SUPPLEMENTAL DATA

Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E $^{-/-}$ Mice

Petteri Rinne, James J. Kadiri, Mauricio Velasco-Delgado, Salla Nuutinen, Miro Viitala, Maija Hollmén, Martina Rami, Eriika Savontaus, and Sabine Steffens

Table I	Quantitative RT-PCR primers for mouse genes
Figure I	Melanocortin 1 receptor deficiency enhances macrophage content in aortic plaques of high-fat diet (HFD)-fed Apoe ^{-/-} mice without affecting macrophage polarization
Figure II	Atherosclerotic plaque size and composition in chow-fed Apoe ^{-/-} and Apoe ^{-/-} Mc1r ^{e/e} mice
Figure III	Expression of cholesterol transport and stability-related genes in the aorta of Apoe ^{-/-} and Apoe ^{-/-} Mc1r ^{e/e} mice
Figure IV	Hepatic expression of cholesterol transport and synthesis genes in Apoe ^{-/-} and Apoe ^{-/-} $Mc1r^{e/e}$ mice
Figure V	Composition of the fecal bile acid pool in Apoe-/- and Apoe-/- $\rm Mc1r^{e/e}$ mice
Figure VI	Hepatic expression of genes that govern bile acid synthesis, transport and conjugation
Figure VII	Melanocortin 1 receptor deficiency accelerates monocytosis in HFD-fed Apoe ^{-/-} mice
Figure VIII	Melanocortin 1 receptor deficiency elevates pro-inflammatory cytokine levels in chow-fed Apoe ^{-/-} mice
Figure IX	Integrin expression in blood monocytes from chow-fed Apoe ^{-/-} and Apoe ^{-/-} mice mice
Figure X	Controls for immunohistochemistry and immunofluorescence

Correspondence: Petteri Rinne, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland. Phone: +358-2-333-7605, Fax: +358-2-333-7216, E-mail: pperin@utu.fi

Supplemental Table I. Quantitative RT-PCR primers for mouse genes.

Gene name Accession number	5'-3' primer sequence
ABCA1	Forward: gcagatcaagcatcccaact
NM_013454.3	Reverse: ccagagaatgtttcattgtcca
ABCG1	Forward: gggtctgaactgccctacct
NM_009593.2	Reverse: tactcccctgatgccacttc
ABCG5	Forward: tggatccaacacctctatgctaaa
NM_031884.2	Reverse: ggcaggttttctcgatgaactg
ABCG8	Forward: tgcccaccttccacatgtc
NM_026180.3	Reverse: atgaagccggcagtaaggtaga
ACTA2	Forward: agattgtgcgcgacatcaaag
NM_007392.3	Reverse: gcagactccataccgataaagga
ACTB	Forward: tccatcatgaagtgtgacgt
NM_007393.5	Reverse: gagcaatgatcttgatcttca
BAAT	Forward: tagagcacaccacgttcctg
NM_007519.3	Reverse: gcacaggctcatcaacaaga
BAL (SIc27a5)	Forward: tgtgtgtgaaggaacctgga
NM_009512.2	Reverse: acccggacaactttgtgaag
BSEP	Forward: aagctacatctgccttagacacagaa
NM_021022.3	Reverse: caatacaggtccgaccctctct
CCR2	Forward: agagagctgcagcaaaaagg
NM_009915.2	Reverse: ggaaagaggcagttgcaaag
CCR5	Forward: gagacatccgttccccctac
NM_009917.5	Reverse: gtcggaactgacccttgaaa
COL1A1	Forward: gctcctcttaggggccact
NM_007742.4	Reverse: ccacgtctcaccattgggg
COL1A2	Forward: tgcagtaacttcgtgcctagc
NM_007743.3	Reverse: acgtggtcctctgtctcca
COL3A1	Forward: ctaaaattctgccaccccgaa
NM_009930.2	Reverse: aggatcaacccagtattctccactc
COL4A1	Forward: ctggcacaaaagggacgag
NM_009931.2	Reverse: acgtggccgagaatttcacc
CD36	Forward: ccaagctattgcgacatgatt
NM_001159558.1	Reverse: tctcaatgtccgagacttttca
CD62P	Forward: gagggaagaaagccagacg
NM_011347.2	Reverse: ggcgtccaggaacctttt
CX3CR1	Forward: cagcatcgaccggtacctt
NM_009987.4	Reverse: gctgcactgtccggttgtt

