 

The traits tested for genetics associations were T2D and quantitative traits: fasting glucose, fasting 
insulin, 2-hour glucose, 2-hour insulin, LDL cholesterol, HDL cholesterol and triglyceride.  
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4.1. T2D single variant analysis 

Among 153 common variant loci with published associations with T2D, our study shows nominal 
significance (p<0.05) with SNVs near KCNQ1 (p=0.004), CDC123/CAMK1D (p=0.04), TSPAN/LGR5 
(p=0.03), C2CD4A/C2CD4B (p=0.01), GCKR (p=0.02), and ADAMTS9 (p=0.009). No single variant 
reached genome-wide significance for T2D (p<5×10-8).  

4.2. Quantitative trait single variant analysis 

Two common SNVs in a small region of chromosome 7 located 42 kb downstream of the gene PDK4 
showed marginal genome-wide significant associations with 2-hour glucose (rs10249057 with p<4.4x10-

8 and rs10268456 with p<4.4×10-8).  The ENCODE project data showed that the chromosomal region 
where the variant rs10268456 is located has an open chromatin formation and is accessible to 
transcription factors (Encode Project Consortium 2004). These variants also showed interesting 
pleiotropic effects on other diabetes related traits including 2-hour insulin concentration. The pyruvate 
dehydrogenase kinase 4 (PDK4) gene is part of the glycolysis/glucogenesis gene pathway and its role in 
T2D has been speculated on with no clear conclusions (Cadoudal et al. 2008). The gene product 
enhances hepatic glucogenesis through inhibition of the PDC complex and thus preservation of pyruvate 
for gluconeogenesis, and is upregulated during starvation and insulin resistant state. The association of 
the transcription factor TCF7L2 and T2D is well known and interestingly the PDK4 expression is mediated 
by the presence of TCF7L2.  We found that rs964184, a known GWAS SNV (Geier et al. 2010; Global 
Lipids Genetics Consortium et al. 2013) for hypertriglyceridemia in Hispanics, is associated with 
triglyceride levels (p=4.8x10-8). 

4.3. Gene-based rare variant association analysis 

In gene-based aggregation tests of rare variants, we found no gene significantly associated with T2D 
with gene-wide significance (α<2.5×10-6). In the gene-based analyses of quantitative traits, we found 
significant association of LDLR with LDL cholesterol levels, CYP3A4 with fasting glucose, and OR2T11 
with 2-hour insulin levels (Supplementary Table S1). Although LDLR is a known gene previously reported 
to be associated with LDL cholesterol in various studies (Geier et al. 2010; Global Lipids Genetics 
Consortium et al. 2013), we could not find additional evidences of association for CYP3A4 and OR2T11. 
We then investigated individual rare variants included in the analyses in these genes (Supplementary 
Table S2). Out of seven variants included in the LDLR, five of them were private variants unique to a 
pedigree, although main association signal was driven by a non-private variant (19:11210913 G/A). Three 
rare variants out of four in the CYP3A4 gene-based result were private variants, but all these three 
variants were singletons that were not enriched through the pedigrees. One private and one non-private 
rare variants were included in the OR2T11 result. The non-private variant in OR2T11 was defined as 
‘rare’ based on MLE MAF, but had >1% MAF in the 1000 Genomes Project data. 

4.4. Candidate regions follow up. 

Linkage: Each normalized phenotype was used to perform a linkage association scan using previously 
defined genome-wide IBD identities of all T2D-GENES participants. A peak was considered significant if 
presented a minimum LOD-score of 3 and the limits of the linkage peak defined when a reduction of 
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single LOD-score was observed. The SNVs located under a linkage peak were selected, and a new local 
multiple hypotheses significance threshold was defined for each linkage peak. The WGS genotype-
phenotype association statistics are now interpreted using this corrected significance threshold.  

GWAS and Monogenic gene lists: We performed a comprehensive scientific literature search and 
identified all genotypic associations for T2D and diabetes related traits as available on 7/8/2013. We 
compiled a list of genes that have been implicated in monogenic diabetes, obesity, severe insulin 
resistance and lipodystrophy (Fuchsberger et al. 2016). The genomic coordinates of those associations 
were updated using LiftOver to make these coordinates comparable with T2D-GENES sequencing data. 
For each GWAS variant, we defined a 500kb window upstream and downstream of the previously 
detected association. Similarly, we defined a 500kb window upstream and downstream from the 
monogenic genes. The set of genetic variants identified inside this window was defined and a new 
multiple hypotheses significance threshold was defined. The genotypic associations are interpreted using 
this newly corrected significance threshold. 

