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Supplementary Figure 1  
 
The β-globin locus. Comparison of the Bos taurus (UMD 3.1.1) and Odocoileus 
virginianus texanus (Ovir.te 1.0) β-globin locus. Genetic elements for both loci are 
shown as predicted in the NCBI genome browser. Pseudogene labels are assigned as 
in REF. 26. Orthology relationships are supported by highest BLAST matches of 
mRNAs (or gene models where no mRNA is available) between the two genomes. B. 
taurus genes in this locus have no additional matches in the O. v. texanus assembly 
outside of the locus presented here, suggesting that the locus has not duplicated 
further in deer. As adult and foetal β-globin genes are not classically denoted HBBA 
and HBBF in cattle, we provide Ensembl gene IDs for unambiguous identification.  
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Supplementary Figure 2  
 
Amplification of deer β-globin genes. a, Primers used in this study. b, Primer 
combinations used to amplify adult and foetal β-globin genes in different species. 
Where possible, gel excision was used to isolate the co-amplified foetal β-globin 
band. In certain cases, the adult gene could also be selectively amplified using primers 
Ovirg_F1/Ovirg_R2 (see panel e, lanes 1,2). c, Agarose gel showing co-amplification 
of adult and foetal β-globin genes in white-tailed deer with Ovirg_F1/Ovirg_R1; the 
two lanes show two different individuals. d, Agarose gel showing heterogeneity of 
amplification products in different deer using Ovirg_F1/Ovirg_R1. e, Agarose gel 
showing selective amplification of adult and foetal β-globin genes. Lanes 1 & 2: adult 
β-globin using Ovirg_F1/Ovirg_R2; all other lanes with primer combinations 
described in panel b. See Supplementary Table 1 for sample abbreviations. 
  

Figure S1. Amplification of deer β-globin genes. a, Primers used in the 
study. b, Primer combinations used to amplify adult and foetal β-globin 
genes in different species. Where possible, gel excision was used to isolate 
the co-amplified foetal β-globin band. In certain cases, the adult gene could 
also be selectively amplified using primers Ovirg_F1/Ovirg_R2 (see panel 
e, lanes 1,2). c, Agarose gel showing co-amplification of adult and foetal 
β-globin genes in white-tailed deer with Ovirg_F1/Ovirg_R1; the two lanes 

show two different individuals. d, Agarose gel showing heterogeneity of 
amplification products in different deer using Ovirg_F1/Ovirg_R1. e, 
Agarose gel showing selective amplification of adult and foetal β-globin 
genes. Lanes 1 & 2: adult β-globin using Ovirg_F1/Ovirg_R2; all other 
lanes with primer combinations described in panel b.  
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Supplementary Figure 3 
 
Putative HBBA and HBBF genes cluster separately on an HBBA/HBBF gene tree. 
The tree is a maximum likelihood reconstruction based on a nucleotide alignment of 
genic sequences (coding exons and intervening introns; see Methods). The sequence 
of H. inermis HBBF was only partially resolved and is hence omitted. Branches are 
coloured as adult (orange) or foetal (green). Tip labels for HBBA are coloured 
according to the species’ propensity to sickle (red = majority sickling, blue = majority 
non-sickling, black=undetermined). Bootstrap values (%) are derived from 1000 
bootstrap replicates (see Methods for further information on tree reconstruction). The 
scale bar shows the number of nucleotide substitutions per site. 
  

Figure S2. Putative HBBA and HBBF genes cluster separately on an HBBA 
/HBBF  gene tree. The tree is a maximum likelihood reconstruction based 
on a nucleotide alignment of complete exonic and intronic sequences (see 
Methods). The sequence of H. inermis HBBF was only partially resolved and 
is hence omitted. Branches are coloured as adult (orange) or foetal (green). 

Tip lables for HBBA are coloured according to the species’ propensity to 
sickle where known (red = sickling, blue = non-sickling). Branch support 
values are derived from 100 bootrstrap replicates. The scale bar shows the 
number of nucleotide substitutions per site. 
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Supplementary Figure 4 
 
Reconstructing the adult β-globin sequence from RNA sequencing data. a, The 
ten most abundant transcripts in the de novo-assembled E. davidianus red blood cell 
transcriptome. b, Nucleotide alignment of the E. davidianus β-globin CDS derived 
from the de novo transcriptome assembly, the putative E. davidianus adult β-globin 
CDS derived from amplification, and the foetal and adult β-globin CDSs from O. 
virginianus. 
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*Best match in the non-redundant nucleotide database (queried using MegaBLAST); TPM, transcripts per million.