Gene name Accession number	5'-3' primer sequence	
CYP7A1	Forward: gatcctctgggcatctcaag	
NM_007824.2	Reverse: agaggctgctttcattgctt	
CYP7B1	Forward: gaaaactcttcaaaggcaacatgg	
NM_007825.4	Reverse: actggaaagggttcagaacaaatg	
CYP8B1	Forward: gccttcaagtatgatcggttcct	
NM_010012.3	Reverse: gatcttcttgcccgacttgtaga	
CYP27A1	Forward: gcctcacctatgggatcttca	
NM_024264.5	Reverse: tcaaagcctgacgcagatg	
DHCR7	Forward: gaggcgtccaagaaggtg	
NM_007856.2	Reverse: gcagcccattcacctcatac	
FXR	Forward: tccggacattcaaccatcac	
NM_001163700.1	Reverse: tcactgcacatcccagatctc	
HMGCR	Forward: tgattggagttggcaccat	
NM_008255.2	Reverse: tggccaacactgacatgc	
HNF4a	Forward: accaagaggtccatggtgttt	
NM_008261.3	Reverse: gtgccgagggacgatgtag	
ICAM1	Forward: tggccctggtcaccgttgtgat	
NM_010493.3	Reverse: aacagttcacctgcacggaccca	
LDLR	Forward: gcgtaaagaggaggacactgtt	
NM_010700.3	Reverse: ccaatctgtccagtacatgaagc	
LRH-1	Forward: tgggaaggaagggacaatctt	
NM_030676.3	Reverse: cgagactcaggaggttgttgaa	
LXR α	Forward: tgggatgtccacgagtgactgttt	
NM_013839.4	Reverse: tcccttaatgctacggaaggctct	
NTCP	Forward: gaagtccaaaaggccacactatgt	
NM_011387.2	Reverse: acagccacagagagggagaaag	
PECAM1	Forward: cggtgttcagcgagatcc	
NM_008816.3	Reverse: actcgacaggatggaaatcac	
S29	Forward: atgggtcaccagcagctcta	
NM_009093.2	Reverse: agcctatgtccttcgcgtact	
SR-A	Forward: gggagtgtaggcggatca	
NM_031195.2	Reverse: tcacagattgtgccccact	
SR-BI	Forward: gcccatcatctgccaact	
NM_016741.2	Reverse: tcctgggagccctttttact	
SREBP-2	Forward: ccaaagaaggagagaggggg	
NM_033218.1	Reverse: cgccagacttgtgcatcttg	
VCAM1	Forward: ggtcttgggagcctcaacggt	
NM_011693.3	Reverse: agggccatggagtcaccgattt	

Supplemental Figure I. Melanocortin 1 receptor deficiency enhances macrophage content in aortic plaques of high-fat diet (HFD)-fed Apoe^{-/-} mice without affecting macrophage polarization. A, Representative images of Mac2, iNOS and CD206 immunostaining of the aortic sinus of Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice fed a high-fat diet (HFD) for 12 wks. Scale bar, 100 µm. B, Representative immunofluorescent stainings of iNOS and Mac2 in the aortic roots of HFD-fed Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice. Scale bar, 100 µm. C through F, Quantification of Mac2-, iNOS- and CD206 positive areas (expressed as % of plaque area) as well as iNOS-positive macrophage area (% of Mac2-positive area) in the aortic sinuses. n=5-10 mice per group in each graph. * P<0.05 versus Apoe^{-/-} mice by Student's t-test. Values are mean ± SEM.

