Supporting Information Appendix

SI Materials and Methods

Patients. From 2007 to 2016, 61 adults T-ALL patients were diagnosed in RuiJin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, the First Affiliated Hospital of Soochow University, and the Fujian medical University Union Hospital, and 69 pediatric T-ALL patients were diagnosed in Shanghai Children's Medical Center according to the WHO criteria. All the data were re-reviewed by the evaluation group of Shanghai Institute of Hematology (SIH). The study was approved by the ethical board of the participating centers. All patients were given informed consent for both treatment and cryopreservation of bone marrow (BM) and peripheral blood samples according to the Declaration of Helsinki.

Treatment. Adult patients in discovery cohort were mostly enrolled in an SIH protocol (Chinese Clinical Trial Registry, number ChiCTR-RNC-14004969 for sample collection and ChiCTR-ONRC-14004968 for treatment respectively), which was a protocol similar to CALGB 8811 induction chemotherapy (Larson regimen), based on a modification of M.D. Anderson consolidation regimen (Hyper-CVAD, alternating with high-dose methotrexate and cytarabine for 4 cycles)(1, 2). We carried on weekly methotrexate, daily 6-MP and monthly vincristine/prednisone pulses for 2 years as maintenance regimen.

Pediatric patients in discovery cohort were mostly enrolled in the Shanghai Children's Medical Center ALL-2005 protocol (Chinese Clinical Trial Registry, numberChiCTR-ONC-14005003). This protocol was a modified ALL-XH-99 regimen(3). The most important change was to move the high-dose Ara-C from the consolidation treatment to the later maintenance in the intermediate-risk and high-risk groups, whereas conventional dosage (Ara-C 100 mg/m2/day, q12h, H, d1-7) was still used in the consolidation treatment in low-risk group(4).

RNA sequencing alignment. RNA sequencing were performed in all 130 patients according to previously described method(5). RNA-seq data were aligned against the human reference genome hg19 using Hisat2 (Version 2.0.5)(6). HTSeq was used to generate a counts table from Hisat2 output(7).

Fusion detection by RNA-seq and confirmation using Reverse transcription polymerase chain reaction (RT-PCR). FusionCatcher (Version 0.99.3d)(8) and Defuse (Version 0.6.2)(9) were used for finding somatic fusion genes such that there were at least 2 split reads and 3 spanning reads in the analyzed RNA-seq data. RT-PCR was performed to examine the newly identified fusion genes which had not been previously reported and 18 novel fusions were confirmed. For the fusions that may result in fusion proteins, we further estimated their impact to the ORFs based on the predicted break points and adjacent sequences.

Whole exome sequencing alignment. Whole exome sequencing was performed in 36 patients without fusion genes, 16 individuals having their own normal control samples (blood samples in CR). Read pairs were aligned to the human reference genome (hg19, downloaded from the UCSC Genome Browser) by BWA (version 0.7.15-r1140). Samtools (version 1.3) were applied to generate chromosomal coordinate-sorted bam files. Alignment files were processed further with the Picard (version 1.138) and GATK before variant calling. Duplicate removal, local realignment around known indels and base quality recalibration were performed. These data were compared to RNA-seq data from the same samples from 36 cases. Among genes with mutation rates >3%, 123/125 (98.4%) of the sequencing variations detected in RNA-seq were also found in WES, confirming the validity of our RNA-seq based mutation calling system.

Mutation calling from RNA-seq data. A recent publication using RNA-seq to identify mutations in a large B-ALL series was taken as reference(10, 11). As in their reports, several gene mutations (like NOTCH1, FBXW7, PTEN, NRAS, KRAS, JAK2, IKZF1, CREBBP, RPL10 etc.) were found using RNA-seg and confirmed by partial WES or Sanger sequencing. Based on RNA-seq and WES data from our previous work or public database, more stringent procedure to rule out rare SNPs were applied in this study. The mutations were called according to the GATK forum recommended pipeline for calling variant in RNAseq data(12). Specifically, STAR (version 2.5.2b) mapped bam files were processed by Picard(13). Variant calling was performed by the HaplotypeCaller, UnifiedGenotyper module in GATK, VarScan2 and LoFreq(14, 15), then the variants were quality controlled by the following steps: (1) at least three reads supported the mutation and the mutant allele frequency was >5% or be validated by Sanger sequencing; (2) not observed in common dbSNP 147 database or presented in the 1000 Genomes Project database; (3) sequence variation frequency <=2 in normal control samples [blood in complete remission] (CR), saliva, and skin tissues] from 265 ALL and lymphoma cases in our previous publications(5, 16) and this work; (4) supported by double strand of the genome; (5) not found in DARNED and RADAR RNA-editing database(17, 18). After filtering, all the mutations were annotated to genes according to their genomic positions. Non-silent mutations were compared to v70 COSMIC somatic mutation database (GRCh37) for the overlapped cancer relevant genes, and to the literature for genes mutated in T-ALL(19-22).

In 36 cases with WES data, 95.5% of recurrent gene abnormalities including loss-of-function mutations in TSGs of WES data were also found by RNA-seq analysis, suggesting no obvious decay of genetic information in the latter setting in T-ALL.

Gene expression and pathway analysis. The mRNA expression levels in transcriptome sequencing data were estimated as FPKM values. Briefly, read counts in the corresponding GENCODE annotated gene model were obtained with the HTseq-count program. FPKM values were computed by normalizing the obtained read counts for a transcript or gene with the length of the transcript or gene and the total mapped reads. All gene expression data from RNA-seq experiments were normalized together using variance stabilizing transformation in the DESeq2 package to remove any technical or spurious background variation(23). The top 1,484 genes (about 10 percent) were selected only based on the highest variability of gene expression across samples. Unsupervised hierarchical clustering was performed with ward method in R "gplots" package. The distance was based on the Pearson correlation coefficient.

RNA splicing and aberrant transcript analysis. Read counting was performed using HTSeq-count 0.9.1 (http://htseq.readthedocs.io/en/release_0.9.1/) with custom Python scripts provided by the DEXSeq(24). Read count tables and group comparisons for differential exon or transcript usage were performed with DEXSeq. Exon bins after the quantification has been filtered to improve reliability of differential exon usage. The filter method was according to previous published paper (25).

Multiplex ligation-dependent probe amplification (MLPA). Multiplex ligation-dependent probe amplification is an attractive property for copy number variation analysis (26). Hybridization and ligation steps were performed on 100 ng genomic DNA, and probes were subjected to PCR reactions using SALSA ME024 9q21 *CDKN2A/2B* region probemix according to the manufacturer's instructions (MRC-Holland). Targeted loci included 9p21 region encompassing the *CDKN2A/2B* gene. Products were run on ABI 3730XL genetic analyzer.

SNP array analysis. Total genomic DNA (200ng) was amplified, randomly fragmented and hybridized to Affymetrix Axiom 2.0 Assay according to the manufacturer's protocol. The hybridization, washing and scanning were completed in the Affymetrix GeneTitan MC instrument. The raw data (*.CEL) files were analyzed using the Axiom[™] Analysis Suite (Version 2.0.0.35) of Affymetrix. Log R Ratio (LRR) and B Allele Frequency (BAF) were calculated by Axiom CNV Tool (Version 1.1.0.85). Affymetrix official annotation file (Axiom_PMRA.na35.annot.db) was combined as the input data. The output file (*.PennCNV) were analyzed by PennCNV (Version 1.0.3) and GFD(27).

Plasmid construction. The wild-type *ZBTB16* and *ABL1* cDNA clones were kindly provided by OriGene. The *ZBTB16-ABL1* fusion cDNA was constructed into the XhoI and EcoRI multiple cloning sites of retroviral vector MSCV-IRES-GFP (Migr1). All recombinant plasmids were verified by DNA sequencing.

Cell transfection. Purified plasmids Migr1-vector or Migr1-*ZBTB16-ABL1* were cotransfected into HEK-293T cells with packaging vectors with Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. The HEK-293T cell culture supernatants were then concentrated to a viral concentration of approximately 3×10⁸ TU/ml. The viral particles were incubated with Jurkat cells for 4 h. The stably transfected clones were selected by GFP.

Cell proliferation assay. The stably transfected Jurkat cells were seeded in 96-well plates at a certain density per well. After incubation for 48 hours, cell proliferation was monitored by using the CellTiter-Glo® Luminescent Cell Viability Assay (Promega Corporation) following the manufacturer's instruction.

Cell cycle analysis. The stably transfected Jurkat cells were fixed in cold 70% ethanol, washed once in PBS, and re-suspended in PBS supplemented with 100 µg/ml DNase-free RNase A (QIAGEN) and 100 µg/ml propidium iodide (PI)

(Sigma). Samples were processed using the LSR Fortessa[™] X-20 flow cytometer (BD Biosciences) according to the manufacturers' instructions.

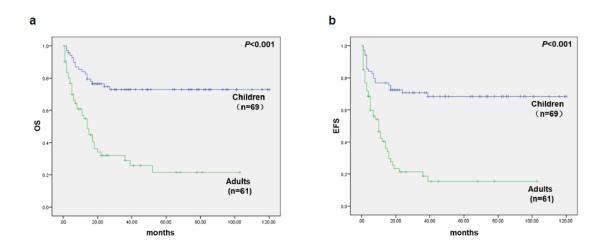
Protein tyrosine kinase assay. ABL1, ZBTB16-ABL1 (ZA) and BCR-ABL (BA) tyrosine kinase activity were measured using universal tyrosine kinase assay kit (Takara) according to the manufacturer's instructions. Briefly, the HEK-293T cells were transfected with Migr1-vector, Migr1-ZBTB16-ABL1 or Migr1-BCR-ABL (provided by Jian-Hua Mao, Shanghai Institute of Hematology) plasmids. Cell lysates were prepared and the ABL1 antibody (Cell Signaling, 2862; 1:100 dilution) was used for immunoprecipitation. Agarose beads conjugated with protein A/G were added. The amounts of ABL1 proteins of ABL1, ZA and BA were normalized and the immunoprecipitates were then incubated with ATP-2Na immobilized wells. in Horseradish peroxidase-conjugated antiphosphotyrosine (PY20) antibody was added to each well and developed by addition of HRP substrate solution (TMBZ). The reaction was stopped with 1N H₂SO₄ and absorbance was measured at 450 nm on a spectrophotometer. Each test was triplicated and the results were calibrated with a corresponding phosphopeptide standard curve and control.

Cellular drug inhibition assay. Imatinib and dasatinib were purchased from Selleck. Both drugs were stored at -20°C as a 10mM stock solution in dimethyl sulfoxide (DMSO). The stably transfected Jurkat cells were plated at 1×10⁴ cells per well in 96-well plates in PRMI-1640 medium supplemented with 10% heat-inactivated FBS. TKIs were included in media at increasing concentrations. Viable cell number was assessed 48h postplating using the CellTiter-Glo Luminescent Cell Viability Assay (Promega) according to the manufacturer's instructions. All experiments were performed intriplicate.

Mouse keeping, retrovirus packaging, BM transplantation. Mice used in this study were housed in the specific pathogen free circumstance in Research

Center for Experimental Medicine in RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. Male BALB/c mice (aged 6–8 weeks, *n*=10) and female BALB/c mice (aged 6–8 weeks, *n*=20) were raised in a temperature (22±1°C) and humidity (55±5%) controlled room with 12 hours of light and 12 hours of dark a day. All animal experiments were conducted following the institutional ethical guidelines on animal care and were approved by the Animal Care and Use Committee of Shanghai Jiao Tong University School of Medicine. Retroviral supernatants were generated by co-transfecting 293T cells with recombinant plasmids and ecopac retroviral packaging plasmid using Lipofectamine 2000 (Invitrogen). BM cells were isolated from male BALB/c mice that received 5-fluorouracil (250 mg/kg) 5 days before harvest. The primary murine BM cells were then infected once a day for 2 days with a retroviruses mixture consisting of DMEM supplemented with 15% FBS, IL-3 (10 ng/mL), IL-6 (10 ng/mL), IL-7 (10 ng/mL), Flt3L (10 ng/mL), SCF (50 ng/mL) and polybrene (5ug/mL). All cytokines were obtained from R&D Systems. After 24-hour infection, cells were randomly injected into lethally irradiated recipient female BALB/c mice through the tail vein (*n*=10 for each group). Two weeks after transplantation, peripheral blood was collected to analyze the percentage of GFP positive cells to evaluate the efficiency of transplantation.

