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Core Shape of −1/2 Defect
Elastic constant ratio κ also alters the core shape of −1/2
defects. As shown in Fig. S1, the defect cores adopt different
shapes at different κ, despite the director fields looking similar.
When K33 = K11, the core periphery is a circle, whereas, when
K33 6= K11, the core exhibits a triangular-like shape. The orien-
tation of such a “triangle” depends on κ. The underlying reason
is again related to the splay/bend distribution near −1/2 defect.
It is not surprising that the defect core is circular when splay and
bend are symmetric. If splay and bend are unequal, the three-
fold symmetry of the splay/bend energy leads to the triangular-
like core shape. When K33 < K11, bend is cheap, and thus the
isosurface of elastic energy advances along the high bend region
(blue), resulting in the triangle’s orientation pointing to the left.
When K33 > K11, splay is cheap, and therefore the isosurface of
elastic energy advances along the high splay region (red), leading
to the triangle’s orientation pointing to the right.

Extracting κ from Defect Morphology
We measure the dependence of κ with distance r from the defect
core shown in Fig. S2A. The defects analyzed are the same as
shown in Fig. 2. The range of r is chosen to avoid regions very
close to the defect core, which is ∼2 µm and very far from the
core where the director field is distorted by the surrounding
defects. We find that κ increases with the filament length and
also shows a radial dependence, as shown in Fig. S2B. The radial
dependence is minimal for l = 1.5 µm where the θ(φ) plot is lin-
ear, a result which is in accordance with the observations made in
ref. 1. To extract the values of κ, we take its average close to the
maxima where it remains constant over a relatively large distance
(solid symbols in Fig. S2B). In all three cases, this distance was
smaller than the mean interdefect separation, which is at least
30 µm.

Morphology of +1/2 Defect for Long Actin Filaments
Here we extract κ for the case when the actin filament length is
comparable to its persistence length. We perform an experiment
without adding capping protein so that the filaments grow to a
length of∼10 µm and analyze the shape of a typical +1/2 defect.
The results in Fig. S3 show that κ = 0.28, smaller than κ = 2.13
for l = 2 µm.

Simple Theory on the Elasticities of Microtubule Doped
Actin LC
The total elastic energy of the microtubule–actin composite con-
sists of the Frank elastic energy of the nematic LC and the elas-
tic energy of the microtubules. Elastic beam theory is adopted to
describe the latter energy. The energy reads
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where N is the number of microtubule filaments, and l0 is their
average contour length; w is the displacement (see Fig. S5 for
illustration). We assume that microtubules are aligning with the
local director field n; thus w(y) =
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The last equation is based on writing n as n = (sin θ(y), cos θ(y),
0). One has n× (∇× n) = (− cos2θ ∂θ
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fore, Eq. S1 is rewritten as
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with c the number density of microtubules, i.e., c=N /V .
The modified bend constant becomes K ′

33 =K33 + cl0EI .
For a 2D system, one has to consider the film thickness δz ,
K ′

33 =K33 + cl0EI /δz , in which c=N /A with A denoting the
film area.

Defect Annihilation
In Fig. S6, we show the trajectories of a ±1/2 defect pair dur-
ing an annihilation event. We consider two defect configura-
tions, with and without hydrodynamic effects. Elasticity is var-
ied for each case. Without hydrodynamics, the relative velocity
is dependent on κ and how the defects are organized: When
the defect line is perpendicular (parallel) to the far field, the
+1/2 defect moves faster (slower) than the −1/2 defect with
K33 < K11. As a special case when K11 = K33, the two defects
move at the same speed, consistent with previous calculations
(2). When hydrodynamic effect is included, the +1/2 defect is
more accelerated than the −1/2 defect, again consistent with
reported experimental and simulation results (2, 3). The order
of velocity anisotropy with respect to κ is kept if hydrodynamic
effect is considered: Hydrodynamic flow does not change the
qualitative behavior of the elasticity dependence of the defect
velocity, and it only modifies the quantitative dependence. We
point out that a pure elastic situation is not artificial. If the 2D
system is strongly confined, the long-range hydrodynamic flow
can be suppressed, and the defect dynamics can be approximated
at a no-hydrodynamics assumption (4). Therefore, one should
expect that, at a strong confinement system, it is possible that
the −1/2 defect moves faster than the +1/2 defect in an annihi-
lation event.
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Fig. S1. Core shape of topological defects. (A) Defect core shape calculated from the minimization of Frank–Oseen elastic energy. (B–D) Q-tensor simulation
results of the −1/2 defects with various K33/K11. Isosurfaces of the scalar order parameter are shown in black curves surrounding the defect core.

Fig. S2. Radial dependence of K33/K11. (A) A schematic description of the defect morphology where we plot the angle θ(r) against the polar coordinate
φ. (B) The elasticity ratio, K33/K11, plotted as a function of the radial distance, r, from the defect core for three actin filament lengths corresponding to the
images shown in Fig. 2B. Solid symbols represent the points over which K33/K11 is averaged to extract the numbers presented in Fig. 2C.

Fig. S3. The +1/2 defect shape for long actin filaments. Fluorescent image of LC formed by long actin filaments. A typical +1/2 defect is highlighted by a
blue dashed line, and the graph shows the corresponding θ(φ) plot for that defect. (Scale bar, 20 µm.)
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Fig. S4. Actin film thickness estimate. Green triangles show the normalized fluorescence intensity vs. distance from the oil–water interface (z) as acquired
from a confocal z stack. Comparison with the beads of diameter 1 µm and 0.2 µm stuck on a glass surface (red circles and black squares, respectively) suggests
that the actin film is ∼300 nm thick.

Fig. S5. Elastic beam. The schematic of the elastic beam theory in which w and θ are defined.
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Fig. S6. Simulations of defect annihilation dynamics. Defect positions are plotted against time; 0 is where they meet if they move in the same speed. The
filled symbols depict +1/2 defects, and open symbols represent −1/2 defects. (A) Perpendicular case without hydrodynamic effects. (B) Perpendicular case
with hydrodynamic effects. (C) Parallel case without hydrodynamic effects. (D) Parallel case with hydrodynamic effects.

Movie S1. Crowding of actin filaments on an oil–water interface forming a 2D nematic LC. Red and blue lines in the end of the movie represent typical
+1/2 and −1/2 defects. The data correspond to an average filament length of 2 µm.

Movie S1
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Movie S2. Simulation of two scenarios of the annihilation event of the ±1/2 defect. (Upper) Defect line perpendicular to the nematic far field. (Lower)
Defect line parallel to the nematic far field. Short black lines represent the director field, and blue curves are streamlines. In the zoom-in frames, red arrows
are the velocity vectors. In the parallel case, defects take a longer time to annihilate. (Time unit, tau = 0.8 s.)

Movie S2
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Movie S3. Experimental observations of the two scenarios of defect annihilation with perpendicular and parallel approach highlighted by red and blue
arrows, respectively. The data correspond to an average filament length of 2 µm.

Movie S3

Movie S4. Weather map: comparison of defect evolution in experiment and simulation. The blue and red arrows represent defect annihilations with far-
field parallel and perpendicular, respectively. The experimental data correspond to an average filament length of 2 µm.

Movie S4
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