 

5. Comparing effect sizes of rare and common variants 

Each SNV located near a probe was classified as rare or common based on its SOLAR-estimated MLE 
MAF. Genetic variants were classified as rare if MLE MAF<0.01 and as common otherwise. The 
association results from rare and common variants within eQTL cis-regions were compared in two 
different ways: 1) using only statistically significant associations and extrapolating using simulated power 
and 2) using all p-values to estimate overall distributions of effect sizes.     

5.1. Estimation of common and rare variant contributions from significant associations and 
power simulations 

Given the differences in power, it is not surprising that we identified many more common than rare cis 
eQTLs in our analysis. However, it is possible and indeed likely that many more rare eQTL variants 
remain to be found.  We therefore sought to estimate the potential number and contribution to heritability 
of rare eQTL variants. To do so we used simulation to compute power to detect rare (MLE MAF <1%) 
and common (MLE MAF>1%) risk alleles of various effect sizes using our pedigree strategy.  Based on 
this power and our empirical findings, we can estimate the total numbers of rare and common eQTLs that 
exist in the population. Identifying independent risk alleles of given a frequency and effect size can be 
thought of as Bernoulli trials with “success” probability equal to single marker association power. If we 
assume power of 𝛼 and successfully identify 𝑘 risk alleles, we estimate the total number of risk alleles of 
that frequency and effect size that exist in the population to be 𝑘/𝛼. 

Given that the average effect size of a significant common eQTL was approximately 0.5 standard 
deviation units, we estimate that the population contains as many as 23K common eQTL variants among 
the 21,677 traits we tested for eQTL signals, explaining 5.8% of overall trait variances. Accurately 
predicting the contribution of rare variants is complicated by the fact that effect estimates of genome-
wide significant rare eQTLs are biased by the winner’s curse. That is, although our average effect size 
for significant rare eQTLs was 2.0 standard deviation units, the true average effect is likely smaller. 
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However, we can still make predictions regarding rare eQTLs in relation to that of common eQTLs. If we 
assume that rare variants have an average effect size of 𝛿	=1.0, so twice that of common variants, we 
predict that 222K significant rare eQTLs exist in the population and can account for 0.9% of total 
variances across the expression traits. Because it is based on tests of significance, these are 
underestimates of the overall effect of common and rare cis-acting variants on gene expression. 

Our results indicate that many large effect rare eQTLs remain to be identified by larger, better powered 
sequencing studies. However, despite the large number of rare eQTLs that may exist, their contribution 
to overall expression heritability is unlikely to match that of common eQTLs. 

5.2. Comparing effect sizes of rare and common variants using all eQTL results 

The comprehensive set of eQTLs associations was classified as rare or common variant based on the 
MLE MAF estimates. The distributions of the signed effect sizes were compared in Figure 5 in the main 
text where rare genetic variants presented larger effect. The observed effect size variances were 0.022 
for common variants and 0.125 for rare variants. This estimate of total effect size variance can be viewed 
as the sum of two components: the true biological effect size variance and the error variance. A higher 
error variance for estimated effect sizes is expected for rare variants due to a higher sampling error 
resulting from the small number of minor allele copies. To correct for this structural difference between 
rare and common effect size distributions, we calculated the error variance of the effect size estimations 
using the formula 𝑒 = δ=/𝜒=, where e is the estimation variance, 𝛿 is the estimated effect size and χ= is 
the chi-square obtained in the likelihood ratio test (LRT) applied for the linear mixed model. The 
Supplementary Table S3 shows the observed distribution of error variances with rare variants exhibiting 
much higher error variances than common ones.  The observed error variances were then subtracted 
from the observed effect size variances to obtain a composite maximum likelihood estimate of the true 
biological variance. These estimates were then statistically compared using a variance ratio test. 