Figure S3. Reconstructing adult β-globin sequence from RNA sequencing data. a, the ten most abundant transcripts in the 
de novo assembled E. davidianus red blood cell transcriptome. b, Nucleotide alignment of the E. davidianus β-globin CDS 
derived from the de novo transcriptome assembly, the putative E. davidianus adult β-globin CDS derived from amplification, 
and the foetal and adult β-globin CDSs from O. virginianus.
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Supplementary Figure 5 
 
Fibre formation propensity for human HbS. Fibre formation is assumed to occur 
via an interaction between the EF pocket on one β-globin molecule and a given focal 
residue in a β-globin molecule in the other strand of the fibre, essentially as in 
Fig. 2d, but using the human HbS sequence. Fibre formation propensity represents the 
fraction of the 100 β-globin dimer models built for each position that can form 
HbS-like fibres. The highest fibre formation propensity is observed 
for the valine at position 6. 
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Figure S5x. Fibre formation propensity for human HbS. Fibre 
formation is assumed to occur via an interaction between the EF 
pocket on one β-globin molecule and a given focal residue in a 
β-globin molecule in the other strand of the fibre, essentially as in 
Fig. 2d, but using the structure of human deoxyhaemoglobin S 

(HbS). Fibre formation propensity represents the fraction of the 100 
β-globin dimer models built for each position. that can form 
HbS-like fibres. The highest fibre formation propensity is observed 
for the valine at position 6.  
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Supplementary Figure 6 
 
Comparative structural investigation of key sickling residues. a, Effects on fibre 
interaction energy of replacing defined single amino acids in HBBA of C. nippon 
(sickling) with variant amino acids found in the closely related but non-sickling HBBA 
sequence from C. canadensis, and vice versa. Fibre interaction energy is consistently 
higher for sequences that include 22V, regardless of the genetic background. b, 
Effects on fibre interaction energy of replacing defined single amino acids in the 
primary sequence of either R. tarandus or O. virginianus. All amino acids that differ 
between sickling and non-sickling sequences are considered. Negative values indicate 
stronger interactions and thus an increased likelihood of fibre formation. These values 
show the mean over all 270 22V-87Q docking models compatible with fibre 
formation, and error bars represent standard error of the mean.   
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Figure S5y. Comparative structural investigation of key sickling 
residues a,  Effects on fibre interaction energy of replacing defined 
single amino acids in the primary sequence of the sickling C. 
nippon with variant amino acids found in the closely related but 
non-sicklng C. canadensis, and vice versa. Fibre interaction energy 
is consistently higher for sequences that include 22V, regardless of 
the genetic background. b, Effects on fibre interaction energy of 

replacing defined single amino acids in the primary sequence of 
either R. tarandus or O. virginianus. Negative values indicate 
stronger interactions and thus an increased likelihood of fibre 
formation. These values show the mean over all 270 22V-87Q 
docking models compatible with fibre formation, and error bars 
represent standard error of the mean. 
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Supplementary Figure 7 
 
Codons specifying sickling-associated amino acids in HBBA genes of different 
deer species. Tip labels and associated codons are coloured and arranged along the 
species phylogeny as in Fig. 3a to illustrate the presence of the same codons in 
distantly related species.  
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Figure S6. Codons specifying sickling-associated amino acids in HBBA genes of different deer species. Tip labels and associated codons 
coloured as in Fig. 3a.
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Supplementary Figure 8 
 