In vivo treatment studies. The primary bone marrow transplantation mouse model was used. Dasatinib or imatinib treatment was started 10 days after transplantation. Imatinib was dissolved at 10 mM in 100% dimethyl sulfoxide (DMSO) and formulated in 5% carboxymethylcellulose solution and given in a dose of 50 mg/kg. Dasatinib was dissolved in H₂O and given in a dose of 5 mg/kg. Control mice were treated with equal volumes of vehicle (carboxymethylcellulose and H₂O). Drugs or vehicle was given by oral gavage twice per day for 5 days followed by a 2-day rest in a volume of 0.01 mL/g of mouse body weight. The treatment continued until the death of the control mice.

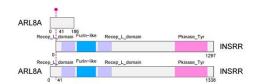

Morphological and immunophenotypic analysis. Peripheral blood cell counts were performed with a Poch-100iv Diff (Sysmex Corp). Smears and cytospin preparations were subject to Wright's staining for routine cell morphology. For immunophenotyping, after lysis of red blood cells, white blood cells were incubated for 30 minutes with antibodies against Gr-1, Mac-1, CD3, B220, CD117 or cocktail of lineage antibodies purchased from BD Pharmingen or eBioscience. The cells then were spun down, re-suspended in 200 µL PBS, and analyzed on LSR Fortessa[™] X-20 (BD Biosciences).

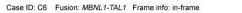
Statistical analysis. The differences in cell proliferation between different groups were statistically analyzed by using an unpaired Student's *t* test. Comparisons of categorical variables were determined by Pearson's Chi-square test or Fisher's exact test. The OS and EFS were estimated by Kaplan-Meier method and compared by log-rank test. OS was defined as from the diagnosis of the disease to death or alive at last follow-up (censored); EFS was from disease diagnosis to treatment failure such as relapse, death, or alive in CR at last follow-up (censored). The last follow-up was carried out on February 2017. *P* values <0.05 were considered statistically significant. All statistical procedures were performed with the GraphPad Prism 5, R3.2.2 or SPSS Version 22.0 statistical software.

SI Figures

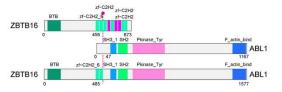
Figure S1. Kaplan-Meier survival curves of adult (>=18 years) and pediatric (<18 years) T-ALL patients.

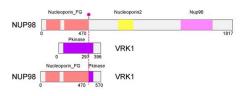
(a) OS of children and adults with T-ALL, *P*<0.0001. The 3-year-OS of pediatric patients was 72.8% (95% CI 67.3-78.3), and the 3-year-OS rate of adult patients was 29.0% (95% CI 22.4-35.6). (b) RFS of children and adults with T-ALL, *P*<0.0001. The 3-year-EFS of pediatric patients was 70.7% (95% CI 65.2-76.2), and the 3-year-EFS of adult patients was 18.6% (95% CI 12.9-24.3).

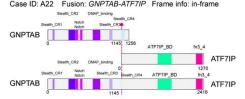

Figure S2. Novel identified 18 rearrangements in 130 T-ALL patients.

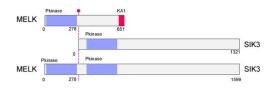

Predicted domain structure of four type fusion genes. Type1 included *SLC38A2-ABL2*, *GNPTAB-ATF7IP*, *ARL8A-INSRR*, *MELK-SIK3*, *MBNL1-TAL1*, *ZBTB16-ABL1*, *MYH9-JAK2*, *EEFSEC-PDHX*, *MBNL1-ANXA3*, *NUP98-VRK1*, and *IKZF1-NOTCH1*. Type2 included *CCND3-STIL*, *EVL-NKX2-1* and *EVL-SFTA3*. Type3 included *ZFP36L2-TRA*, *TRB-AHI1*, *TRA-SALL2* and *TRD-NKX2-1*. Type4 included *PPP4R3A-IGH*. The main domains of the protein structure information were extracted from the UniProt and NCBI conserved domain databases. *EVL-NKX2-1* and *EVL-SFTA3* were located in the same case C47. *EVL-SFTA3* probably caused by a splicing between *EVL* and *SFTA3*, which is located just downstream to *NKX2-1*. We counted *EVL-NKX2-1* and *EVL-SFTA3* as one novel fusion event.

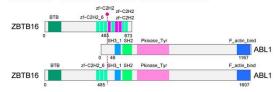
Type 1

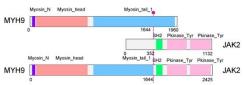



Case ID: C23 Fusion: ZBTB16-ABL1 Frame info: in-frame

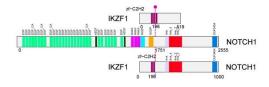


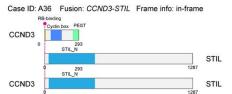

Case ID: C43 Fusion: NUP98-VRK1 Frame info: in-frame

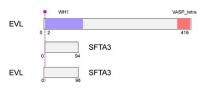

Case ID: A22 Fusion: GNPTAB-ATF7IP Frame info: in-frame


Case ID: C1 Fusion: MELK-SIK3 Frame info: in-frame

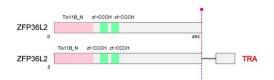
Case ID: C11 Fusion: ZBTB16-ABL1 Frame info: in-frame

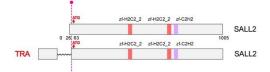

Case ID: C20 Fusion: MYH9-JAK2 Frame info: in-frame


Case ID: C31 Fusion: MBNL1-ANXA3 Frame info: in-frame

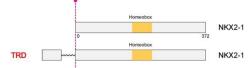

Case ID: C63 Fusion: IKZF1-NOTCH1 Frame info: in-frame

Type 2

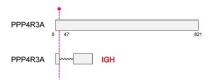


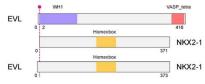


Type 3

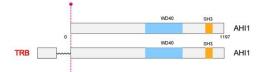

Case ID: A25 Fusion: ZFP36L2-TRA Frame info: UTR/---

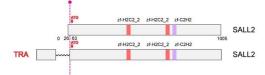
Case ID: C22 Fusion: TRA-SALL2 Frame info: ---/CDS



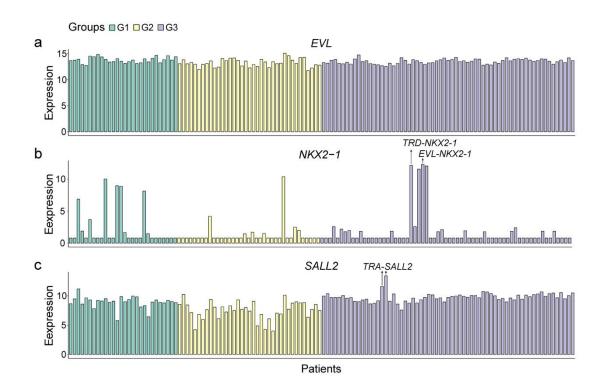


Type 4

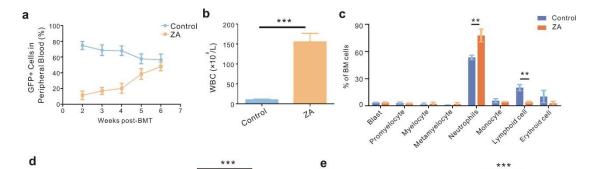

Case ID: C60 Fusion: PPP4R3A-IGH Frame info: intronic/---


Case ID: C47 Fusion: EVL-NKX2-1 Frame info: in-frame

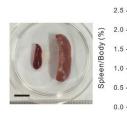
Case ID: C17 Fusion: TRB-AHI1 Frame info: ---/CDS

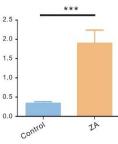


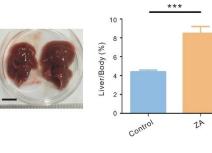
Case ID: C38 Fusion: TRA-SALL2 Frame info: ---/CDS

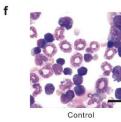

Figure S3. *EVL*, *NKX2–1* and *SALL2* gene expression levels in 130 T-ALL patients.

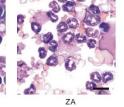
T-ALL cases in G1, G2 and G3 groups were shown in different colors. (**a**) *EVL* was highly expressed in 130 T-ALL patients. (**b**) *NKX2-1* was highly expressed in cases with *TRD-NKX2-1* and *EVL-NKX2-1* fusions. (**c**) Cases with *TRA-SALL2* fusions had higher expression of *SALL2* than others.



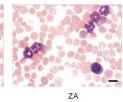

Figure S4. Phenotypic and morphological analysis of *ZBTB16-ABL1* (ZA) mice.

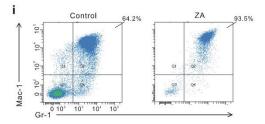

(a) Average percent of GFP⁺ cells in PB after BMT. (b) Histogram of WBC counts in control and ZA mice. (c) Histogram of the relative proportions of cells with different populations of BM cells of ZBTB16-ABL1 (ZA) mice and control mice as determined by morphological analysis. (d) Spleen weight/body weight of control and ZA mice. Scale bar, 1 cm. (e) Liver weight/body weight of control and ZA mice. Scale bar, 1 cm. (f) Wright staining of BM cytospin samples from ZBTB16-ABL1 (ZA) mice and control. Scale bar, 15 μ m. (g) Morphological comparison of PB in control and ZA mice. Scale bar, 10 μ m. (h) Wright staining of cytospin of spleen from control and ZA mice. Scale bar, 10 μ m. (i) Representative flow cytometric analysis of GFP-expressing BM cells for Gr-1 and Mac-1 in ZBTB16-ABL1 (ZA) versus control. Error bars represent mean ± s.d. (*n*=4-10 recipients per group). ****P*<0.001. Statistical significance was determined using two-sided Student's *t* test.



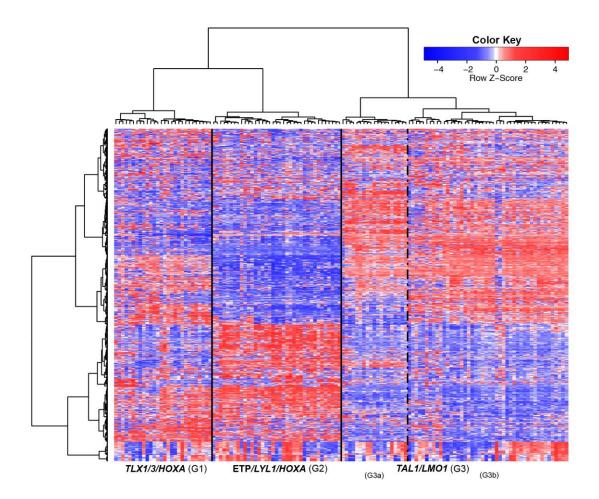

е







ZA



h

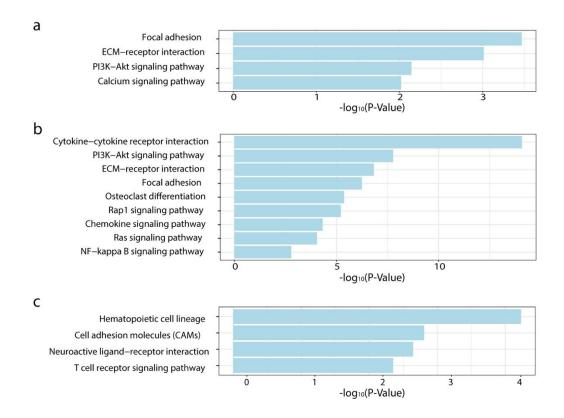

Control

Figure S5. Unsupervised hierarchical clustering of global gene expression profile from 130 T-ALL patients. Columns indicate individual T-ALL patients, and rows represent 1,484 most variably expressed genes on autosomal chromosome according to RNA-seq data. Gene over-expression and under-expression status are shown in red and green, respectively. Three major T-ALL groups are identified on the basis of gene expression profiles. Group 3 can be further divided into G3a and G3b subgroups.

