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Tetrachoric Correlation
The tetrachoric correlation approach, proposed by Lecessie and Vanhouwelingen', is adopted to
accommodate the potential association among the observations. The tetrachoric correlation will

replace the original definition of correlation to describe the temporal correlation of the binary
variables Y, ; defined in the main text.

Suppose there is a random pair of binary variables Y = (Yl,YZ) of which Y is a realization

of a bivariate continuous random variable Z =(Z;,Z,), so that the correlation of Y, and Y, can

be represented by that of Z . Suppose Z follows a standard bivariate normal distribution with
correlation p ,then we call p as the tetrachoric correlation of Y . To be more specific, let
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where @ is the cumulative distribution function of a standard normal distribution.
Suppose that
P(Y,=1Y, =1)=7y;
P(Y, =1Y, =0)=my;
P(Y,=0,Y, =1)=7qy;
P(Y,=0,Y, =0) = 7,

)

and let @, (z,u,2) be the probability density function of bivariate normal distribution with

dimension m, mean u and covariance matrix 2. Then we have
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Pseudo-Likelihood

In Section “Model Construction”, the spatio-temporal local log-likelihood is rather complicated and
difficult to differentiate. Here we use the pseudo-likelihood introduced in literature' to approximate
the true likelihood.

Remember in the joint event Y; = (Yl Yoo Y, N ) defined in the main text, we have N;;

marginal events. We will now divide the joint event to a set of C I%i . pairwise events. Similar to Le



Cessie and van Houwelingen', define lit,(pq) asthe pairwise log likelihood for the pairwise event

(Yp.Yq) with sampling time (t,,t;) and independent covariate vector (Xp.Xq). Then, let the
pseudo likelihood that simplifies [;;, be
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with g, = ot M and g, = ot M . Then, the pseudo temporal local
L+exp(X ) 1+exp(X,)
log likelihood function for location i and time ¢t is given by
M
W= 2 W ™)
j=1
and the maximum pseudo local likelihood estimate for S (u;, v;, ty) is given by
b(u;, Vi t) = argrﬁnax [ (8)

In order to get the estimate, we need to differentiate l—lpg: respect to [5. This is equivalent to
obtain the derivative of each [;;, ( 4)- We have
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Taking expectation of the second order derivative, we have
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We can attain the MLE using Fisher Scoring method based on the iteration function

kot _ g0 4y g0) ] PR (g0 11
=) = () 1)

the iteration stops when the solution converges and we obtain the raw estimates b(u;, v;, ty,).

Proof of Theorem 1
We write 1,,(8) and I,,(8) as following
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since B(u;, v;, ty) is the true parameter, V3 € B
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When the bandwidth of the geographical weight function is small enough, then for those
B (uj,vj, tk) which is significantly different to S(u;, v;, t;) (e.g. when the geographical distance
between location j and i is long enough) will have a weight function W;; close to 0. Also, since
B (u;, v, ty) is smooth related to u;, v;, for those neighbor locations where S (uj, v}, tk) are not
significantly different to B(u;, v;, t;), and in practice the trivial difference can be ignored. We
simply set f3 (uj,vj, tk) = B(u;, v, ty), for those neighbor location under small bandwidth. Then

we have
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So when bandwidth is sufficiently small, we have
I (B(uivi b)) =1y (B).YM >0, € B.
Now consider for an open neighborhood
B, (,B(ui Vi b )) = {,8|/3’—ﬂ(ui Vit ) < r} c B, vr,
under assumption 1 and by Kolmogorov strong law of large numbers, we have

P(MILnlw%(IM (8)-lw (B)) =0)=1,V,6’e B.
In other words, for any S e B, (ﬂ’(ui Vi e )) , we have
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because [y () is continuous with respect to S in Br(ﬁ(ui,vi, tk)). Therefore when M is

sufficiently large, it must have a local maximum point, denoted by b(u;,v;, t;). Since I (B) is



differentiable, hence when M is sufficiently large, we must have

h (8),
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Now because of arbitrary value of r and ||b(u;,v;,t, )~ A(u;, Vi b )I< T, we have

~ P
b(u;, Vit )= B(u;, vt )when M — +o0 O

Proof of Theorem 2
We explicitly write the vector form B = (B4, Ba, ..., Bp)T .because b(u;,v;,t,) is the MLE of
l_i,tk (B), so by the mean value theorem, for every j € {1,2, ... ... ,p}
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Then write the above equation in vector form, we have
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So we have
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Consider —% ('B) |5 Aot ) under assumption 2 ii, iii, and by the multivariate Lindeberg-

Feller Central Limit Theorem’, we have
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As in the proof of Theorem 1, under the condition with large sample size and small bandwidth,
W;j =0 for a distant location j. While for a neighbor location j, by the smoothing property of

B(u,v,t), we have
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Now, consider — 52

, with assumption 2.iv and by Kolmogorov strong law of large

numbers, we have
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By Theorem 1, we know that b(u;,v;,t )—>B(u;,vi,t ), and because B, lies between

b(u;,v;,t,) and B(u;,v;,t,) for 1 <n < p, then we have
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then by Slutsky’s theorem, we have
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or equivalently, when sample size is large enough, we have
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