Supplemental Figure II. Atherosclerotic plaque size and composition in chowfed Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice. A, Representative images of hematoxylin and eosin (H&E) staining of the aortic sinus of Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice fed a normal chow diet. Mice were euthanized at the age of 6 months and were agematched with the 12 wks HFD mice. Scale bar, 500 µm. **B**, Quantification of plaque area in aortic sinuses. **C**, Quantification of acellular necrotic core areas as percentage of total plaque area. **D** and **E**, Representative en face Sudan IV stainings and quantification of Sudan IV-positive lipid area in the aorta. **F**, Representative images of Masson's trichrome staining in the aortic sinus. **G**, Quantification of plaque collagen content as percentage of total plaque area. Scale bar, 100 µm. n=8-10 mice per group in each graph, except for E (n=5 per group). ** P<0.01 versus Apoe^{-/-} mice by Student's t-test. Values are mean ± SEM.

Supplemental Figure III. Expression of cholesterol transport and stabilityrelated genes in the aorta of Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice. Quantitative RT-PCR analysis of the indicated genes in the aorta of Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice fed a normal chow diet or high-fat diet (HFD) for 4 weeks. **A**, ABCA1, ATP-binding cassette sub-family A member 1. **B**, ABCG1, ATP-binding cassette sub-family G member 1. **C**, SR-BI, scavenger receptor class B member 1. **D**, SR-A, macrophage scavenger receptor 1.**E**, CD36, scavenger receptor class B member 3. **F**, α SMA, alpha smooth muscle actin. **G** through **J**, Collagen, type I, alpha 1 (Col1A1) and alpha 2 (Col1A2), type III, alpha 1 (Col3A1) and type IV, alpha 1 (Col4A1). * P<0.05 and ** P<0.01 for genotype effect by 2-way ANOVA. Interaction between the genotype and diet as well as pairwise comparisons within diet groups by Bonferroni *post hoc* tests were non-significant. Data are mean ± SEM, n=7-8 mice per group.

Supplemental Figure IV. Hepatic expression of cholesterol transport and synthesis genes in Apoe^{-/-} **and Apoe**^{-/-} **Mc1r**^{e/e} **mice.** Quantitative RT-PCR analysis of genes involved in cholesterol transport and synthesis in the liver of Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice fed a normal chow diet or high-fat diet (HFD) for 4 weeks. **A**, ABCA1, ATP-binding cassette sub-family A member 1. **B**, SR-BI, scavenger receptor class B member 1. **C**, ABCG5, ATP-binding cassette sub-family G member 5. **D**, ABCG8, ATP-binding cassette sub-family G member 8. **E**, LXRα, liver X receptor alpha. **F**, SREBP-2, sterol regulatory element-binding protein 2. **G**, HMGCR, HMG-CoA reductase. **H**, DHCR7, 7-dehydrocholesterol reductase. **I**, LDL-R, low-density lipoprotein receptor. n=8 mice per group. **J** through **L**, Plasma, liver and fecal radioactivities at 48 hours after injection of ³H-cholesterol-labelled macrophages. Data are expressed as percentage of total injected ³H-radioactivity. Samples for chow and 4 wks HFD groups were derived from different sets of mice. n=4-6 mice per group. * P<0.05 and ** P<0.01 versus Apoe^{-/-} mice by 2-way ANOVA and Bonferroni *post hoc* tests. Data are mean ± SEM, n=7-10 per group.

Supplemental Figure V. Composition of the fecal bile acid pool in Apoe^{-/-} **and Apoe**^{-/-} **Mc1r**^{e/e} **mice.** Feces were collected over 48 h and quantified for total bile acids (**A**), the primary bile acids; cholic acid, chenodeoxycholic acid and murocholic acid (**B**), and the secondary bile acids; ursodeoxycholic acid, deoxycholic acid and litocholic acid (**C**). The results are presented as µg per g of dried feces. **D**, The ratio of cholic acid to chenodeoxycholic acid was calculated as a measure of bile acid hydrophilicity. **E**, Relative distribution of individual bile acids in the fecal samples of Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice. CA, cholic acid; CDCA, chenodeoxycholic acid; MCA, muricholic acid; UDCA, ursodeoxycholic acid; DCA, deoxycholic acid; LCA, litocholic acid,. * P<0.05 and ** P<0.01 versus Apoe^{-/-} mice by 2-way ANOVA and Bonferroni *post hoc* tests. Data are mean ± SEM, n=4-6 mice per group.