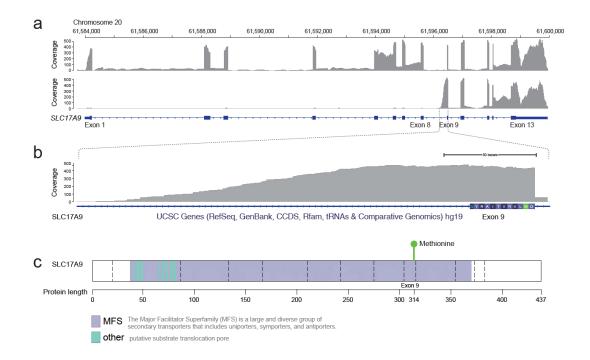


Figure S6. Gene functional analysis of expression profile for each group.

Gene ontology (GO) analysis of the up-regulated genes in each transcriptome-based group (G1, G2 and G3) was performed with Database for Annotation Visualization and Integrated Discovery (DAVID) v6.8. KEGG pathways enrichment log₁₀ transferred P-Values were shown as bar plot. G1, G2 and G3 functional enrichment results were listed below as (**a**), (**b**) and (**c**), respectively.

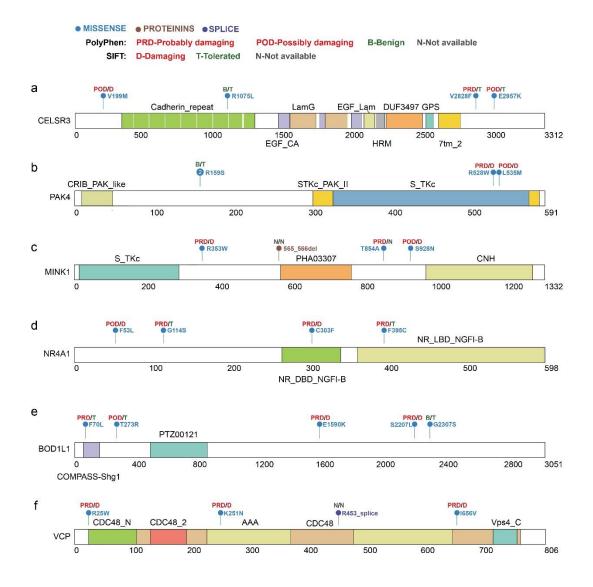
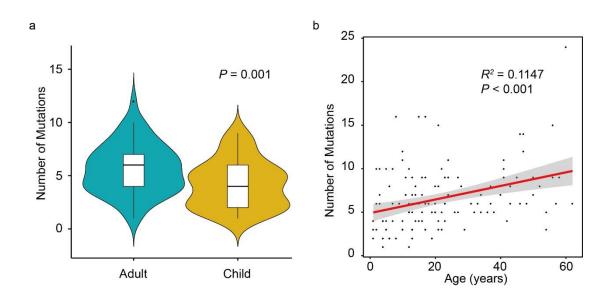
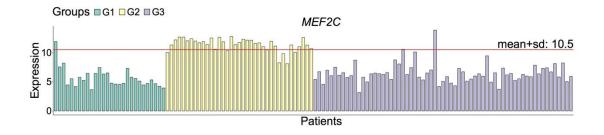


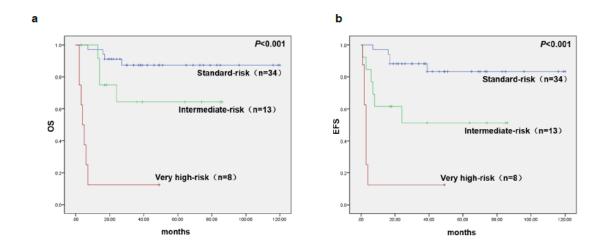
Figure S7. Aberrant *SLC17A9* short transcript in T-ALL patients. (a) Coverage tracks in RNA-seq data for a *SLC17A9* wild-type case (top) and a short isoform case with deletion of exon 1-8 (bottom). (b) Detail of *SLC17A9* exon 9 coverage peak in the short isoform case. Amino acid information is annotated under the coverage track. (c) Predicted domain structure of *SLC17A9* protein. Location of a putative initiation codon (methionine) in exon 9 is pointed by a green pointer.


Figure S8. Schematic location of the novel gene mutations with RNA-seq and WES.

(a) CELSR3, (b) PAK4, (c) MINK1, (d) NR4A1, (e) BOD1L1, (f) VCP gene mutation sites were positioned in terms of protein structure with the main domain information according to NCBI conserved domain database. PolyPhen and SIFT were applied to the prediction of amino acid substitution to deteriorate proteins' function. For the totally 25 mutations, the prediction results of PolyPhen showed that 13 of them were "Probably damaging", 6 of them were "Possibly damaging", 4 of them were "Benign"; SIFT predicted that 12 mutations were "Damaging", 10 mutations were "Tolerated" and 3 mutations were unavailable. Especially, for the big gene *CELSR3*, all amino acid substitutions on this gene deteriorate protein's function. The prediction results for *CELSR3* were "Possibly damaging", "Damaging", or "Tolerated" in both of PolyPhen and SIFT.


Figure S9. The correlation between mutation counts and age.

(a) Violin plot of mutation counts in adult and children (*P*=0.001). Gene mutation rates over 3% were taken into account in the comparison. (b)
Correlation between mutation counts and age of 130 T-ALL patients subject to RNA-seq and WES that all founded mutations were included.


Figure S10. *MEF2C* gene expression levels in 130 T-ALL patients

T-ALL cases in G1, G2 and G3 groups were shown in different colors. The cut-off value of *MEF2C* over-expression was defined as greater than one standard deviation above mean expression (FPKM: 10.5). The corresponding horizontal red line indicated the threshold.

Figure S11. Kaplan-Meier survival curves of pediatric (<18 years) T-ALL patients with COG risk classification.

(a) OS of children with COG risk classification, P<0.0001. The 3-year-OS of patients with standard-, intermediate- and high-risk was 87.4% (95% CI 81.4-93.4), 64.3% (95% CI 49.7-78.9) and 12.5% (95% CI 0.8-24.2), respectively. (b) RFS of with COG risk classification, P<0.0001. The 3-year-EFS of patients with standard-, intermediate- and high-risk was 83.3% (95% CI 76.2-90.4), 51.3% (95% CI 36.7-65.9) and 12.5% (95% CI 0.8-24.2), respectively.

SI Tables

Table S1. Genetic characteristics of 130 patients with T-ALL

Characteristics	Group 1 (n=28)	Group 2 (n=37)	Group 3 (n=65)	P value
mmunophenotype ^a				
ETP	2	22	0	<0.001
Pro	1	5	3	0.172
Pre	3	8	23	0.035
Cortical	15	1	30	<0.001
Medullary	7	1	9	0.030
Fusion genes				
STIL-TAL1	0	0	20 (30.8%)	<0.001
TCR-related	0	1 (2.7%)	9 (13.8%)	0.029
LMO1/2-TRA	0	0	4	0.12
other TCR-related	0	1	5	0.21
NUP-related	3 (10.7%)	15 (40.5%)	1 (1.5%)	<0.001
SET-NUP214	0	10 (27%)	0	<0.00
NUP214-ABL1	3	1	1	0.09
NUP98-related	0	4 (10.8%)	0	0.00
KMT2A-related ^b	2	0	2	0.256
PICALM-MLLT10	3 (10.7%)	1 (2.7%)	0	0.023
ZBTB16-ABL1	0	0	2	0.362
Other fusion genes	5	3	9	0.496
Gene over-expression				
TAL1	2 (7.1%)	4 (10.8%)	24 (36.9%)	0.001
LMO1	0	2 (5.4%)	10 (15.4%)	0.040
LMO2	0	6 (16.2%)	8 (12.3%)	0.096
LYL1	4 (14.3%)	21 (56.8%)	4 (6.2%)	<0.001
HOX-related	28 (100%)	29 (78.4%)	4 (6.2%)	<0.001
TLX1	3 (10.7%)	0	0	0.00
TLX3	18 (64.3%)	0	0	<0.00
HOXA	17 (60.7%)	29 (78.4%)	4 (4.2%)	<0.00
MEF2C	1 (3.6%)	30 (81.1%)	2 (35.4%)	<0.001
Gene mutations				
NOTCH1 / FBXW7 (C1)	26 (92.9%)	29 (78.4%)	47 (72.3%)	0.087
Signaling Pathways (C2)	17 (60.7%)	31 (83.8%)	29 (44.6%)	<0.001
JAK-STAT pathway	11 (39.3%)	19 (51.4%)	3 (4.6%)	<0.00
RAS pathway	4 (14.3%)	17 (45.9%)	4 (6.2%)	<0.00
PI3K pathway	2 (7.1%)	0	14 (21.5%)	0.00
PTEN	0	1 (2.7%)	12 (18.5%)	0.00
Epigenetic Factors (C3)	24 (85.7%)	33 (89.2%)	21 (32.3%)	<0.001
PHF6	17 (60.7%)	13 (35.1%)	1 (1.5%)	<0.00
Transcription Factors (C4)	7	14	17	0.394

^a The immunophenotypes are classified according to the recommendation of European Group for the Immunological Characterization of Leukemias (EGIL)(28) and the National Comprehensive Cancer Network (NCCN) guideline(29). ^b *KMT2A*-related fusions include *KMT2A-MLLT1* (1 case), *KMT2A-MLLT4* (1), *KMT2A-ELL* (1), and *KMT2A-CBL* (1), respectively.

