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ABSTRACT 
 
Objectives This research studies the role of slums in the spread and control of 
infectious diseases in the National Capital Territory of India, Delhi, using a detailed 
social contact network of its residents. 
Methods We use an agent-based model to study the spread of Influenza in Delhi 
through person-to-person contact. Two different networks are used; one in which slum 
and non-slum regions are treated the same and the other in which 298 slum zones are 
identified. In the second network slum-specific demographics and activities are 
assigned to the individuals whose homes reside inside these zones. The main effect of 
integrating slums is that the network has more home-related contacts due to larger 
family size and more outside contacts due to more daily activities outside home. Various 
vaccination and social distancing interventions are applied to control the spread of 
Influenza. 
Results Simulation based results show that when slum attributes are ignored, the 
effectiveness of vaccination can be overestimated by 30%-55%, in terms of reducing 
the peak number of infections and the size of the epidemic, and in delaying the time to 
peak infection. The slum population sustains greater infection rates under all 
intervention scenarios in the network that treats slums differently. Vaccination strategy 
performs better than social distancing strategies in slums. 
Conclusions Unique characteristics of slums play a significant role in the spread of 
infectious diseases. Modeling slums and estimating their impact on epidemics will help 
policy makers and regulators more accurately prioritize allocation of scarce medical 
resources and implement public health policies.  
Policy Implications Currently, over a billion people reside in slums across the world 
and this population is expected to double by 2030. This study uses Influenza as an 
example to demonstrate the need to understand the role of slum populations in the 
spread and containment of infectious diseases.  
 
Strengths and limitations of this study 

� We show that the unique attributes of slums must be accounted for in 

understanding the spread and control of infectious diseases.  

� Policymakers should give special consideration to slums when allocating limited 

resources.   

� Intervention strategies have been applied one at a time but a combination of 

them could be used simultaneously to more aggressively control the epidemic. 

� This study does not consider age-specific susceptibility or immunity from past 

infections; all agents are assumed to be equally susceptible.  

� Co-location based contact time is used as a proxy for physical proximity and 

short-distance airborne transmission. 

INTRODUCTION 

Page 2 of 39

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Main manuscript 

 3 

 
Infectious disease is one of the leading causes of human morbidity and mortality 
worldwide. Reports from Centers for Disease Control (CDC) show that over 200,000 
people in the United States (US) are hospitalized with Influenza-like illnesses (ILI) 
symptoms each year, and the mortality on average is over 36,000 annually.[1-2] In 
Delhi, India, a joint study by CDC, All India Institute of Medical Sciences, and the 
National Institute of Virology has shown that ILI cases are present throughout the year, 
although they peak in rainy and winter seasons.[3] It carries a significant economic 
burden through reduced productivity and high costs of health care.[4-7] A CDC study 
finds that for outpatient and non-medically attended individuals, acute respiratory 
infections cost 1%-5% of monthly per capita income in India. In contrast, cost of 
inpatient care can be as high as 6%-34% of annual per capita income.[8] For developed 
countries, the annual cost of Influenza is estimated to be between $1-$6 million per 
100,000 people, according to the World Health Organization.[9]  
 
In 2007, India established an Integrated Disease Surveillance Program (IDSP), which 
included a network of 12 regional laboratories, to minimize the threat of avian influenza 
and other highly infectious zoonotic diseases.[10] India faces some unique challenges 
in surveillance, prevention and control because of the seasonality of Influenza at sub-
regional levels. This seasonal variation depends upon latitude, monsoon season, 
humidity and climatic factors of the regions. Acute respiratory infections are estimated to 
be 43 million per year, of which 4-12% are due to influenza.[11-12] Chadha et al.[13] 
estimated hospitalizations due to respiratory illnesses to be 160 per 10,000 persons in 
year 2011, and children under age 5 had the highest incidence of them.  
 
Given that Influenza is airborne and spreads through close proximity, population density 
is an important factor in its spread. In India, the average population density is about 
1000 people per square mile; in the slums, it can be 10 to 100 times higher.[14] Larger 
household size and crowding make it easier to transmit airborne infections).[15-18] For 
example, Baker et al.[16] find that meningococcal disease risk among children doubles 
with the addition of 2 adolescents or adults (10 years or older) to a 6-room house. Other 
than overcrowding, slums are characterized by their lack of medical services,[19-20] 
which makes slum residents highly vulnerable to infectious diseases. Diseases like 
cholera, malaria, dengue and HIV are common in slums across the world.[21-23] 
 
This research uses Delhi, the National Capital Territory of India, where 13% of its 13.8 
million people live in slum areas, as an example city to study the spread and control of 
Influenza. Delhi is an interesting case study. It ranks fourth in the world in urban 
population, and, among the top 25 largest urban areas, it ranks tenth in population 
density. Moreover, the results are likely to be generalizable to other slum areas within 
and outside of India.  
 