Detection of gene conversion and introgression events in deer β-globin genes. a, 
Recombination events predicted by different methods from an alignment of deer 
HBBF and HBBA genes. Breakpoint positions are given relative to each focal 
sequence. Where two sequences are affected (events 6,8,11) positions refer to the top 
sequence. b, Non-default parameters used for detecting recombination events with 
RDP. c, Maximum likelihood tree derived from the alignment of adult (orange) and 
foetal (green) β-globin genes after predicted recombinant regions have been removed. 
Branch support values (%) are derived from 1000 bootstrap replicates (see Methods 
for further information on tree reconstruction).  
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Figure S7. Detection of gene conversion and introgression events in deer 
β-globin genes. a, Recombination events predicted from an alignment of 
deer HBBF and HBBA genes by different methods. Breakpoint positions are 
given relative to each focal sequence. Where two sequences are affected 
(events 6,8,11) positions refer to the top sequence. b, Non-default 

parameters used for detecting recombination events with RDP. c, Maximum 
likelihood tree derived from the alignment of adult (orange) and foetal 
(green) β-globin genes after predicted recombinant regions have been 
removed. Branch support values derived from 100 bootstrap replicates are 
given. 

*due to high local conservation, the exact breakpoint position can be uncertain. F: HBBF; A: HBBA; NS: Not significant.
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Supplementary Figure 9 
 
Sheep HBBA diversity. An excerpt from the alignment in Fig. 1 is shown alongside 
amino acid variants, found across 75 breeds of sheep, that differ from the O. aries 
reference sequence. All seven residues previously found to differentiate HbA and 
HbB (see main text) are recovered (50S, 58A, 75V, 76Q, 120S, 129E, 144R, where 
the letter indicates the amino acid found in HbA). 
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Supplementary Figure 10 
 
Mapping locations in the B. taurus genome of reads used to seed O. virginianus 
HBBA local assembly. 
  

48980000 49000000 49020000 49040000 49060000 49080000 49100000

Position on chromosome 15

Figure S8. Mapping locations in the B. taurus genome of reads used to seed O. virginianus HBBA local assembly.
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Supplementary Figure 11 
 
Cladogram of the mammalian species phylogeny used in this study. Coloured 
branches indicate deviations from and additions to the Timetree of Life phylogeny 
(see Methods); red: re-grafted Carnivora; orange: 10kTrees deer phylogeny; green: 
manually added branches absent from the 10kTrees phylogeny.  
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Supplementary Table 1 
 
Species considered in this study, previous evidence for sickling and sample 
origins. For each sample, species identity was confirmed by sequencing the 
mitochondrial cytB gene (see Methods, Supplementary Table 2). For species in which 
both sickling and non-sickling individuals have been previously identified, the more 
common phenotype (as found in the associated references) is listed.  
 
 
 
  

Sickling state References

Sickling†

Sickling 9-11,42

Sickling† 11,42,86

Sickling

Sickling†

Sickling 9-11,17,42

Indeterminate

Indeterminate

Does not sickle 9,11,42

Does not sickle 9-11,42

Sickling 8,11,42

Sickling 42,85

Indeterminate

Indeterminate‡ 10,42

Does not sickle†

Species

Rucervus duvaucelii

Elaphurus davidianus

Cervus nippon

Cervus elaphus elaphus

Cervus elaphus bactrianus

Cervus albirostris

Alces alces

Rangifer tarandus

Muntiacus reevesi

Pudu puda

Capreolus capreolus

Hydropotes inermis

Cervus canadensis

Odocoileus virginianus

Dama dama

Common Name

Swamp deer

Père David's deer

Sika deer

Red deer

Bactrian deer

Whitelipped deer

European elk (Moose)

Reindeer

Reeve's muntjac

Pudu

Roe deer

Chinese water deer

Wapiti (Elk)

White-tailed deer

Fallow deer

Sample

SD

PDD

SIKA

RED

BACT

WLD

ELK

REIN

MUNT

PUDU

ROE

CWD

WAP

WTD

BFD

9-12,42

Source

Penn State Deer Research Centre, 
Pennsylvania PA 16802, USA

ZSL Whipsnade Zoo, Whipsnade, 
Dunstable, LU6 2LF, UK (ZSL)

ZSL

ZSL

ZSL

RZSS Highland Wildlife Park, Kincraig, 
Kingussie, PH21 1NL, UK (RZSS)

