Supplementary Information

Supplementary Figures

Supplementary Fig. 1 Characterization of nanoformulation candidates. Formulation reproducibility of screen 'hits' (error bars denote ± 1 SD; three repeats) with concordance between full-scale and half-scale ETFD; ³H-labelled atovaquone inclusion used on half-scale SDN synthesis.

Supplementary Fig. 2 Comparison of rapid equilibrium dialysis release rate measurements of ${}^{ATQ}SDN_4$ at 20 (${}^{ATQ}SDN_{4-20}$), 40 (${}^{ATQ}SDN_{4-40}$), 60 (${}^{ATQ}SDN_{4-60}$) and 80 (${}^{ATQ}SDN_{4-80}$) wt% drug loading. For release rate studies, samples were prepared incorporating 3 H-atovaquone at 0.2 µCi mg⁻¹ specific activity. ${}^{ATQ}SDN_4$ was selected on the basis that it exhibited the highest release rate in the initial screen.

Supplementary Fig. 3 Comparison of rapid equilibrium dialysis release rate measurements of ${}^{ATQ}SDN_6$ at 20 (${}^{ATQ}SDN_{6-20}$), 40 (${}^{ATQ}SDN_{6-40}$), 60 (${}^{ATQ}SDN_{6-60}$) and 80 (${}^{ATQ}SDN_{6-80}$) wt% drug loading. For release rate studies, samples were prepared incorporating 3 H-atovaquone at 0.2 µCi mg⁻¹ specific activity. ${}^{ATQ}SDN_6$ was selected on the basis that it exhibited the lowest release rate in the initial screen.

Supplementary Fig. 4 Comparison of rapid equilibrium dialysis release rate measurements of ${}^{ATQ}SDN_8$ at 20 (${}^{ATQ}SDN_{8-20}$), 40 (${}^{ATQ}SDN_{8-40}$), 60 (${}^{ATQ}SDN_{8-60}$) and 80 (${}^{ATQ}SDN_{8-80}$) wt% drug loading. For release rate studies, samples were prepared incorporating 3 H-atovaquone at 0.2 μ Ci mg⁻¹ specific activity. ${}^{ATQ}SDN_8$ was selected on the basis that it exhibited an intermediate release rate in the initial screen.

Supplementary Fig. 5 Rapid equilibrium dialysis release rates of ^{ATQ}SDN nanoformulations with systematically varying atovaquone loading relative to excipients at 6 hours. $^{ATQ}SDN_4$ (A), $^{ATQ}SDN_6$ (B) and $^{ATQ}SDN_8$ (C) were selected on the basis that they exhibited the highest, lowest and intermediate release rate during screening, respectively.

Supplementary Fig. 6 Biological testing of $^{ATQ}SDN_8$. **a**, Plasma was collected at indicated intervals for assay of atovaquone concentrations in mice dosed intramuscularly with 200 mg kg⁻¹ $^{ATQ}SDN_8$. Log-transformed concentrations yield a plasma half-life of 163 h (using 4 - 42 d values, inclusive; R², 0.889); data obtained in 4 independent experiments. **b**, Plasma atovaquone concentrations >200 ng mL⁻¹ at the time of challenge correlate closely with efficacy. Each dot represents a cohort of 3-5 mice, 7 to 42 d after a single intramuscular dose of 50, 100 or 200 mg kg⁻¹ $^{ATQ}SDN_8$. Data from four independent experiments.

Supplementary Tables

Supplementary Table 1: Nanoformulation 'hits' from synthesis screen. All contain 80 wt% atovaquone.

Formulation	Polymer (13% by weight)	Surfactant (7% by weight)	D_z^a (nm)	PdI ^b	Zeta Potential (mV)
^{ATQ} SDN ₁	Kollicoat	TPGS	477	0.281	8.2
ATQSDN ₂	PVP K30	TPGS	346	0.261	-19.5
ATQSDN3	Kollicoat	Tween 20	440	0.322	-16.3
ATQSDN ₄	PVP K30	Tween 20	388	0.284	-16.4
ATQSDN5	PVA	Tween 80	526	0.369	-20.4
ATQSDN ₆	Kollicoat	Tween 80	454	0.309	-12.8
ATQSDN7	PVP K30	Tween 80	298	0.296	-16.4
ATQSDN ₈	PVA	NDC	445	0.345	-12.2
ATQSDN9	PVA	Solutol	517	0.352	-15.5
ATQSDN ₁₀	Kollicoat	Solutol	440	0.332	-17.0
ATQSDN11	PVP K30	Solutol	384	0.337	-17.2

^a D_z = Z-average diameter; ^b PdI = Polydispersity index

Supplementary Table 2: Physical characterisation of ^{ATQ}SDN nanoformulations with systematically varying drug loading relative to excipients. For release rate studies, samples were prepared incorporating ³H-atovaquone at 0.2 μ Ci mg⁻¹ specific activity.

Sample	ATQ wt%	Name	wt%	Name	wt%	$D_z (\mathrm{nm})^{\mathrm{a}}$	PdI ^b
ATQSDN4-20	20	PVP K30	52	Tween 20	28	505	0.151
ATQSDN ₄₋₄₀	40	PVP K30	39	Tween 20	21	407	0.222
ATQSDN ₄₋₆₀	60	PVP K30	26	Tween 20	14	439	0.322
ATQSDN ₆₋₂₀	20	Kollicoat	52	Tween 80	28	669	0.226
ATQSDN ₆₋₄₀	40	Kollicoat	39	Tween 80	21	468	0.236
ATQSDN ₆₋₆₀	60	Kollicoat	26	Tween 80	14	510	0.302
ATQSDN ₈₋₂₀	20	PVA	52	NDC	28	891	0.199
ATQSDN ₈₋₄₀	40	PVA	39	NDC	21	524	0.322
ATQSDN ₈₋₆₀	60	PVA	26	NDC	14	438	0.256

^a D_z = Z-average diameter; ^b PdI = Polydispersity index