Supplementary Figure 1. Delta Ca^{2+} rises in response to glucose and KCl at high glucose in glucocorticoid-treated islets. *A*: Glucococorticoids significantly impair the amplitude of Ca^{2+} responses to glucose. *B*: As for *A*, but Ca^{2+} responses to 10 mM KCl (amplitude measured *versus* 17 mM glucose; G17). *P<0.05, **P<0.01 and NS, non-significant; one-way ANOVA (Bonferroni's post hoc test). 11-DHC and corticosterone were applied at 200 nM or 20 nM, respectively. Data represent the mean \pm S.D. N numbers as for Figure 1.

Supplementary Figure 2. Glucocorticoids impair Ca²⁺ responses to glucose and KCl at high glucose as measured using Fura2. A: Ratiometric Fura2 recordings showing glucose- and glucose + 10 mM KCl-stimulated Ca^{2+} rises in mouse islets treated for 48 hrs with 11-DHC or corticosterone (mean \pm S.E.M intensity-over-time traces shown) (n = 16-17 islets from 4 animals). B-C: Summary bar graphs showing a significant reduction in the amplitude of glucose- (B) and 10 mM KCl- (C) stimulated Ca²⁺ rises following treatment with either glucocorticoid (KCl amplitude measured versus 17 mM glucose; G17). D: Peak Ca²⁺ responses to 10 mM KCl at low (3 mM) glucose are not affected or significantly increased by 11-DHC or corticosterone exposure. respectively. Sustained Ca²⁺ responses to 10 mM KCl at low (3 mM) glucose are significantly increased by both glucocorticoids. E: As for D, but summary bar graph (peak Ca^{2+} responses, left panel; sustained Ca^{2+} responses, right panel) (n = 7-9 islets from 2 animals). F: Peak and sustained Ca²⁺ responses to 30 mM KCl at low (3 mM) glucose are significantly reduced by treatment with 11-DHC or corticosterone (n = 31-35 islets from 9 animals). G: As for F, but summary bar graph (peak Ca^{2+} responses, left panel; sustained Ca^{2+} responses, right panel) (n = 31-35 islets from 9 animals). H: Glucocorticoid does not significantly alter the Fura2 340/385 ratio (n = 8-10islets from 3 animals). G3 = 3 mM glucose; G17 = 17 mM glucose. **P<0.01 and NS, non-significant; one-way ANOVA (Bonferroni's posthoc test). 11-DHC and corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. Unless otherwise stated, data represent the mean \pm S.D.

 $@2017\ American\ Diabetes\ Association.\ Published\ online\ at\ http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1356/-/DC1$

Supplementary Figure 3. Glucocorticoids do not influence the time to onset or amplitude of ATP/ADP responses to glucose. *A:* Bar graph showing no effect of 11-DHC or corticosterone (Cort) on the time to the initial decrease in ATP/ADP. *B:* As for, A but amplitude of the decrease. 11-DHC and corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. NS, non-significant; one-way ANOVA (Bonferroni's posthoc test). Data represent the mean \pm S.D.

Supplementary Figure 4. Glucocorticoids do not affect glucose-stimulated ATP production. High (17 mM) glucose concentration significantly increases ATP levels under all conditions examined. No differences were detected between control-, 11-DHC- and corticosterone-treated islets (n = 12 animals). 11-DHC and corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. *P<0.05, **P<0.01; Student's t-test. NS, non-significant; one-way ANOVA. Data represent the mean and range.

Supplementary Figure 5. Hsd11b1 and HSD11B1 mRNA expression in mouse and human tissue. A: Relative Hsd11b1 gene expression in muscle, liver and islets in mice (n = 5 animals). B: Hsd11b1 is expressed in islets from $Hsd11b1^{+/-}$ and $Hsd11b1^{+/-}$ mice, but not $Hsd11b1^{-/-}$ animals (n = 3-4 animals). C: HSD11B1 levels in human islets are only an order of magnitude lower than in subcutaneous (SC) and omental (OM) fat (n = 4-5 donors). Data represent the mean \pm S.D.

Supplementary Figure 6. 11-DHC suppresses delta Ca^{2+} rises in $Hsd11b1^{+/-}$ but not $Hsd11b1^{-/-}$ islets. A: Both 11-DHC and corticosterone significantly impair the amplitude of Ca^{2+} responses to glucose in $Hsd11b1^{+/-}$ islets. B: As for A, but 10 mM KCl (amplitude measured *versus* 17 mM glucose; G17). C: Deletion of Hsd11b1 ($Hsd11b1^{-/-}$) restores Ca^{2+} responses to glucose. D: As for A, but 10 mM KCl (amplitude measured *versus* 17 mM glucose; G17). Data represent the mean \pm S.D. *P<0.05, **P<0.01 and NS, non-significant; one-way ANOVA (Bonferroni's post hoc test). 11-DHC and corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. Data represent the mean \pm S.D. N numbers as for Figure 5.