This paper is an extension of the work done in Chen et al.[4], which shows that slum 
populations have a significant effect on Influenza transmission in urban areas. Ignoring 
the influence of slum characteristics underestimates the speed of an outbreak and its 
extent. However, Chen et al.[4] do not consider any interventions on the epidemic 
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spread. The focus of this research is to study the effect of different intervention 
strategies on several subpopulations (slum, age and gender) in two different Delhi 
networks, i.e., original (referred to as Network 1) and refined (Network 2). 
 
The original network used in Xia et al.[24] studied the spread and control of Influenza in 
Delhi using Network 1, which did not take into account the special attributes of the slum 
population, such as larger family sizes and different types of daily activity schedules. 
Chen et al.[4] used Network 2, the refined social network of Delhi, which accounted for 
slum demographics and slum activities, but did not study intervention strategies. In 
Network 2, there are 298 slum regions in Delhi, containing about 1.8 million people. 
 
The goals of this work focus on understanding the effects of pharmaceutical and non-
pharmaceutical interventions on epidemic outcomes. Pharmaceutical interventions (PI) 
include vaccinations, and non-pharmaceutical interventions (NPI) are social distancing 
measures such as school closure, quarantine and staying home. These effects are 
studied comparatively: (i) in Network 1 versus Network 2, overall and for subpopulations 
in each; and (ii) in the slum and non-slum regions of Network 2. Additionally, in a 
scenario where interventions can be applied to a limited number of individuals, we 
explore how resources should be split between slum and non-slum subpopulations in 
order to achieve the best outcomes with respect to total infection rate (i.e., the 
cumulative fraction of a population infected), peak infection rate (i.e., the maximum 
fraction of a population infected on any day), and time-to-peak infection.  
 
METHODS 
 
We use an agent-based modeling (ABM) approach to simulate the spread and 
containment of Influenza in social contact networks of Delhi, India. We compare two 
networks, one considers slum-specific attributes, and the other does not. In this section, 
we describe the networks, the disease model for each agent, the interventions, and the 
heterogeneities of the problem that make ABM uniquely suited to study epidemics. 
 
Social Contact Networks:  This study uses two synthetic social networks of Delhi, 
created in Xia et al.[24] and in Chen et al.[4]. Details on their construction can be found 
in Xia et al.[24], Chen et al.[4], Barrett et al[25], Bisset et al.[26] and references therein. 
The synthetic social network by Xia et al.[24] is called Network 1, and the more refined 
network developed in Chen et al.[4], Network 2.  
 
Network 1 was developed in part from Land Scan and Census data for Delhi, a daily set 
of activities of individuals, and the locations of those activities including geo-locations of 
residential areas, shopping centers, and schools, collected through surveys by 
MapMyIndia.com. By assigning activity locations to individuals’ activities, people are 
located at particular times at particular geographic coordinates (including office 
buildings, schools, etc.) and within particular rooms of buildings. Next, contacts between 
individuals are estimated when each person is deemed to have made contact with a 
subset of other people simultaneously present at the same location. This gives rise to a 
synthetic social contact network where network edges represent these contacts.  
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Network 2 models the slum regions in Delhi and assigns slum-specific attributes to the 
individuals whose homes reside in the slum polygons. Slum residents’ attributes and 
their daily sets of activities are collected through a ground survey in Delhi slums, by a 
vendor, Indiamart (www.Indiamart.com/trips). The slum polygons are obtained from 
MapMechanic.com. Individuals living in the slum regions are a part of the slum 
population. All other individuals are part of the non-slum population. Network 2 is a geo-
located, and contextualized social contact network of Delhi with slums integrated in it.  
 
