2	A hypoxia- and telomerase-responsive oncolytic adenovirus expressing secretable trimeric		
3	TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-		
4	resistant glioblastoma		
5			
6	Eonju Oh ¹ , JinWoo Hong ¹ , Oh-Joon Kwon ² , and Chae-Ok Yun ^{1*}		
7			
8	¹ Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro,		
9	Seongdong-gu, Seoul 133-791, Korea.		
10	² Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX		
11	77030, USA		
12			
13	Running Title: Hypoxia- and telomerase-responsive oncolytic adenovirus expressing stTRAIL		
14	Keywords: hypoxia-responsive, cancer-specific promoter, oncolytic adenovirus, stTRAIL		
15	apoptosis, TRAIL resistance, glioblastoma		
16			
17	*Correspondence should be addressed to CO. Yun (chaeok@hanyang.ac.kr), Department of		
18	Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu		
19	Seoul 04763, Korea		
20	Tel.: +82 2-2220-0491; Fax: +82 2-2220-4850		
21			
22			
23			
24			
	1		

Supporting Information
Materials and Methods
Comparative transcriptional activity of cancer cell-specific promoter
To assess the transcriptional activity of the mTERT, HmTERT, 5CmTERT, or
H5CmTERT promoters under normoxic and hypoxic conditions, glioblastoma cells (U87MG and
U251N) were transfected with green fluorescent protein (GFP)-expressing plasmids under the
control of the mTERT, HmTERT, 5CmTERT, or H5CmTERT promoters. At 48 h post-
transfection, the GFP expression levels were quantified using a microplate reader.

1

1. mTERT-GFP 2. HmTERT-GFP 3. 5CmTERT-GFP 4. H5CmTERT-GFP

2 Supplementary Figure 1. GFP expression driven by the cancer cell-specific promoter. The 3 GFP expression level driven by the mTERT, HmTERT, 5CmTERT, or H5CmTERT promoter in glioblastoma cells (U87MG and U251N). GBM cells were transfected with plasmids expressing 4 GFP under the control of the mTERT, HmTERT, 5CmTERT, or H5CmTERT promoter (mTERT-5 6 GFP, HmTERT-GFP, 5CmTERT-GFP, or H5CmTERT-GFP) under normoxic or hypoxic 7condition. GFP expression levels from each group were analysed using a microplate reader after 8 48 h incubation at 37°C. Each cell line was tested at least three times and data are shown as mean \pm SD of triplicate experiments; **P* < 0.05 versus HmTERT-GFP for U251N. 9

Supplementary Figure 2. Cytopathic effect of the oncolytic adenoviruses. (a) The cytopathic 1 2 effect of oncolytic adenoviruses (Rb7Δ19, mTERT-Ad, 5ChTERT-Ad, or 5CmTERT-Ad) in 3 U251N cells. At 72 h after the infection, virus-mediated attenuation in cell viability was assessed by the cytopathic effect assay. The result of cytopathic effect assay was semi-quantitatively 4 5 assessed using ImageJ software. (b) Glioblastoma cells (U87MG and U251N) were infected with 6 HmTERT-Ad or H5CmTERT-Ad at the indicated MOI and incubated under normoxic or hypoxic condition. At 48 h after the infection, the cell viability was determined by the MTT 7 assay. Each cell line was tested at least 3 times and data are shown as mean \pm SD of triplicate 8 experiments; *P < 0.05, ***P < 0.001. #P < 0.05, ##P < 0.01; cell killing effect under normoxia 9 vs. hypoxia of same virus. 10

1

Supplementary Figure 3. Cancer cell killing effect of the oncolytic adenoviruses. Glioblastoma cells (U87MG and U251N) were infected with H5CmTERT-Ad or H5CmTERT-Ad/TRAIL at the indicated MOI and incubated under normoxic or hypoxic condition. At 48 h after the infection, the cell viability was assessed by the MTT assay. Each cell line was tested at least three times and data are shown as mean \pm SD of triplicate experiments.

Oh et al.

Supplementary Figure 4

H5CmTERT-Ad/TRAIL

Supplementary Figure 4. Transmission electron microscopy images of U87MG cells after
infection with H5CmTERT-Ad/TRAIL. U87MG cells were treated with H5CmTERTAd/TRAIL. At 36 h post-infection, the cells were harvested and analysed by transmission
electron microscopy. Arrows indicate multiple adenovirus particles in U87MG cells. Original
magnification: ×5,000 and ×10,000.

7

- 8
- 5
- 9

1

Supplementary Figure 5. Histological and immunohistochemical analyses of normal brain tissues treated with H5CmTERT-Ad/TRAIL. H5CmTERT-Ad/TRAIL (5×10^9 VPs) was administered to normal brain tissue of mice via intracranial injection. At 3 days after the viral injection, the mice were euthanised and the brains were collected. Representative sections were stained with H & E. The expression levels of TRAIL and E1A were assessed by immunohistochemical analysis. A TUNEL assay was performed to detect apoptosis. Data are representative of three independent experiments. Original magnification: ×400.

Group	The percentage of surviving mice (At 35 days after cell injection)	Survival rate <i>P</i> -value (vs. PBS)
PBS	0%	-
H5CmTERT-Ad	16.7%	<i>P</i> < 0.05
H5CmTERT-Ad/TRAIL	33.3%	<i>P</i> < 0.01

b

1

Group	Actual median survival time after cell injection (days)	Actual median survival <i>P</i> -value (vs. PBS or H5CmTERT-Ad)
PBS	30	-
H5CmTERT-Ad	30	-
H5CmTERT-Ad/TRAIL	> 35	<i>P</i> < 0.05

Supplementary Figure 6. Survival curve analysis of the U87MG/Fluc orthotopic glioblastoma tumour model. (a) Orthotopic glioblastoma tumour model was established by stereotaxically implanting firefly luciferase-expressing U87MG (U87MG/Fluc) cells into the left forebrain of nude mice. At 7 days after the tumour cell injection, PBS, H5CmTERT-Rd19-Ad, or H5CmTERT-Ad/TRAIL (5×10^9 VPs) were administered via intracranial injection. The percentage of surviving mice was determined by monitoring the tumour growth-related events 1 (mice were considered dead when total flux exceeded 1×10^8 p/s). Data presented as mean \pm SD; 2 **P* < 0.05, ***P* < 0.01. (b) Median survival time represents the day at which 50% mortality is 3 actually observed in the treatment group. Data presented as mean \pm SD; **P* < 0.05; H5CmTERT-4 Ad/TRAIL vs. PBS or H5CmTERT-Ad.