Supplementary Figure 7. 11-DHC augments delta cAMP rises in $Hsd11b1^{+/-}$ but not $Hsd11b1^{-/-}$ islets. A: Both 11-DHC and corticosterone potentiate cAMP responses to glucose in $Hsd11b1^{+/-}$ islets. B: Only corticosterone potentiates cAMP responses to glucose in $Hsd11b^{-/-}$ islets. *P<0.05, **P<0.01 and NS, non-significant; one-way ANOVA (Bonferroni's post hoc test). 11-DHC and corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. Data represent the mean \pm S.D. N numbers as for Figure 6.

Supplementary Figure 8. R486 blocks the effects of glucocorticoids on Ca^{2+} rises. A: RU486 prevents 11-DHC from impairing Ca^{2+} responses to glucose. B: As for A, but 10 mM KCl (amplitude measured *versus* 17 mM glucose; G17). C: RU486 prevents corticosterone (Cort) from impairing Ca^{2+} responses to glucose. D: As for C, but 10 mM KCl (amplitude measured *versus* G17). *P<0.05, **P<0.01 and NS, non-significant; one-way ANOVA (Bonferroni's post hoc test). 11-DHC and corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. Data represent the mean \pm S.D. N numbers as for Figure 7.

Supplementary Table 1. Human islet donor characteristics.

Age	Gender	ВМІ	Source
55	F	26	Milan
49	F	23.9	Milan
73	F	28.4	Alberta
71	F	35.5	Alberta
54	М	26.5	Milan
57	F	26	Milan
64	М	24.5	Pisa
44	M	34.4	Alberta

Supplementary Table 2. Epac2-camps single and dual channel fluorescence in mouse islets during maximal stimulation with forskolin. NS, non-significant *versus* control, one-way ANOVA (Bonferroni's post hoc test).

Treatment YFP intensity ± SD (AU)		CFP/YFP ± SD
Control	$2.3 \times 10^4 \pm 6.7 \times 10^3$	1.08 ± 0.03
11-DHC	$2.4 \times 10^4 \pm 8.8 \times 10^3$ NS	1.08 ± 0.05 ^{NS}
Corticosterone	$2.7 \times 10^4 \pm 5.0 \times 10^3 \text{ NS}$	1.07 ± 0.04 ^{NS}

Supplementary Table 3. Primer sequences

Gene	Forward	Reverse
Ins1	GCTGGTGGCATCCAGTAA	AATGACCTGCTTGCTGATGGT
Pdx-1	CCAAAGCTCACGCGTGGA	TGTTTTCCTCGGGTTCCG
Nkx6.1	GCCTGTACCCCCCATCAAG	GTGGGTCTGGTGTTTTCTCTT
Cacna1d	GAAGCTGCTTGACCAAGTTGT	AACTTCCCCACGGTTACCTC
Cacna1c	CCAACCTCATCCTCTTCTTCA	ACATAGTCTGCATTGCCTAGGAT
Cacnb2	GCAGGAGAGCCAGATGGA	TCCTGGCTCCTTTTCCATAG
Adcy1	CGGAATTGCATGCCTTGAA	TCCATTCTTTTGTGCATGCTACAT
Adcy5	CTTCACCAGCCCCAAGAAAC	GAAGCGGCAGAGCACAGAAC
Adcy6	AGCCTTGGATAGGAAGGGACTACT	CTCCCTGCTTTGGCTTATATACCT
Adcy8	TTGGGCTTCCTACACCTTGACT	CGGTAGCTGTATCCTCCATTGAG
Adcy9	CATACAGAAGGCACCGATAG	CCGAACAGGTCATTGAGTAG
β-actin	CGAGTCGCGTCCACCC	CATCCATGGCGAACTGGTG

Supplementary Table 4. Basal intracellular Ca^{2+} concentration in human islets. Free Ca^{2+} concentrations were calculated using $K_d*(F-F_{min})/(F_{max}-F)$ where F_{max} and F_{min} represent fluorescence in the presence of 10 μ M ionomycin or 0.1% Triton + 5 mM EGTA, respectively, and $K_d=389$ nM. NS, non-significant *versus* control, one-way ANOVA (Bonferroni's post hoc test).

Treatment	Ca ²⁺ concentration ± SD (nM)
Control	61.1 ± 16.2
Cortisone	60.9 ± 18.2 ^{NS}
Cortisol	52.7 ± 19.8 ^{NS}

Supplementary Table 5. Effect of KCl concentration on amplitude Ca²⁺ responses at 3 mM glucose. **P<0.01 *versus* 3 mM glucose + 10 mM KCl, Student's t-test.

Treatment	ΔCa ²⁺ ± SD (340/385)
3 mM glucose + 10 mM KCl	0.76 ± 0.12
3 mM glucose + 30 mM KCl	1.85 ± 0.24**