Supplemental Figure VI. Hepatic expression of genes that govern bile acid synthesis, transport and conjugation. Quantitative RT-PCR analysis of genes involved in the bile acid synthesis (**A**), transport (**B**) and conjugation (**C**) in the liver of Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice fed a normal chow diet or high-fat diet (HFD) for 4 weeks. CYP7A1, cholesterol 7 alpha-hydroxylase; CYP7B1, 25-hydroxycholesterol 7-alpha-hydroxylase; CYP7B1, 25-hydroxycholesterol 7-alpha-hydroxylase; FXR, farnesoid X receptor; LRH-1, liver receptor homologue 1; BSEP, bile-salt export pump; NTCP, Na+-taurocholate cotransporting polypeptide; HNF4 α , hepatocyte nuclear factor 4 alpha; BAAT, bile acid-CoA:amino acid N-acyltransferase; BAL, bile acid-CoA ligase. * P<0.05 and ** P<0.01 versus Apoe^{-/-} mice by 2-way ANOVA and Bonferroni *post hoc* tests. Data are mean ± SEM, n=8 mice per group.

Supplemental Figure VII. Melanocortin 1 receptor deficiency accelerates monocytosis in HFD-fed Apoe^{-/-} **mice. A**, Quantification of total leukocytes (CD45⁺), lymphocytes (CD45⁺, CD11b⁻), neutrophils (CD45⁺, CD11b⁺, Ly6G), Ly6C^{high} monocytes (CD45⁺, CD11b⁺, CD115⁺, Ly6C^{high}) and Ly6C^{low} monocytes (CD45⁺, CD11b⁺, CD115⁺, Ly6C^{low}) in the bone marrow of Apoe^{-/-} mice and Apoe^{-/-} Mc1r^{e/e} mice fed a normal chow diet or high-fat diet (HFD) for 4 weeks. Samples for chow and 4 wks HFD groups were derived from different sets of mice. **B**, Quantitative RT-PCR analysis of ATP-binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B member 1 (SR-BI) expression in the bone marrow of Apoe^{-/-} mice and Apoe^{-/-} Mc1r^{e/e} mice. * P<0.05 versus Apoe^{-/-} mice by 2way ANOVA and Bonferroni *post hoc* tests. Data are mean ± SEM, n=7-10 per group.

Supplemental Figure VIII. Melanocortin 1 receptor deficiency elevates proinflammatory cytokine levels in chow-fed Apoe^{-/-} **mice.** Plasma cytokine levels in chow-fed Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice. * P<0.05 versus Apoe^{-/-} mice by Student's t test. Data are mean ± SEM, n=12-13 per group.

Supplemental Figure IX. Integrin expression in blood monocytes from chow-fed Apoe^{-/-}**mice.** Mean fluorescence intensity (MFI) of CD18 (**A**) and CD49d (**B**) in the Ly6C^{low} and Ly6C^{high}-gated blood monocytes from chow-fed Apoe^{-/-} and Apoe^{-/-} Mc1r^{e/e} mice. ** P<0.01 versus Apoe^{-/-} mice by 2-way ANOVA and Bonferroni *post hoc* tests. Data are mean ± SEM, n=8 mice per group.

Supplemental Figure X. Controls for immunohistochemistry and immunofluorescence. Negative controls for Mac2, α -SMA, iNOS and CD206 (A) and CD11b (B) were obtained by staining consecutive sections with the appropriate secondary antibodies only. C-D, Appropriate single stain and no primary antibody controls are presented for iNOS+Mac2 and VCAM-1+Mac2 immunofluorescence staining. Scale bar, 100 µm in each panel.