Characteristics	ETP	Pro	Pre	Cortical	Medullary	<i>P</i> value
Gender, male/female	14 / 10	5/4	26 / 8	37 / 9	13 / 4	0.229
Age, years, Median (range)	39 (7-62)	23 (1-50)	13.5 (2-60)	15 (1-50)	16 (4-37)	0.225
WBC count	3 5 (7-02)	23 (1-30)	13.3 (2-00)	13 (1-50)	10 (4-57)	0.007
>=100×10 ⁹ /L	2 (8.3%)	2 (22.2%)	18 (52.9%)	19 (41.3%)	8 (47.1%)	0.007
<100×10 ⁹ /L	22 (91.7%)	7 (77.8%)	16 (47.1%)	27 (58.7%)	9 (52.9%)	
Complete Remission	17 (70.8%)	7 (77.8%)	27 (79.4%)	42 (91.3%)	17 (100%)	0.056
Relapse ^a	2 (11.8%)	2 (28.6%)	7 (25.9%)	9 (21.4%)	8 (47.1%)	0.000
Fusion genes	_(:::::;;;;	_ ()	()	- (,)	• (
STIL-TAL1	0	0	10 (29.4%)	8 (17.4%)	2 (11.8%)	0.022
TCR-related	1	0	2	7	0	0.170
LMO1/2-TRA	0	0	0	4	0	0.11
other TCR-related	1	0	2	3	0	0.77
NUP-related	10 (41.7%)	3 (33.3%)	2 (5.9%)	3 (6.5%)	1 (5.9%)	<0.001
SET-NUP214	8 (33.3%)	1 (11.1%)	0	1	0	<0.00
NUP214-ABL1	0	0	2	2	1	0.75
NUP98-related	2 (8.3%)	2 (22.2%)	0	0	0	0.00
KMT2A-related ⁶	1	0	1	1	1	0.916
PICALM-MLLT10	1	0	0	2	1	0.707
ZBTB16-ABL1	0	1	1	0	0	0.123
Other fusion genes	1	2	4	7	3	0.577
Gene over-expression						
HOX-related	20 (83.3%)	7 (77.8%)	8 (23.5%)	17 (37.0%)	9 (52.9%)	<0.001
TLX1	0	0	1	1	1	0.77
TLX3	1	1	2	10	4	0.11
HOXA	19 (79.2%)	6 (66.7%)	6 (17.6%)	10 (21.7%)	9 (52.9%)	0.00
LMO1	2	0	2	5	3	0.562
LMO2	5	0	4	4	1	0.370
LYL1	14 (58.3%)	3 (33.3%)	3 (8.8%)	6 (13.0%)	3 (17.6%)	<0.001
TAL1	4	0	10	13	3	0.287

Table S2. Clinical and genetic characteristics of 130 patients with T-ALL according to Immunophenotype

SLC17A9-short	0	0	21 (61.8%)	28 (60.9%)	9 (52.9%)	<0.001
MEF2C	20 (83.3%)	4 (44.4%)	7 (20.6%)	2 (4.3%)	0	<0.001
Gene mutations						
NOTCH1 / FBXW7 (C1)	19	8	23	40	12	0.237
Signaling Pathways (C2)	17	6	18	24	12	0.284
JAK-STAT pathway	8	3	8	9	5	0.712
RAS pathway	11 (45.8%)	2 (19.2%)	5 (14.7%)	6 (13.0%)	1 (5.9%)	0.006
PI3K pathway	0	0	4 (11.8%)	6 (13.0%)	6 (35.3%)	0.011
PTEN	1	1	5	3	3	0.481
Epigenetic Factors (C3)	20 (83.3%)	6 (66.7%)	19 (55.9%)	21 (45.7%)	12 (70.6%)	0.032
PHF6	8	2	6	10	5	0.676
Transcription Factors (C4)	10	2	9	14	3	0.514

^a The relapse rate is calculated based on the number of the cases with complete remission.

^b KMT2A-related fusions include KMT2A-MLLT1 (1 case), KMT2A-MLLT4 (1), KMT2A-ELL (1), and KMT2A-CBL (1), respectively.

Table S3. Specific gene signatures of Pro, Pre, Cortical, Medullary andETP immunophenotypic subgroups based on gene expression signal