Following are the main differences between the original network (Network 1) and the 
refined network (Network 2). The original social contact network treats the slum regions 
like any other region in Delhi in terms of assignment of demographics and individual 
activities, i.e. no special consideration is given to slum residents. The refined Network 2 
identifies 298 slum polygons (zones) in Delhi and assigns slum-specific demographics 
and activities to the individuals whose homes reside inside these polygons. Thus, the 
number of individuals is the same in both populations. The slum population constitutes 
about 13% (1.8 million) of the entire Delhi population of 13.8 million people. The main 
effect of integrating slums is that Network 2 has more home-related contacts due to 
larger family size and more outside contacts due to more daily activities outside home. 
Also, those individuals who reside outside of slum zones have the same activities in 
both networks. Overall, there are over 231 million daily interactions between pairs of 
individuals. Table S1 compares those two networks as well as data sources for slum 
and non-slum Delhi, India. (Table and figure numbers that are prefixed with ‘S’ are in 
the supplementary information (SI)). We refer to Chen et al.[4] for more detailed 
information about the two networks. Several plots of properties and structural 
characteristics of Networks 1 and 2 are given in Chen et al.[27]. 
 
Disease Model: An SEIR, Susceptible (S), Exposed (E), Infectious (I) and Removed or 
Recovered (R) model is considered within each individual. Each node in the network 
represents an individual, and each edge represents a contact on which the disease can 
spread. A contact represents possible transmission between two people that are co-
located for some duration (based on their activity schedules). This is an approximation 
to model direct contact and short-distance airborne transmission.   
 
We start each epidemic simulation with 20 index cases, randomly chosen. (We find that 
results are not sensitive to the number of initial infections.) The detailed description of 
the SEIR model as well as the choices of transmissibility value, R0, the explicit 
incubation and exposed periods can be found in the supplementary information. This 
disease model has been used in other works such as Liao et al.[28], Marathe et al.[29]. 
 
The transmissibility value for disease transmission is that for the strong influenza model 
in Chen et al.[4]. That work used mild, strong, and catastrophic influenza models, so we 
chose the intermediate transmissibility. This corresponds to base attack rates (i.e., 
cumulative infection fractions) of 0.42 and 0.48, respectively, in Networks 1 and 2. 
These rates are generally higher than those in some other studies that either compute 
experimental attack rates from cases or compute them in modeling studies such as this 
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one. Attack rates used by past researchers for different strains of influenza include Asia 
[0.22 to 0.50],[30] Southeast Asia [0.11 to 0.31 in children [31]; 0.05 to 0.65 [32]], and 
India [0.111 to 0.235 [33]; 0.074 to 0.424 [34]; 0.045 to 0.294 [35]; 0.008 to 0.100 [36]; 
0.209 for various strains [13]]. The results of Chen et al.[4] indicate that the results here, 
for this particular transmissibility, will be qualitatively the same for other transmissibility, 
but will scale down or up as transmissibility changes in the same direction. 
 
Interventions: This work considers three vaccination scenarios, i.e., vaccinate when 
cumulative infection rate is 0% (VAX0, i.e. vaccinate on day 1), 1% (VAX1), and 5% 
(VAX5). Three classes of social distancing strategies are considered: (i) stay-home 
(SHO) if infected i.e. eliminate all non-home related contacts but continue to maintain 
contacts within the household; (ii) close-schools when cumulative infection rate has 
reached 1% (CS1) and when it has reached 5% (CS5) i.e. eliminate school related 
contacts; and (iii) (ISO), in which all contacts, including home contacts, of a person are 
eliminated when a person becomes infectious. For vaccination, five different compliance 
rates (10%, 30%, 50%, 70%, 90%) and two different vaccine efficacies (30% and 70%) 
are considered. Interventions are applied to slum residents, non-slum residents, and the 
entire region of Delhi. For each experiment, 25 replicates are simulated for 400 days, 
and their mean results are reported. Table S2 summarizes all the interventions 
considered, and Table S3 contains all variables in simulations, including intervention 
parameters.  
 
Heterogeneities captured: There are several heterogeneous aspects to this problem 
that motivate the use of an ABM approach: (i) the 298 slum zones have populations that 
vary by more than four orders of magnitude in size; (ii) the geographic extent of slum 
zones differ; (iii) the slum zones are located at irregular spatial intervals throughout 
Delhi; (iv) the activity patterns of people living in slums are different from those in the 
non-slum region; and (v) each individual interacts with specific others based on co-
location. 
 