RZSS

RZSS

RZSS / Kezie Foods, Duns, TD11 3TT, UK

RZSS / Kezie Foods, Duns, TD11 3TT, UK

The Wild Meat Company, Woodbridge, 
IP12 2DY, UK

Bristol Zoo, Bristol Zoo Gardens, Clifton, 
Bristol, BS8 3HA, UK

V. Savolainen

V. Savolainen

East Stroudsburg University, 200 Prospect 
St, East Stroudsburg, PA 18301, USA

Sample type

Blood*

Blood*

Blood*

Blood*

Blood*

Blood

Blood

Blood

Muscle tissue

Blood

Tissue

Tissue

Genomic DNA

Blood / Muscle 
tissue

Blood / Muscle 
tissue

8,10,15,18,
20,23,86

9-11,22,42,
86,87

*Fresh blood samples processed with the PAXgene Blood DNA kit.
†Both sickling and non-sickling adult individuals previously recorded.
‡Only one individual tested (non-sickling). Conservatively listed as indeterminate.

9-11,42
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Supplementary Discussion 
 
Why is sickling in deer better tolerated than in humans? – a brief note 
 
Although patterns of evolution of HBBA suggest that sickling is associated with 
fitness costs and benefits, it is striking, especially in comparison to HbS, that sickling 
homozygotes do not exhibit an easily measurable phenotype. As pointed out in 
previous literature on the subject, two features of deer erythrocytes in particular might 
contribute to reduced sickling cost: they are small and they are pliable. 
 
First, the cause of haemolytic anaemia in human sickle cell patients can be traced to 
the increased mechanical fragility of their red blood cells (RBCs). In deer, on the 
other hand, sickled and non-sickled cells have the same mechanical fragility23. Why 
sickled deer erythrocytes remain highly pliable despite extensive internal polymer 
formation remains unknown. Future comparative studies of cytoskeletal architecture 
and membrane composition will be interesting in this regard. 
 
Second, as noted by Gulliver himself, RBCs in deer appear unusually small compared 
to other mammals88. This might reduce the probability of vaso-occlusions, under the 
assumption that capillary diameter is constant across mammals and has not decreased 
proportionally in deer. We will revisit this assumption below. First, however, we want 
to revisit the claim that deer RBCs are unusually small in the context of allometric 
scaling. To do so, we intersected measurements of RBC diameters made by Gulliver 
for more than 200 mammals, with more recent data on body mass from the 
PanTHERIA database89. We manually matched old and new taxonomic names and re-
assigned the correct Order where necessary. We only considered taxa that could be 
unambiguously matched to an extant taxon, excluded camelids (which have atypical 
oval-shaped RBCs) and added data on five additional deer species from 
http://www.genomesize.com/cellsize/mammals.htm.  
 
We then considered the relationship between body mass and RBC diameter. There is 
a persistent claim in the literature, prominently advocated by Schmidt-Nielsen90 and 
subsequently West and colleagues91, that RBC size is body mass invariant. This 
indeed appears to be the case when all mammals are considered together (left-hand 
panel in Figure A below). However, we find strong scaling relationships within 
different mammalian Orders. Notably, scaling coefficients are indistinguishable for 
Rodentia, Primates, and Carnivora (middle panel in Figure A), whereas Artiodactyla – 
which include deer – exhibit deviant scaling behaviour, with RBC size dropping faster 
with decreasing body mass than in other mammalian orders. It therefore appears that 
the relationship between RBC size and body mass in artiodactyls is governed by a 
different design principle than in other mammals. However, this constitutes 
insufficient evidence to claim that small RBC size in deer mitigates sickling effects. 
As highlighted above, this logic hinges on the assumption that – while RBC size 
drops – terminal capillary size (e.g. in lung alveoli) remains constant. Is this true? The 
same authors that argued for body mass-invariant RBC size assume that terminal 
capillary diameter is body size invariant92 but there is no concrete empirical data to 
support this claim, which is extrapolated from a cross-species study of nephron 
diameters in the kidney. In light of the fact that RBC size does, in fact, vary with body 
mass, as we demonstrate here, we think assertions about invariant capillary diameters 
across mammals are premature. Thus, although artiodactyls do show unusually small 
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RBCs and a different scaling relationship with body mass, in the absence of 
corresponding data on capillary diameters, we cannot establish whether this would 
impact the probability of vaso-occlusion. What we can say, however, is that RBC size 
of sickling deer does not scale any differently from that of non-sickling deer (right-
hand panel in Figure A).  

 
Figure A 
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