CD8B CDR11 PARD3B TSPYL2 TMEM213 BLNK PPMJJ CDH13 PRICKLE2 CD4 PTPRM CDH9 GADD45G CLEGGA PRX ACOT11 SCARA5 HTRA3 POU3F2 SCAMB ADMTSB BINIL PR02 FAM160A1 C'PH81 CDGA CGGA CTF1 NOVA2 CDA EDARADD LAMC3 NNAT RSAD2 TFF GFX8 CTGF NOVA2 CD1A EDARADD LAMC3 NNAT RSAD2 TFFAB CROC50 LAMA4 EPHA2 RAG1 CHRNA3 CAPM12 SPAT21 LIPG PTK2 FAM6A LPCA12 IGLI1 LYST CPRE8 TREA GRAD45A OAS1 IRF8 PRCE14 FNC12 LLEAD3 ARHGE17 HL-D014 DUS72 CD1D KLK1 PLA2G4F GRR3 RNF167 CFC12 LDRAD3 ARHGE17 HL-D014 DUS72 IL33 SLC2A31 MAED2		ro	Pre	Cortical	Medullary	su on gei	ET		ignai
CD4 PTPRM CDH9 GADD45G CLEG3A PRX AC0T11 SCARA5 HTRA3 POU3E2 SCM4B ADAMTSB BNIPL PR02 FAM160A1 CYP1B1 CD163 C107INF4 CDRA SSR TENM8 RGMB ATPRVM4 KLH14 CD10A EGF12 CVTL1 ATPR0APL ITIFAB GCD26 LAMC3 INNAT RSAD2 TFAB GCD26 LAMC4 EPHA2 RAG1 CHRN3 CAPH12 SPATA LIPG OPTX2 FAM46A LPCA212 JOUSP27 CD10 KLK1 PL/2G4F GPR3 RNF157 CP LDLRA33 ARH6E17 HLA-30B1 CPP128 TCRL2 SVR3 B3GNT4 MX11 OLFML28 BTK EGFR CX2L1 MARE2 ULPH OSBPL10 TRAF4 GGS2 MCTP2 PLR14 KAD02 GJB6 DPYSL5 HTRA4 MATN1 ACE SMO11 LTK BCAN2 ANO2 <th></th> <th>-</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th>		-			-				
POUSF2 SCN4B ADAMTS8 BINIPL PROZ FAM160A1 CYP1B1 CD163 C1QTNF4 C06A SPR TEMM3 RGMB ATP6V0A4 KLIL4 C10A EGFL7 CVTL1 ATP6AP1L ITIH64 CARADD LAMC3 NNAT RSAD2 TFFA CPCAB CCTGF NOVA22 CD1A EDARADD LAMC3 NNAT RSAD2 TIFAB CCDC50 LAMA4 EPH2 CD1A EDARADD CARN12 SPAT21 LIPG PTK2 FAM66A LPCAT2 DUSP27 CD1D KLK1 PLA2de4 GPR3 RNF157 CP LDLRAD3 ANGEFT HLANGEFT HLANGEFT HLANGEFT HLANGEFT HLANGEFT HLANGEFT KCSCL4 RGMB DPYSL5 HTRA4 MAT11 ACE SMC1 LIT SMC2 LIST SMC14 KLIL3 GB6 DPYSL5 HTRA4 MAT14 ACE SMC1 LTK BCAN2 GBAB									-
CDBA SPR TENM3 RGMB ATP6V0A4 KLHL4 CTOA EGFL7 CYTL1 ATP6APIL ITH6A TMEMD TMEM121 TPS3INP2 ADAM23 TF GPA8 CTGF GVVA2 CD1A EDARM3 CAPN12 SPAT21 LIRG PTM2 FAM46A LPCA12 IGL1 LYST CPNB8 TRPV5 GADD45A OAS1 IRF8 PRODH NLRP7 UDSP27 CD1D KLKY PLA2G4F GPR3 RNF157 CP LDRAD3 ARHGET1* HLA-D081 CP128 TCEAL2 MOPB COLCA2 RF168 TNRFST14 FCDC1 CLEC4M MAER2 UBB1 OSBP10 TRAF4 GGS2 MCT2 ZHP1* KLL13 SC2A3 GIB6 DYSL5 HTR4 MAT11 ACE SMC1 LTK BCAN ANO2 SIRPG WIX2 THP0 TMEM88 HSPA6 VCA11 GLYA12 MLC1 CACAN203 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
ATPGAP1L ITHE TMEMI121 TPS3INP2 ADAM23 TF GPX8 CTGF NVA2 CD1A EDARADD LAMC3 NNAT RSAD2 TIFAB CCD50 LAMA4 EPHA2 RAG1 CHRNA3 GAPN12 SPATA21 LIPG FIFAB PRODH NLRP7 DUSP27 CD1D KLK1 PLA2G4F GRR3 RNF157 CP LDRAD3 ARHGEF17 HL-DOB1 CEP128 TCEAL2 MOBP COLGA2 RNF168 TNFSF11A FCEAL3 FNDC1 LCEA4M FNDC1 LCEA4M THEDE ASAH2 SYN3 B3GMT4 MX1 OLFML28 GUC2D LL2A LCEA4M FNDC1 LL2A LCEA4M FNDC1 LL2A LCEA4M FNDC1 LL2A ML113 SLC2A3 GMB6 DPYSL5 HTFA4 MAT47 RGB4 APOE LD2A ALXA APA2A PITFMA MAT51 AGA47 POFR55 FMT44 MAT47 LAXA									
CD1A EDARADD LAMC3 NNAT RSAD2 TIFAB CCDC50 LAMA4 EPHA2 RAG1 CHRNA3 CAPN12 SPATA21 LIPG PTK2 FAMA6A LPCAT2 GLL1 LYST CPNB TRPV5 GAD45A OAS1 IIRF8 PRODH NLRP7 DUSP27 CD1D KLK1 PLA2G4F GPR3 RNF157 CP LDLRAD3 ARHGEF17 HLAC64H TRHDE ASAH2 SYN3 B3GM14 MX1 OLFML2B BTK EGFR3 SLC22A3 AMER2 ULBP1 OSBPL10 TRAF4 G052 MCTP2 P2RY2 SCHIP1 KLH113 GJB6 DPYSL5 HTRA4 MAT11 ACE SMOC1 LTK BCAN2 SIRFG WIXQ THP0 TMEM8 HSPA6 VCAM1 GLYAT2 ADRA2A SIRFG WIXQ CATSPER0 PPP1750 PGLYR2 SLC02B1 LYN GNG2 ASCA4 ADRA2A SA								-	
RAG1 CHRNA3 CAPN12 SPATA21 LIPG PTK2 FAM46A LPCAT2 IGL1 LYST CPNE8 TRPV5 GADDA5A OAS1 IRF8 PRODH NLRP7 DUSP27 CDID KLK1 PLA2G4F GP3 RNF156 TVFRSF11A FCR1A FNODH CLCC4M CP128 TCEAL2 MOPP CACNG4 FFA82 LDLRA20 GUY2D IL33 SL22A3 AMER2 ULBP1 OSBPL10 TRAF4 G0S2 MCTP2 P2Y2 SCHIP1 KLH1 GJB6 DYPSL5 HTRA4 MATN1 ACE SMOC1 LIT BCAO ANO2 FGFR3 GPC3 CYP26C1 FSCN3 CTSH ZDHC14 NOG KIT CADPS2 SIRF6 WNR2 THPO TMEM88 HSPA6 VCAH1 GLYAT12 MLC1 CACACA JDTFNM2 PRIFAP1 CATSPED PPP1R15A PGLYP2 SLC02B1 LV1A GND2A <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
LYST CPNE8 TRPV5 GADD45A OAS1 IRF8 PRODH NLRP7 DUSP27 CD10 KLK1 PLA2G4F GR3 RNF157 CP LDLRAD3 ARHGEF17 HLA-DG41 CEP128 TCKL2 MOBP COL6A2 RNF168 TNFRSF11A FCER1A FNGC1 CL2CA4 MAP6D1 HOMER1 CPNE9 CACNG4 FFAR2 LDLRAD2 GUCY2D ILB14 KLK1 KLK1 GJB6 DPYSL5 HTRA4 AMTN1 ACE SMC12 PCRV2 SCH10 KLH1 KLT1 CADPS2 SIRF6 WNK2 THPO TMEM88 HSPA6 VCAM1 GLYATL2 MLC1 CACAADSA ADMTS17 PRIGAPI0* GSCT2 TPF04 FCISPER0 PPF145 CLC2A1 MVLK GAD43 ABP25 SLC45A1 CYP4X1 LAMA2 CLEC4C MYLK GNG14 ASCL4 HIST23A GNNH1 MYED3 PGLYR2 SLC02B1 LYN <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
CD1D KLK1 PLA2G4F GPR3 RNF157 CP LDLRAD3 ARHGEF17 HLA-D0B1 CEP128 TCEAL2 MOBP COL6A2 RNF168 TNFRSF11A FCER1A FNDC1 CLEC4M TRHDE ASAH2 SYN3 B3GNT4 MX1 OLFML2B BTK EGR1A FNDC1 CLEC4M MAPD1 HOMER1 CCNPB GACM44 FFA2 LDLRAD2 GUY2D IL33 SLC22A3 AMER2 ULBP1 OSBPL10 TRAF4 G0S2 MCTP2 P2RY2 SCHIP1 KLH113 GJB6 DPYSL5 HTRA4 MATN1 ACE SMOC1 LTK BCAN ANO2 SIRFG WNN2 THPO TMB88 HSR56 VCAM1 GLYA2 MLC1 CACAM203 ADATS17 ARIGEP3 COL5A2 CYP471 LTGE CXCL11 FOXC1 GNT2 ASCL4 HIST2H3A CNNM1 MYBC3 MAFB CLC4D SUCNR1 TNFSF13B MN1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
CEP128 TCEAL2 MOBP COL6A2 RNF168 TNFRSF11A FCER1A FNDC1 CLEC4M TRHDE ASAH2 SYN3 B3CNT4 MX1 OLFML28 BTK EGFR CX3CL1 MAP62 ULBP1 OSBPL10 TRAF4 G0S2 MCT2 P2R2 SCHIP1 KLH.13 GJB6 DPYSL5 HTRA4 MATN1 ACE SMC1 LTK BCAN ANO2 FGFR3 GPC3 CYP26C1 FSCN3 CTSH ZDHHC14 NOG KIT CADPS2 SIR7 OPDE10A CATSPERD PP1R15A PGLYRP2 SLC02B1 LYN GNG7 APO8 KCNK3 SNAP25 SLC45A1 CYP4X1 LAM22 CLEC4C MYLK PLA1A TBX2 SLC28A1 ANKPD3 GLEAA1 SUP4X1 LIF ANKR05 FZD4 ANX13 CSR93 MNS1 SUSD4 GLP2R IBA57-A51 LIF ANKR05 FZD4 NAV3<			-						
TRHDE ASAH2 SYN3 B3GNT4 MX1 OLFML2B BTK EGFR CX3Cl1 MAPED1 HOMER1 CPNE9 CACNG4 FFAR2 LDLRAD2 GUCY2D IL33 SLC22A3 AMER2 ULBP1 OSBPL10 TRAF4 GOS2 MCTP2 P2RY2 SCHP1 KLIN4 GJB6 DPVSL5 HTRA4 MATN1 ACE SMC01 LTK BCAN CACNC44 FA GJB7 GPVSL5 HTRA4 MATN1 ACE SMC01 LTK BCAN CACNC44 FA GDX212 MLC1 CACNC40 ADAMTS17 AMRAPEP CMP GATA6 RGMA APOE FMO2 FI3<									
MAP6D1 HOMER1 CPNE9 CACNG4 FFAR2 LDLRAD2 GU22D IL33 SLC2A3 AMER2 ULBP1 OSBP100 TRAF4 GGS2 MCTP2 P2RY2 SCHIP1 KLH113 GJB6 DPYSL5 HTRA4 MATN1 ACE SMOC1 LTK BCAN ANO2 FGFR3 GPC3 CYP26C1 FSCN3 CTSH ZDHHC14 NGG KIT CADPS2 SIRPG WNK2 THPO TMEM88 HSPA6 VCAM1 GLYATL2 MLC1 CACN2D3 ADAMTS17 AMEADP3 CASA PGLYAR2 SLC202B1 LYN GNG7 APD8 SLC29A1 ANKRD1 COL5A2 CYP4F11 PAIS SLC2A21 MAVS1 GNG12 ASC14 HIST2H3A CNIM1 MYBP23 MAFB CLEC4D SUCN1 TNFSF13B MM1 PTGFR MNS1 SUSD4 GLP2R IBA57-AS1 LIF ANKD65 FZ04 NAV3 CSP31									
AMER2 ULBP1 OSBP110 TRAF4 G0S2 MCTP2 P2RY2 SCHIP1 KLH13 GJB6 DPYSL5 HTRA4 MATN1 ACE SMOC1 LTK BCAN ANO2 FGFR3 GPC3 CYP26C FSCN3 CTSH ZDHHC14 NOG KIT CADP323 ADAMTS17 MEM2 THPO TMEM88 HSPA6 VCAM1 GLYATL2 MLC1 CACN4203 ADMATS17 PDE10A CATSPERD PPP1R15A PGLYRP2 SLC02B1 LYN GNG7 APD8 KKNK9 SNAP25 SLC45A1 CYP4X11 LAMA2 CLEC4C MYLK PLA1A TB32 SLC29A1 ANKD1 COL5A2 CYP4F11 PTGIS CACL11 FOXC1 GNG12 ASCL4 MIN1 SUSD4 GL27 IBA57-AS1 LIF ANKD65 FZD4 NAV3 CSR93 DMFK PPP1R3C PPF1B92 DPFA4 ROR1 NRF1 BM17 NR17 NR781									
GJB6 DPYSL5 HTRA4 MATN1 ACE SMOC1 LTK BCAN ANO2 FGFR3 GPC3 CYP26C1 FSCN3 CTSH ZDHHC14 NOG KIT CADADS2 SIRPG WWK2 THPO TMEM8 HSPA6 VCAM1 GLYATL2 MLC1 CADAD23 ADAMTS17 ARHAP195 CATSPERD PPP1R15A PGLYR2 SLC0281 LVN GNG7 APD8 KCNK9 SNAP25 SLC45A1 CYP4X1 LAMA2 CLEC4C MYLK PLA1A TBX2 SLC29A1 ANKRD1 COL5A2 CYP4X1 LAMA2 CLEC4C MYLK PLA1A TBX2 SLC29A1 ANKRD1 COL5A2 CYP4X1 LAMA2 CLEC4C MYLK PLA1A TBX2 SLC29A1 ANKRD1 GLP2R IBAT-AS1 LIF ANKRD6S FZD4 NAV3 CSR3 DMPK PP1R3C PP1BP2 DPPA4 ROR1 NRP1 BMP2 CD33 GP94									
FGFR3 GPC3 CYP26C1 FSCN3 CTSH ZDHHC14 NOG KIT CADPS2 SIRPG WIN2 THPO TMEM88 HSPA6 VCAM1 GLYATL2 MLC1 CACN203 ADAMTS17 MAMAPIIS COMP GATA6 RGMA APOE FMO2 FLT3 ADRA2A PITPINZ PDE10A CATSPERD PPP1R15A PGLYRP2 SLC02A1 LYN GNG7 APOB KCNK9 SNAP25 SLC45A1 CVP4X1 LAMA2 CLEC4C MYLK PLA1A TBX2 SLC29A1 ANKRD1 COL5A2 CYP4F11 PTGIS CXCL11 FOXC1 GNG12 ASCL4 HIST2H3A CNNM1 MYBPC3 MAFB CLEC4D SUCN11 TNFSF13B MN11 PTGFR MNS1 SUSD4 GLP2R IBA57-AS1 LIF ANRD65 FZD4 NAV3 CSRP3 DMMK PPP1B12C PDFAH ROR1 NRP1 BMD2 CD33 GD99 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
SIRPG WIN22 THPO TIMEM88 HSPA6 VCAM1 GLYATL2 MLC1 CACAD2D3 ADAMTS17 APHCAPIND COMP GATA6 RGMA APOE FMO2 FLT3 ADRA2A PITPINM2 PDE10A CATSPERD PPP1R15A PGLYRP2 SLC2A1 LVN GNG7 ADRA2A SLC29A1 ANKRD1 COL5A2 CYP4F11 LAMA2 CLEC4C MYLK PLA1A TBX2 SLC29A1 ANKRD1 GCL5A2 CYP4F11 PTGIS SCC111 FNF513B MN1 PTGRR MNS1 SUSD4 GLP2R IBA57-AS1 LIF ANKRD5 FZD4 NAV3 CSR93 DMPK PPP1R3C GP12R DPPA4 ROR1 NR11 BMP2 CD33 GP19 FSTL4 FBX07 BEGAIN AXDND1 SYT11 ADR2 BAALC SH3P4 TNTNP1 DAAM AKAP12 INSRR IER3 CLEC4E NR66 ICAM5 LI ACSM5<								-	
ADAMTS17 APRIGATION COMP GATA6 RGMA APOE FMO2 FLT3 ADRA2A PITPNM2 PDE10A CATSPERD PPP1R15A PGLYRP2 SLC02B1 LYN GNG7 APOB KCNK9 SNAP25 SLC45A1 CYP4X1 LAMA2 CLEC4C MYLK PLA1A TBX2 SLC29A1 ANKRD1 COL5A2 CYP4Y11 PTGIS CXC111 FNST18 MN1 PTGST3 MINS1 SUSD4 GLP2R IBA57-A51 LIF ANKR05 FZD4 NAV3 CSRP3 DMPK PPP1R3C PFIBP2 DPPA4 ROR1 NRP1 BMP2 CD33 GP9 FSTL4 FBX027 BEGAIN AXDND1 SYT11 ADR82 BAALC SH3BP4 TBL1Y DAAM2 AKAP12 INSR POU5F1B ROB02 CSF1 COL6A1 TNR NYNRIN GJBAT SPG17 TLE2 CHAT ITGA9 ABCA3 LUM EST24									
PITPNM2 PDE10A CATSPERD PPP1R15A PGLYRP2 SLCO2B1 LYN GNG7 APOB KCNK9 SNAP25 SLC4SA1 CYP4X1 LAMA2 CLEC4C MYLK PLA1A TBX2 SLC2PA1 ANKRD1 COL5A2 CYP4X1 PTGIS CXC11 FOXC1 GNG12 ASCL4 HIST2H3A CNNM1 MYBPC3 MAFB CLEC4 SUCNR1 TNFSF13B MN1 PTGFB MNS1 SUSD4 GLP2R IBA57-A51 LIF ANKR05 FZD4 NAV3 CSR93 DMPK PPP1R3C PFIBP2 DPPA4 ROR1 NRP1 BM22 CD33 GP9 FSTL4 FBX027 BEGAIN AXDND1 SYT11 ADR82 BAALC SH38P4 TBL1Y DAAM2 AKAP12 INSR POU51B ROB20 CSF1 COL6A1 TNR MYIRN GCSAM ILNL MSRT ILRC10B PL1 ACM35 LPL ACSM55						-			
KCNK9 SNAP25 SLC45A1 CYP4X1 LAMA2 CLEC4C MYLK PLA1A TBX2 SLC29A1 ANKRD1 COL5A2 CYP4F11 PTGIS CXCL11 FOXC1 GNG12 ASCL4 HIST2H3A CNNM1 MYBPC3 MAFB CLEC4D SUCNR1 TNFSF13B MN1 PTGFR MNS1 SUSD4 GLP2R IBA57-AS1 LIF ANKR065 FZD4 NAV3 CSR93 DMPK PP11A2 PPEBP2 DPA4 ROR1 NRP1 BMP2 CD33 GP9 FSTL4 FBX027 BEGAIN AXDND1 SYT11 ADR82 BAALC SH3BP4 TBL1Y DAAM2 AKAP12 INSR POU5F1B RO802 CSF1 COL8A1 TTR NYNRIN GJB2 NINL MSR1 IER3 CLEC4E NEK6 ICAM5 LPL ACSM5 GCSAM ELOVL4 FGF18 LRC10B PLIN2 C1QC IL1A3A1 KIAA0087 OPH11									
SLC29A1 ANKRD1 COL5A2 CYP4F11 PTGIS CXCL11 FOXC1 GNG12 ASCL4 HIST2H3A CNNM1 MYBPC3 MAFB CLEC4D SUCNR1 TNFSF13B MN1 PTGR MNS1 SUSD4 GLP2R IBA57-AS1 LIF ANKRD65 FZD4 NAV3 CSRP3 DMPK PPP1R3C PPFIBP2 DPPA4 ROR1 NRP1 BMP2 CD33 GP9 FSTL4 FBX027 BEGAIN AXDND1 SYT11 ADRB2 BAALC SH3BP4 TBL1Y DAAM2 AKAP12 INSR POD5F1B ROB02 CSF1 COL8A1 TNR NYNRIN GLSAM ELOVL4 FGF18 LRRC10B PLIN2 C1QC IL13RA1 KIA00087 OPHN1 MEST ASAH2B NFASC TTC39 RPRML AK4 CD209 SGCD HTTF CD1C B3GAT1 SPAG17 TLE2 CHAT ITGA9 ABCA3 LUM EFS <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td>					-				-
HIST2H3ACNNMIMYBPC3MAFBCLEC4DSUCNRITNFSF13BMN1PTGFRMNS1SUSD4GLP2RIBA57-AS1LIFANKRD65FZD4NAV3CSRP3DMPKPPP1R3CPPFIBP2DPPA4ROR1NRP1BMP2CD33GP9FSTL4FBX027BEGAINAXDND1SYT11ADRB2BAALCSH3BP4TBL1YDAAM2AKAP12INSRRPOU5F1BROB02CSF1COL8A1TNRNYNRINGJB2NINLMSR1IER3CLEC4ENEK6ICAM5LPLACSM5GCSAMELOVL4FGF18LRRC10BPLIN2C1QCIL1AR1KIAA007OPHN1MESTASAH2BNFASCTTC39ARPRMLAK4CD209SGCBHTR1FCD1CB3GAT1SPAG17TLE2CHATITG69ABCA3LUMEFSACOXLLGALS2CELSR1PDGFRBRGS17LBPMOB3BCSRP2LGR5PLAG1OLFM1GNAT2IRGCFGF14CCDC80PROSER2NR2F1WNT6FYBDTX1CYP27B1KLHL35SLC7A11SAMD11PLTPCCL1EDI3DI02TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PAVACOL141SLMP1DRXNISIGLEC11CACN11ISG15PXDC1IRGMSERPINBSLC6A1AQP3ANTXR1ICPCDHGA3FOXA1B3GALT1KANK2NOXA1PAVACOL									
MNS1SUSD4GLP2RIBA57-AS1LIFANKRD65FZD4NAV3CSRP3DMPKPPP1R3CPPFIBP2DPPA4ROR1NRP1BMP2CD33GP9FSTL4FBX027BEGAINAXDND1SYT11ADRB2BAALCSH3BP4TBL1YDAAM2AKAP12INSRPOU5F1BROB02CSF1COL8A1TNRNYNRINGJB2NINLMSR1IER3CLEC4ENEK6ICAM5LPLACSM5GCSAMELOVL4FGF18LRRC10BPLIN2C1QCIL13RA1KIA0087OPHN1MESTASAH2BNFASCTTC39ARPRMLAK4CD209SGCDHTR1FCD1CB3GA11SPAG17TLE2CHATITGA9ABCA3LUMEFSACOXLLGAL52CELSR1PDGFRBRGS17LBPM0B3BCSRP2LGR5PLAG1OLFM1GNA72IRGCFGF14CCD208PROSER2NR211WNT6FYBDTX1CYP27B1KLH135SLC7411SAM011PLTPCCL1EDI13DI02TREHPCDHGA3FOXA1B3GAL71KANK2NOXA1PARVACOL21A1SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMD03GAD2SERTAD1F7FCLAPLXNB2CAPNS2DUS15AQP3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
DMPKPPP1R3CPPF1BP2DPPA4ROR1NRP1BMP2CD33GP9FSTL4FBX027BEGAINAXDND1SYT11ADRB2BAALCSH3BP4TBL1YDAAM2AKAP12INSRPOU5F1BROB02CSF1COL8A1TNRNYNRINGJB2NINLMSR1IER3CLEC4ENEK6ICAM5LPLACSM5GCSAMEL0VL4FGF18LRC10BPLIN2C1QCIL13RA1KIA0087OPHN1MESTASAH2BNFASCTTC39ARPRMLAK4CD209SCCDHTR1FCD1CB3GAT1SPAG17TLE2CHATITGA9ABCA3LUMEFSACOXLLGALS2CELSR1PDGFRBRGS17LBPMOB3BCSRP2LGR5PLAG1OLFM1GNAT2IRGCFGF14CCD2080PROSER2NR2F1WNT6FYBDT31CYP27B1KLH135SLC7A11SAMD11PLTPCCL14EDI33DI02TREHPCDHGA3FOX11B3GALT1KANK2NOXA1PARVACOL21A1SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMD3GAD2SERTAD1F7FCRLAPLXNE2CAPNS2DUS15AQP3ANTX1LVWA5AHPGDSVEP1SPICTMASF18PRS57GSC <td< td=""><td>HIST2H3A</td><td>CNNM1</td><td>MYBPC3</td><td>MAFB</td><td>CLEC4D</td><td>SUCNR1</td><td>TNFSF13B</td><td>MN1</td><td>PTGFR</td></td<>	HIST2H3A	CNNM1	MYBPC3	MAFB	CLEC4D	SUCNR1	TNFSF13B	MN1	PTGFR
