SUPPLEMENTAL MATERIAL

Table S1. Functional and morphological data assessed by echocardiography.

	Sham	IR	IPC	IPoC
FS (%)	59.8±11.9	42.9±10.3*	49.8±13.9	32.2±12.0*
IVSd (mm)	1.65±0.50	1.74±0.32	1.83±0.40	1,52±0.23
LVPWd (mm)	1.62±0.37	1.84±0.22	1.90±0.34	1.86±0.32
LVPWs (mm)	2.53±0.34	2.71±0.44	2.86±0.47	2.61±0.60
LVIDd (mm)	5.25±0.89	5.75±1.28	5.52±0.94	6.03±0.58
LVIDs (mm)	2.69±1.32	3.23±0.90	2.88±1.10	3.43±0.63

FS (%): fractional shortening, IVSd (mm): end-diastolic interventricular septum thickness, LVPWd (mm): left ventricular posterior wall thickness in diastole, LVPWs (mm): left ventricular posterior wall thickness in systole, LVIDd (mm): left ventricular internal diameter in diastole, LVIDs (mm): left ventricular internal diameter in systole. Data are means \pm S.D. of n=6-10 animals. *, p≤0.05 vs. Sham.

Figure S1. The validity of TnI as a marker to determine the infarct size.

Plasma TnI values that were measured one hour after the start of the reperfusion confirm a reduction of the particular size of the infarct to the same magnitude as determined using TTC staining two hours after the start of the reperfusion. Data are means \pm S.D. of n=6 hearts. *, p≤0.05 vs. IR.

A-C) The mRNA expression of the β_1 - and β_2 -AR subtypes was reduced in the hearts in the IR, IPC and IPoC groups compared to the sham group seven days after the infarction. However, the expression of the β_3 -AR remained stable and was unaffected by either IPC or IPoC. Data are means ± S.D. of n=6 hearts. *, p≤0.05 vs. Sham.

Figure S3. The effect of GRK2 and β -arrestin on the contraction of isolated ventricular cardiomyocytes.

The importance of GRK2 and β -arrestin for the β -AR–mediated positive inotropic response of the myocardium was investigated using a model of left ventricular cardiomyocytes isolated from three-month-old Wistar rats. GRK2, β -arrestin 1

and β -arrestin 2 were selectively and effectively downregulated by transfection with siRNA over 24 hours (Figure S6A,B). The load free cell shortening before and after stimulation with ISO was then determined. **A)** In untreated cardiomyocytes ISO improved basal cell shortening by 45±9%. Cardiomyocytes in which the GRK2 was previously downregulated were sensitised to the β -adrenergic stimulus and showed an improvement in the cell shortening of about 70 ±15%. **B)** Specifically knocking down the β -arrestin 1 isoform improved the ISO-induced cell shortening by 57±12% while the β -adrenergic stimulation after successful knockdown of β -arrestin 2 did not differ significantly from ISO treated cells. Transfection of the cardiomyocytes with nonsense siRNA over 24 hours did not have any effect on cell shortening. **C)** The use of GRK2-specific siRNA was supplemented in the cell culture model described above by application of the selective GRK2 inhibitor paroxetine. After a 15-minute pre-incubation with paroxetine, the ISO-induced increase in cell shortening increased in a concentration-dependent manner from 55±8% to 79±12% (1 µM) and to 117 ±22% (5 µM). Data are means± S.D. of n=3 hearts. *, p≤0.05 vs. Control, #, p<0.05 vs. ISO.

Figure S4. The functional relevance of GRK2 in ex-vivo perfused hearts.

Using the Langendorff technique, rat hearts were initially perfused for 10 min with paroxetine and then stimulated for a further 5 min with ISO in the presence of paroxetine. Hearts that had not had their GRK2 inhibited responded to the β -adrenergic stimulation with an increase in the LVDP of 30±20% while the LVDP of hearts perfused with paroxetine increased by 71 ±51%. Data are means ± S.D. of n=4 hearts. *, p≤0.05 vs. ISO.

Left ventricular cardiomyocytes isolated from three-month-old Wistar rats were used to determine the ISO concentration used in all experiments to measure the β -AR-mediated positive inotropic response. The ISO-induced increase in cell shortening increased in a concentration-dependent, however, concentrations above 10 nM had no further effects. Data are means \pm S.D. of n=3 hearts. *, p≤0.05 vs. Control, #, p≤0.05 vs. ISO 1 nM.

A-B) Representative immunoblots and densitometric analysis: the expression of GRK2 (A), β -arrestin1 and β -arrestin2 (B) was analysed 24 hours after transfection of isolated cardiomyocytes. Data are means \pm S.D. of n=3 hearts. *, p≤0.05 vs. Control.