 To assess the potential importance of rare variants on total genetic variance, we performed a simulation 
using the observed MAF distribution and the observed eQTL biological effect size distributions. We 
randomly selected one million variants from the total observed variant distribution and categorized them 
based on the number of minor allele copies as rare or common variants. Depending upon this 
classification, we then paired each chosen variant with a randomly drawn effect size from the appropriate 
distribution of standardized eQTL association results. This process generates an empirical convolution 
of the two random distributions. For each association, we calculated the genetic variance as:  

𝐺L = 2×	𝑀𝐿𝐸L× 1 − 𝑀𝐿𝐸L ×	𝛽L	 

where 𝑀𝐿𝐸L  is the MLE MAF for the genetic variant 𝑖 and 𝛽L is the observed effect of the genetic variant 
𝑖  in the gene expression 𝑔  as previously defined by the eQTL association analysis. The overall 
contribution of rare variants was defined as:  

𝐶
RSRTU VRW

( VRWX	 VYW)
 



10 

where 𝐺𝑟L is the sum of genetic variance of the complete set of n rare variant associations and is the 
sum of genetic variance of the complete set of m common variant associations. The total contribution of 
rare variants 𝐶RSRT on our simulation was 24.97%, a substantial, although minority, proportion of total 
genetic variance. 

6. Empirical Significance 

We simulated a set of 1000 phenotypes without heritability (ℎ= = 0)	taking into account the known 
pairwise sample relationship of our large human pedigrees. For each phenotype, we performed a full 
WGS-based association analyses for all single-nucleotide variants (SNVs) identified on our data. All 
association analyses were performed using the linear mixed model implemented in SOLAR, allowing for 
residual non-independence between relatives. We sorted and defined the most extreme association of 
each simulated phenotype and constructed an extreme value distribution composed by one thousand 
extreme p-values (Šidák 1967). The extreme value distribution was fit into a theoretical beta distribution 
using a maximum likelihood estimation algorithm for estimation of the respective β parameter that is 
directly related to the effective number of tests being carried. This corrected number of effective tests is 
used to define a new corrected multiple hypothesis Bonferroni in the form of target 𝛼 = 0.05 ⁄ 𝑛𝑒𝑓 where 
𝑛𝑒𝑓 is the number of effective tests defined by the β parameter (Almeida et al. 2016). Based on our 
simulations, we identified only a set of 704,225 independent tests being carried at any whole genome 
association scan. This leads to a new corrected target significance threshold of 7.1x10-8. The 
Supplementary Figure S2 presents the observed extreme distribution and the theoretical beta distribution 
that was optimally fitted. Our results clearly showed the high extent of LD contribution on large human 
pedigrees dealing with whole genome sequencing data. 
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Supplementary Table S1. Gene-wide significant (p<2.5x10-6) association results.  

Trait Gene Variant Group Test P-value 
LDL cholesterol LDLR PTV+missense SKAT 8.3x10-7 

Fasting glucose CYP3A4 PTV+NSbroad 
CMC 9.2x10-7 
VT 1.8x10-6 

2-hour insulin OR2T11 PTV+missense Madsen-Browning 1.9x10-6 
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Supplementary Table S2. Variants in significantly associated genes. 

Gene Variant Allele Effect size* p-value* Allele 
count 

MLE MAF Type 

LDLR 19:11210913 G/A 1.10 2.54x10-6 20 0.00777 Rare 
19:11211016 C/T -0.133 0.744 6 0.00155 Private 
19:11218079 G/A -0.0620 0.929 2 0.00155 Private 
19:11227645 G/A 0.668 0.176 4 0.00310 Rare 
19:11231177 G/A -0.443 0.195 8 0.00156 Private 
19:11233886 C/T 1.60 0.0171 2 0.00155 Private 
19:11242072 A/AC -0.0885 0.846 4 0.00156 Private 

CYP3A4 7:99355806 G/GT 2.80 1.19x10-4 1 0.00155 Private 
7:99359845 T/C 1.00 0.248 1 0.00155 Private 
7:99366121 A/G 1.49 0.0935 1 0.00155 Private 
7:99367392 C/G 1.91 4.56x10-4 5 0.00311 Rare 

OR2T11 1:248789504 C/T -1.22 2.00x10-4 60 0.00628 Rare** 
1:248789822 A/C -2.80 2.23x10-3 2 0.00157 Private 

* Effect sizes and p-values based on single-variant association. 
** This variant MLE MAF<1%, but has >1% MAF in 1000 Genomes Project data. 
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Supplementary Figure S1. Power simulations for dichotomous traits. A) Power to detect private risk variants for 
T2D conditional on the observed allele count. B) Power to detect at least one of N private T2D risk alleles with 
80% penetrance. 

A       B 
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Supplementary Table S3. Summary statistics of the sampling error of effect size estimation.  

 1st.Q Median  Mean 3rd.Q  
Common 0.004 0.008 0.0191 0.0242 
Rare 0.079 0.11 0.1128 0.1443 
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Supplementary Figure S2. Kernel density plots of a -log transformed p-values of the extreme p-value distribution 
and the theoretical beta distribution.  
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