FSTL4FBX027BEGAINAXDND1SYT11ADRB2BAALCSH3BP4TBL14DAAM2AKAP12INSRRPOUSF1BROB02CSF1COLBA1TNRNYNRINGJB2NINLMSR1IER3CLEC4ENEK6ICAM5LPLACSM5GCSAMELOVL4FGF18LRC10BPLIN2C1QCIL13RA1KIAA0087OPHN1MESTASAH2BNFASCTTC39ARPRMLAK4CD209SGCDHTR1FCD1CB3GAT1SPAG17TLE2CHATITGA9ABCA3LUMEFSACOXLLGALS2CELSR1PDGFRBRGS17LBPMOB3BCSRP2LGR5PLAG1OLFM1GNAT2IRGCFGF14CCDC80PROSER2NR2F1WNT6FYBDTX1CYP27B1KLHL35SLC7A11SAMD11PLTPCCL1EDI3DI02TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL141SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHR92CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNE2CAPNS2DUSP15AQP3ANTX1VUXA5AHPGDSVEP1SPICTM4SF18PRS57GSCOR10K1FPLEKHG3CLSTN2LRRK1BMP5MEF2CPPBPSH3GL3PTPN3<	MNS1	SUSD4	GLP2R	IBA57-AS1	LIF	ANKRD65	FZD4	NAV3	CSRP3
DAAM2AKAP12INSRRPOUSF1BROBO2CSF1COLBA1TNRNYNRINGJB2NINLMSR1IER3CLEC4ENEK6ICAM5LPLACSM5GCSAMELOVL4FGF18LRRC10BPLIN2C1QCIL13RA1KIAA0087OPHN1MESTASAH2BNFASCTTC39ARPRMLAK4CD209SGCDHTR1FCD1CB3GAT1SPAG17TLE2CHATITGA9ABCA3LUMEFSACOXLLGALS2CELSR1PDGFRBRGS17LBPMOB3BCSRP2LGR5PLAG1OLFM1GNAT2IRGCFGF14CCDC80PROSER2NR2F1WNT6FYBDTX1CYP27B1KLH135SLC7A11SAMD11PLTPCCL1EDIL3DI02TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL2141SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLNB2CAPNS2DUSP15AQP3ANTXR1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSCORINK1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSC3UNC45BCOL943LDC1HLA-DPB1RA6A0NCKAP5CEBPARAG22UNC45BCOL943	DMPK	PPP1R3C	PPFIBP2	DPPA4	ROR1	NRP1	BMP2	CD33	GP9
GJB2NINLMSR1IER3CLEC4ENEK6ICAM5LPLACSM5GCSAMELOVL4FGF18LRRC10BPLIN2C1QCIL13RA1KIAA0087OPHN1MESTASAH2BNFASCTTC39ARPRMLAK4CD209SGCDHTR16CD1CB3GAT1SPAG17TLE2CHATITGA9ABCA3LUMEFSACOXLLGALS2CELSR1PDGFRBRGS17LBPMOB3BCSRP2LGR5PLAG1OLFM1GNAT2IRGCFGF14CCDC80PROSER2NR2F1WNT6FYBDTX1CYP27B1KLH135SLC7A11SAMD11PLTPCCL1EDIL3DI02TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL21A1SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTX1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSCOR10K1ICCPDE4KSTMP5LRRK1BMP5MEF2CPPBPSH3GL3PTPN3ICCJAKMIP3ARHGAP6HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BICCMTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3<	FSTL4	FBXO27	BEGAIN	AXDND1	SYT11	ADRB2	BAALC	SH3BP4	
GCSAMELOVLAFGF18LRRC10BPLIN2C1QCIL13RA1KIAA0087OPHN1MESTASAH2BNFASCTTC39ARPRMLAK4CD209SGCDHTR FCD1CB3GAT1SPAG17TLE2CHATITGA9ABCA3LUMEFSACOXLLGALS2CELSR1PDGFRBRGS17LBPMOB3BCSRP2LGR5PLAG1OLFM1GNAT2IRGCFGF14CCDC80PROSER2NR2F1WNT6FYBDTX1CYP27B1KLH135SLC7A11SAMD11PLTPCCL1EDIL3DI02TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL21A1SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHR39CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSCOR10K1VWA5ALDOC1HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BCOL9A3LDOC1HLA-DMAMS4A6ANCKAP5CEBPANLRP14CHRNB3ICMTU32STXBP5LTEKTENM4CF1FAM69CNLRP14CHRNB3ICOTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DR55NPAS2RAE1LGGS	DAAM2	AKAP12	INSRR	POU5F1B	ROBO2	CSF1	COL8A1	TNR	NYNRIN
MESTASAH2BNFASCTTC39ARPRMLAK4CD209SGCDHTR1FCD1CB3GAT1SPAG17TLE2CHATITGA9ABCA3LUMEFSACOXLLGALS2CELSR1PDGFRBRGS17LBPMOB3BCSRP2LGR5PLAG1OLFM1GNAT2IRGCFGF14CCDc80PROSER2NR2F1WNT6FYBDTX1CYP27B1KLHL35SLC7A11SAMD11PLTPCCL1EDIL3DI02TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL21A1SLAMF1DRXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1VSERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1ILVWA5AHPGDSVEP1SPICTM4F18PRS57GSCOR10K1ILJAKMIP3ARHGAP6HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BILTMTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3ILTMTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14GUCY1A2ILMTUS2ANXA3PTGER2ADAMTS5WNT5AHLA-DR55NPAS2 <td>GJB2</td> <td>NINL</td> <td>MSR1</td> <td>IER3</td> <td>CLEC4E</td> <td>NEK6</td> <td>ICAM5</td> <td>LPL</td> <td>ACSM5</td>	GJB2	NINL	MSR1	IER3	CLEC4E	NEK6	ICAM5	LPL	ACSM5
CD1CB3GAT1SPAG17TLE2CHATITGA9ABCA3LUMEFSACOXLLGALS2CELSR1PDGFRBRGS17LBPMOB3BCSRP2LGR5PLAG1OLFM1GNAT2IRGCFGF14CCDC80PROSER2NR2F1WNT6FYBDTX1CYP27B1KLHL3SLC7A11SAMD11PLTPCCL1EDIL3DI02TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL21A1SLAMF1DRXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMP33GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1CVWA5AHPGDSVEP1SPICTM4SF18PRSS7GSCOR10K1ICCJAKMIP3ARHGAP6HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BCCL933LDOC1HLA-DPB1RAB3CVTCN1PSD3PDPCSK5SLIT1ICCMTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3ICCMTUS2ANXA3PTGER2ADAMTS5WNT5AHLA-DR5NPAS2RAET1LGCMTUS2ANXA3PTGER2ADAMTS5WNT5AHLA-DR5NPAS4IDSF1TUBB2AILCAMDEX1NRGNGPT2FABP4FAM163BT	GCSAM	ELOVL4	FGF18	LRRC10B	PLIN2	C1QC	IL13RA1	KIAA0087	OPHN1
ACOXLLGALS2CELSR1PDGFRBRGS17LBPMOB3BCSRP2LGR5PLAG1OLFM1GNAT2IRGCFGF14CCDC80PROSER2NR2F1WNT6FYBDTX1CYP27B1KLHL35SLC7A11SAMD11PLTPCCL1EDIL3DIO2TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL21A1SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTX1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSCOR10K1VWA5ALDOC1HLA-DMAMS4A6ANCKAP5CEBPASH3GL3PTPN3ICCQUP33LDOC1HLA-DRB1RAB3CVTCN1PSD3PCSK5SLIT1ICCMTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3ICCQTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DRB5NPAS2RAET1LICCADAMTS7ICCIECX12EPHB3DLX1ELNPRG4IGSF1ICCBAG3ICCGEX1NGRNGPT2FABP4FAM163BTMPRS2ICCIUSP2ICCICCICCMTG83ACS33PTCRAOR10T2ICC <t< td=""><td>MEST</td><td>ASAH2B</td><td>NFASC</td><td>TTC39A</td><td>RPRML</td><td>AK4</td><td>CD209</td><td>SGCD</td><td>HTR1F</td></t<>	MEST	ASAH2B	NFASC	TTC39A	RPRML	AK4	CD209	SGCD	HTR1F
PLAG1OLFM1GNAT2IRGCFGF14CCDC80PROSER2NR2F1WNT6FYBDTX1CYP27B1KLHL35SLC7A11SAMD11PLTPCCL1EDIL3DI02TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL21A1SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSCOR10K1PLEKHG3CLSTN2LRRK1BMP5MEF2CPPBPSH3GL3PTPN3IACJAKMIP3ARHGAP6HLA-DMAMS4A6ANCKAP5CEBPAPCSK5SLIT1IACMTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3IACPDE2AL1CAMSHDFMO3RSP01PRK07NAS2RAET1LIACADAMTS7ICACDEXINRGNGPT2FABP4FAM163BTMPRSS2IACJUSP2ICACFUT7MXRA5SE26LGABRETPPP3PRKCZUSP2ILSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2IISP2ILSP2ILGANGFRFAM43AIL10ITGBL1	CD1C	B3GAT1	SPAG17	TLE2	CHAT	ITGA9	ABCA3	LUM	EFS
FYBDTX1CYP27B1KLHL35SLC7A11SAMD11PLTPCCL1EDL3 CL1DIO2TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL21A1SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSCOR10K1CPLEKHG3CLSTN2LRRK1BMP5MEF2CPPB9SH3GL3PTPN3IGCO19A3LDOC1HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BIMTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3IOTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DR55NPAS2RAET1LGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DR55NPAS2RAET1LGUCY1A2IADAMTS7CXCL12EPHB3DLX1ELNPRG4IGSF1IGSF4JUBB2AIUSP2CLEC4GADAMTS9ACSS3PTCRAOR1072IUSP2ISS6SIG2CLEC4GADAMTS9ACSS3	ACOXL	LGALS2	CELSR1	PDGFRB	RGS17	LBP	MOB3B	CSRP2	LGR5
DIO2TREHPCDHGA3FOXA1B3GALT1KANK2NOXA1PARVACOL21A1SLAMF1DRAXINSIGLEC11CACNA11ISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSCOR10K1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSCOR10K1CLSTN2LRRK1BMP5MEF2CPPBPSH3GL3PTPN3CC0L9A3LDOC1HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BCC0GOL9A3LDOC1HLA-DPB1RAB3CVTCN1PSD3PCSK5SLI11MTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3CHPDE2AL1CAMSHDFMO3RSP01PRKG1NRS2RAE11LGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DR55NPAS2RAE11LGUCS11BAG3ICDEXINRGNGPT2FABP4FAM163BTMPRS2GLGUSP2TUBB2AFUT7MXRA5SEZ6LGABRETPPP3PRKCZUSP2ILBVSIG2CLEC4GADAMTS9ACSS3FUT7PTCRAOR10T2ILBE2AILGNGFRFAM43A	PLAG1	OLFM1	GNAT2	IRGC	FGF14	CCDC80	PROSER2	NR2F1	WNT6
SLAMF1DRAXINSIGLEC11CACNA1IISG15PXDC1IRGMSERPINB6SLC6A1AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1VWA5AHPGDSVEP1SPICTM4SF18PRS57GSCOR10K1PLEKHG3CLSTN2LRRK1BMP5MEF2CPPB9SH3GL3PTPN3IJAKMIP3ARHGAP6HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BIOCl9A3LDOC1HLA-DPB1RAB3CVTCN1PSD3PCSK5SLIT1IMTUS2STXBP5LTEKTENM4CF1FAM69CNLRP14CHRNB3IOTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DR85NPAS2RAET1LIBAG3ICXCL12EPHB3DLX1ELNPRG4IGSF1IGSE1TUBB2AIDEXINRGNGPT2FABP4FAM163BTMPRSS2IUSP2IVSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2IISP2IVSIG2CLEC4GADAMTS9ACSS3	FYB	DTX1	CYP27B1	KLHL35	SLC7A11	SAMD11	PLTP	CCL1	EDIL3
AQP6STEAP1BALPK3PDE4CSEMA4ACHL1CHRDDHRS9CYP27C1SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1VWA5AHPGDSVEP1SPICTM4SF18PRSS57GSCOR10K1PLEKHG3CLSTN2LRRK1BMP5MEF2CPPBP<	DIO2	TREH	PCDHGA3	FOXA1	B3GALT1	KANK2	NOXA1	PARVA	COL21A1
SMPD3GAD2SERTAD1F7FCRLAPLXNB2CAPNS2DUSP15AQP3ANTXR1VWA5AHPGDSVEP1SPICTM4SF18PRSS7GSCOR10K1PLEKHG3CLSTN2LRRK1BMP5MEF2CPPBPSH3GL3PTPN3JAKMIP3ARHGAP6HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BCOL9A3LDOC1HLA-DPB1RAB3CVTCN1PSD3PCSK5SLIT1MTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3PDE2AL1CAMSHDFMO3RSP01PRKG1KIRRELGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DRB5PRG4IGSF1GBAG3CXCL12EPHB3DLX1ELNFAM163BTMPRS2ILUSP2ILFUT7MXRA5SEZ6LGABRETPPP3PRKC2USP2ILSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2ILILILNGFRFAM43AIL10ITGBL1	SLAMF1	DRAXIN	SIGLEC11	CACNA1I	ISG15	PXDC1	IRGM	SERPINB6	SLC6A1
AQP3ANTXR1VWA5AHPGDSVEP1SPICTM4SF18PRSS57GSCOR10K1PLEKHG3CLSTN2LRRK1BMP5MEF2CPPBPSH3GL3PTPN3JAKMIP3ARHGAP6HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BCOL9A3LDOC1HLA-DPB1RAB3CVTCN1PSD3PCSK5SLIT1MTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3PDE2AL1CAMSHDFMO3RSP01PRKG1KIRRELGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DRB5NPAS2RAET1LADAMTS7CXCL12EPHB3DLX1ELNPRG4IGSF1BAG3CILFUT7MXRA5SE26LGABRETPPP3PRKCZUSP2LSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2CILGILILOILGEL1ILGEL1ILGEL1ILGEL1	AQP6	STEAP1B	ALPK3	PDE4C	SEMA4A	CHL1	CHRD	DHRS9	CYP27C1
GSCOR10K1PLEKHG3CLSTN2LRRK1BMP5MEF2CPPBPSH3GL3PTPN3JAKMIP3ARHGAP6HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BCOL9A3LDOC1HLA-DPB1RAB3CVTCN1PSD3PCSK5SLIT1MTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3PDE2AL1CAMSHDFMO3RSP01PRKG1KIRRELGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DRB5NPAS2RAET1LADAMTS7CXCL12EPHB3DLX1ELNPRG4IGSF1BAG3CLDEXINRGNGPT2FABP4FAM163BTMPRS2TUBB2AIUBP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2ICICICNGFRFAM3AIL10ITGBL1	SMPD3	GAD2		SERTAD1	F7	FCRLA	PLXNB2	CAPNS2	DUSP15
SH3GL3PTPN3JAKMIP3ARHGAP6HLA-DMAMS4A6ANCKAP5CEBPARAG2UNC45BCOL9A3LDOC1HLA-DPB1RAB3CVTCN1PSD3PCSK5SLIT1MTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3PDE2AL1CAMSHDFMO3RSP01PRKG1KIRRELGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DRB5NPAS2RAET1LADAMTS7CXCL12EPHB3DLX1ELNPRG4IGSF1BAG3CTUB2ADEXINRGNGPT2FABP4FAM163BTMPRS2TUBB2AIL0EFUT7MXRA5SEZ6LGABREPTCRAOR10T2CUSP2ICCNGFRFAM43AIL10ITGBL1	AQP3	ANTXR1		VWA5A	HPGD	SVEP1	SPIC	TM4SF18	PRSS57
RAG2UNC45BCOL9A3LDOC1HLA-DPB1RAB3CVTCN1PSD3 PSD3PCSK5SLIT1MTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3PDE2AL1CAMSHDFMO3RSPO1PRKG1KIRRELGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DRB5NPAS2RAET1LADAMTS7CXCL12EPHB3DLX1ELNPRG4IGSF1BAG3CXCLDEXINRGNGPT2FABP4FAM163BTMPRS2TUBB2AFUT7MXRA5SEZ6LGABRETPPP3PRKC2USP2ICVSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2CICICNGFRFAM43AIL10ITGBL1	GSC	OR10K1		PLEKHG3	CLSTN2	LRRK1	BMP5	MEF2C	PPBP
PCSK5SLIT1MTUS2STXBP5LTEKTENM4CFIFAM69CNLRP14CHRNB3PDE2AL1CAMSHDFMO3RSPO1PRKG1KIRRELGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DRB5NPAS2RAET1LADAMTS7CXCL12EPHB3DLX1ELNPRG4IGSF1BAG3CDEXINRGNGPT2FABP4FAM163BTMPRSS2TUBB2AFUT7MXRA5SEZ6LGABRETPPP3PRKCZUSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2CCNGFRFAM43AIL10ITGBL1	SH3GL3	PTPN3		JAKMIP3	ARHGAP6	HLA-DMA	MS4A6A	NCKAP5	CEBPA
NLRP14CHRNB3PDE2AL1CAMSHDFMO3RSPO1PRKG1KIRRELGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DRB5NPAS2RAET1LADAMTS7CXCL12EPHB3DLX1ELNPRG4IGSF1BAG3DEXINRGNGPT2FABP4FAM163BTMPRS2TUBB2AFUT7MXRA5SE26LGABRETPPP3PRKCZUSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR1072CCFAM43AIL10ITGBL1	RAG2	UNC45B		COL9A3	LDOC1	HLA-DPB1	RAB3C	VTCN1	PSD3
KIRRELGUCY1A2OTUB2ANXA3PTGER2ADAMTS5WNT5AHLA-DR85NPAS2RAET1LADAMTS7CXCL12EPHB3DLX1ELNPRG4IGSF1BAG3DEXINRGNGPT2FABP4FAM163BTMPRSS2TUBB2AFUT7MXRA5SE26LGABRETPPP3PRKCZUSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2IIIIII0IIIGBL1	PCSK5	SLIT1		MTUS2	STXBP5L	TEK	TENM4	CFI	FAM69C
NPAS2RAET1LADAMTS7CXCL12EPHB3DLX1ELNPRG4IGSF1BAG3DEXIDEXINRGNGPT2FABP4FAM163BTMPRS2TUBB2AFUT7MXRA5SEZ6LGABRETPPP3PRKCZUSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR1072CCIL10ITGBL1	NLRP14	CHRNB3		PDE2A	L1CAM	SHD	FMO3	RSPO1	PRKG1
PRG4IGSF1BAG3DEXINRGNGPT2FABP4FAM163BTMPRSS2TUBB2AFUT7MXRA5SEZ6LGABRETPPP3PRKCZUSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR1072CCNGFRFAM43AIL10ITGBL1	KIRREL	GUCY1A2		OTUB2	ANXA3	PTGER2	ADAMTS5	WNT5A	HLA-DRB5
FAM163BTMPRSS2TUBB2AFUT7MXRA5SEZ6LGABRETPPP3PRKCZUSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2IIIIITGBL1	NPAS2	RAET1L		ADAMTS7		CXCL12	EPHB3	DLX1	ELN
TPPP3PRKCZUSP2VSIG2CLEC4GADAMTS9ACSS3PTCRAOR10T2OR10T2IIIIITGBL1	PRG4	IGSF1		BAG3		DEXI	NRGN	GPT2	FABP4
PTCRA OR10T2 NGFR FAM43A IL10 ITGBL1	FAM163B	TMPRSS2		TUBB2A		FUT7	MXRA5	SEZ6L	GABRE
	TPPP3	PRKCZ		USP2		VSIG2	CLEC4G	ADAMTS9	ACSS3
FAM182B HMGCS2 C1QB HSH2D STAP1 CAMK2N2	PTCRA	OR10T2				NGFR	FAM43A	IL10	ITGBL1
	FAM182B	HMGCS2				C1QB	HSH2D	STAP1	CAMK2N2

P	ro	Pre	Cortical	Medullary		ET	P	
SHISA9	PAX9				CD5L	SLC45A3	CCL13	IBSP
METRN	МҮОЗА				TNC	ADCY9	LINGO2	CNTN1
CX3CR1	TEAD4				SPARC	ARHGEF15	LAMB4	SHOX2
KCNJ4	SERTAD4				MAPK12	CDH5	S100A16	SEC14L5
CCDC78	NCKAP1				IRF5	GFRA2	HRH4	LAMP5
GRB7	MAT1A				APP	TBXA2R	TM4SF1	EGFL6
FASLG	ARMC4				HLA-DMB	MEIS3	PDE4B	PROM1
FAM3B	GPR63				ACOX2	LIFR	ARHGAP22	DCLK1
FGR	GLB1L2				ARHGEF40	PLXNA4	DLX2	TBX3
DCLK3	CLEC10A				LYVE1	COL6A1	LAPTM4B	SOX9
CD1E	ESRP1				DNASE1L3	SPATA12	NPAS3	MRO
BTN1A1	DDAH1				MET	STAB1	CPA3	EYA1
HIST3H2BB	CCDC8				ITIH5	CD300LF	SALL4	EGFLAM
CPA5	HPCAL4				C7	TCTEX1D1	EMCN	SLC6A11
SCRN1	SYT1				FAM180B	HTR7	OPRK1	ZNF536
POF1B	TRPC3				FKBP10	SRPX	NTRK2	PIRT
HS6ST2	MAL				LHFPL2	MPO	TIE1	PTH2
GRM8	ACSM4				P2RY6	STYK1	HOXC4	MS4A4E
MST1R	SPTSSB				ABCC9	FRK	RAMP3	LHX6
HIST1H1B	ADAM33				AXL	FGFR2	WFDC1	SFRP1
NTNG1	MPPED2				CD74	HLX	ID4	TENM2
KLRG2	CAMKV				DOCK6	DLC1	BCAR1	WNT9A
ROR2	A1CF				KYNU	MYCL	SMOC2	CXCL10
AXIN2	LINC00346				AHNAK2	CLNK	PDZRN4	TRH
RBMXL2	HES4				RNASE1	MGLL	FER1L6	CACNA2D
CHN1	OR10R2				ESM1	MMRN1	VWA1	CHRNA7
XKR7	MOCS1				CSPG4	HLA-DRB1	CYGB	EGF
THEMIS	HEY2				LILRA4	ZC3H12C	ALOX15B	LDHAL6B
LIM2	CHST3				DNAJC5B	PPP2R2B	KIF17	AMBN
CPS1	RBM24				PLD4	SDK2	SORCS1	FCN2
GPR157	KCNS3				GAPT	PTGS1	MACC1	CCL8
RIPK4	LPIN3				B3GNT7	UNC79	MROH7	MMP7
PTMS	SLC6A15				NPR3	SMIM3	FAT3	PDGFC
KCNC2	TBX20				LPO	ITGAD	GGT5	TWIST1
SEPT8	AVPR1A				CCR2	TMEM37	HOXC11	SLC7A10
CD1B	ANKFN1				EMX2	COL4A2	TDO2	RHOJ
OR2D3	NRXN3				VWF	CLEC2A	NPTX1	TMEM196
SYDE2	TMEM155				FOLR2	TJP1	SLC22A10	PCDH17
FTCDNL1	PTPN13				APBA1	CUX2	RNF180	GJA1
SIX5	LRRIQ1				IGFBP3	TNS3	MPV17L	INSL5
JAKMIP1	ADAMTSL1				LILRB4	KCNK10	UTS2B	EQTN
DAB2IP	FAM183A				SLC8A3	CDH11	DCN	DRGX
SCN1A	MUC13				ALDH1A3	ATP8B4	KDR	FOXF1
NOTCH3	NLGN4X				LIMCH1	PRLR	OLIG2	MMP16
ADAMTSL3	BMPR1B				KIF26B	KCNJ8	PPIC	CYP2C8
CPA4	MAP2				CFD	APOD	CPN2	COL2A1
PAK3	SLC1A1				HLA-DPA1	COL14A1	PDGFRA	CDH10
KIAA2022	ABCG4				IGFBP7	GABRA2	ITGA8	PF4V1
KCNG3	TFAP2C				TNNI2	MEGF10	MB	
TTC16					LILRB5	EBI3	TMEM47	
APBB2					CMKLR1	TTLL10	CHRFAM7A	

I-ALL patients							
Characteristics	adult (n=61)	childhood (n=69)	P value				
WBC count			0.004				
>=100×10 ⁹ /L	15 (24.6%)	34 (49.3%)					
<100×10 ⁹ /L	46 (75.4%)	35 (50.7%)					
ETP	17 (27.9%)	7 (10.1%)	0.009				
Complete Remission	46 (75.4%)	64 (92.8%)	0.006				
Fusion genes							
SET-NUP214	8 (13.1%)	2 (2.9%)	0.029				
Over-expression							
LYL1	19 (31.1%)	10 (14.5%)	0.023				
TAL1	8 (13.1%)	22 (31.9%)	0.011				
SLC17A9-short	17 (27.9%)	41 (59.4%)	<0.001				
HOXA	33 (54.1%)	17 (24.6%)	0.001				
MEF2C	26 (42.6%)	7 (10.1%)	<0.001				
Mutations							
Signaling Pathways (C2)	47 (77.05%)	30 (43.5%)	<0.001				
Epigenetic Factors (C3)	47 (77.0%)	31 (44.9%)	<0.001				

Table S4. Clinical and genetic differences between adult and pediatricT-ALL patients

Reference:

- Larson RA, Fretzin MH, Dodge RK, & Schiffer CA (1998) Hypersensitivity reactions to L-asparaginase do not impact on the remission duration of adults with acute lymphoblastic leukemia. *Leukemia* 12(5):660-665.
- Thomas DA, *et al.* (2010) Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 28(24):3880-3889.
- Gu LJ, *et al.* (2008) Clinical outcome of children with newly diagnosed acute lymphoblastic leukemia treated in a single center in Shanghai, China. *Leukemia & lymphoma* 49(3):488-494.
- 4. Liu Y, *et al.* (2009) Cost of childhood acute lymphoblastic leukemia care in Shanghai, China. *Pediatric blood & cancer* 53(4):557-562.
- Liu YF, *et al.* (2016) Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia. *EBioMedicine* 8:173-183.
- Kim D, Langmead B, & Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. *Nature methods* 12(4):357-360.

- Anders S, Pyl PT, & Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. *Bioinformatics* 31(2):166-169.
- 8. Nicorici D, *et al.* (2014) FusionCatcher a tool for finding somatic fusion genes in paired-end RNA-sequencing data. *bioRxiv*.
- McPherson A, *et al.* (2011) deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. *PLoS computational biology* 7(5):e1001138.
- Lilljebjorn H, *et al.* (2016) Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. *Nature communications* 7:11790.
- Atak ZK, *et al.* (2013) Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia. *PLoS genetics* 9(12):e1003997.
- McKenna A, *et al.* (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome research* 20(9):1297-1303.
- Dobin A, *et al.* (2013) STAR: ultrafast universal RNA-seq aligner.
 Bioinformatics 29(1):15-21.
- 14. Koboldt DC, *et al.* (2009) VarScan: variant detection in massively parallel sequencing of individual and pooled samples. *Bioinformatics* 25(17):2283-2285.

- Wilm A, *et al.* (2012) LoFreq: a sequence-quality aware, ultrasensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. *Nucleic acids research* 40(22):11189-11201.
- Jiang L, *et al.* (2015) Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. *Nature genetics* 47(9):1061-1066.
- 17. Kiran A & Baranov PV (2010) DARNED: a DAtabase of RNa EDiting in humans. *Bioinformatics* 26(14):1772-1776.
- Ramaswami G & Li JB (2014) RADAR: a rigorously annotated database of A-to-I RNA editing. *Nucleic acids research* 42(Database issue):D109-113.
- Neumann M, *et al.* (2015) Mutational spectrum of adult T-ALL.
 Oncotarget 6(5):2754-2766.
- Van der Meulen J, Van Roy N, Van Vlierberghe P, & Speleman F
 (2014) The epigenetic landscape of T-cell acute lymphoblastic
 leukemia. *The international journal of biochemistry & cell biology* 53:547-557.
- 21. Girardi T, Vicente C, Cools J, & De Keersmaecker K (2017) The genetics and molecular biology of T-ALL. *Blood* 129(9):1113-1123.

- 22. Mullighan CG (2014) The genomic landscape of acute lymphoblastic leukemia in children and young adults. *Hematology. American Society of Hematology. Education Program* 2014(1):174-180.
- Love MI, Huber W, & Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome biology* 15(12):550.
- 24. Anders S, Reyes A, & Huber W (2012) Detecting differential usage of exons from RNA-seq data. *Genome research* 22(10):2008-2017.
- Soneson C, Matthes KL, Nowicka M, Law CW, & Robinson MD (2016)
 Isoform prefiltering improves performance of count-based methods
 for analysis of differential transcript usage. *Genome biology* 17:12.
- 26. Schwab CJ*, et al.* (2013) Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features. *Haematologica* 98(7):1081-1088.
- 27. Thieme S & Groth P (2013) Genome Fusion Detection: a novel method to detect fusion genes from SNP-array data. *Bioinformatics* 29(6):671-677.
- Bene MC, *et al.* (1995) Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). *Leukemia* 9(10):1783-1786.

29. Alvarnas JC, *et al.* (2015) Acute Lymphoblastic Leukemia, Version
2.2015. *Journal of the National Comprehensive Cancer Network : JNCCN* 13(10):1240-1279.