The implications of these heterogeneities include the following. First, the particular 
synthetic households that live within slums are predicated on the number of slum zones, 
their locations, and their spatial geometries. These homes have larger family size and 
hence more home contacts. Second, slum individuals have different activity patterns 
which change the co-located contacts of each slum person: that is, with whom they 
interact and for how long. For example, see the supplemental Figure S6 of Chen et 
al.[27]. The average total contact durations by activity type and by slum/non-slum 
residents are provided, which show that non-slum people have greater contact 
durations for work, school, and college activities, but less for home and other types.  
Overall, a slum person has about 50% greater total contact duration per day compared 
to a non-slum person. Figure S7 of the same supplemental shows that in the age range 
20 to 60 years (by year), females that live in slums have more contacts per day than 
their male counterparts. However, females whose homes are outside of slum regions 
have average number of daily contacts that are below their male counterparts. 
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RESULTS AND ANALYSIS  
Our results are grouped as follows. (1) Comparisons of Network 1 and Network 2 for 
base case and intervention cases. (2) Results for both networks based on demographic 
classes, such as slum/non-slum, gender, and age groups, for a wider range of 
intervention strategies. (3) Effects of pharmaceutical and non-pharmaceutical 
interventions for a wide range of parameter values. (4) Effects of different resource 
allocation strategies.  
 
All differences are tested with the two-sample t-test and they are all statistically 
significant with p-values smaller than 2.2e-16. The 95% confidence intervals are given 
for each comparison.  Here is a brief summary of selected results with examples of 
mechanisms, to provide a high-level overview. Details of results follow this summary 
and these details matter because there are many factors (inputs) in a simulation whose 
interactions change results. 
 
(1) Ignoring the unique attributes of slums in a population overestimates the benefits of 
the interventions. For example, in the case of vaccination intervention (efficacy 30% and 
compliance 30%), the values for the epidemic size (i.e., cumulative percentage of 
infected), peak infection rate, and time to peak are 33.1%, 3.0%, and 184 days, 
respectively, in Network 2, whereas they are 23.3%, 1.34%, and 286 days in Network 1. 
In relative terms, the epidemic size and peak infection rate are underestimated by 
42.2% and 123.2% respectively, while the time to peak is overestimated by 35.7% in 
Network 1 (see Figure 1 and Table S5). The larger family sizes for slum families in 
Network 2 and the increased number of edges result in larger outbreaks and faster time 
to peak infections. 
 
(2) Interventions are more effective in Network 1 than Network 2 for all types of 
interventions: vaccination, closing schools, staying home, and isolation. These trends 
also hold over wide ranges of efficacy and compliance (see Figures 3, 4, S1, S2 and 
S7). Hence, not accounting for slums gives overly optimistic results for the effectiveness 
of the interventions. The reduced average family size in Network 1 means fewer within-
home edges, which slows infection and reduces spreading. Closing schools and staying 
home interventions do not affect home edges. However, the magnitude of this effect 
varies with intervention conditions (e.g., compliance rate, time at which intervention is 
applied). 
 
(3) Cumulative infection rates by subpopulation in Network 2 show that slums sustain 
greater infection rates than non-slums under all intervention scenarios, sometimes by as 
much as 44.0%. See Figure 4 and Table S9 for more details. This is due to the greater 
household sizes in slums.  
 
(4) For Network 2, under a wide range of intervention compliance rates (10% to 90%), 
the isolation strategy is up to 32% more effective in containing an outbreak than 
vaccination (for 30% efficacy). Staying home is up to 18% more effective than 
vaccination at 50% compliance. See Figure 3 and Table S10 for more details.  Isolation, 
although hard to implement from practical considerations, is most effective because 
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edges to susceptible individuals are removed (isolation also provides a good 
comparative case). Differences between staying home and vaccination depend on 
compliance rates. 
 
(5) For Network 2, delay in triggering interventions has 7.3% to 44.0% more adverse 
effect in slums than in non-slum regions across compliance rates from 10% to 90%. See 
Figure 4 and Table S7 for more details. Early interventions mean actions are taken 
when outbreaks are smaller and are therefore more readily contained.  
 
(6) A full-factorial design that splits resources between slum and non-slum regions 
indicates that the most effective intervention is to give vaccines to slums and apply 
social distancing to non-slums. Applying vaccine and social distancing to slum regions 
is the next most effective intervention. See Figure 5. By applying social distancing to 
non-slums, these individuals are kept isolated from slum individuals that are infected. 
 
 
Comparison between Networks 1 and 2: Base case versus interventions 

 
We start with a comparative analysis of the Influenza epidemic, with and without 
interventions, on Network 1 and Network 2 to measure the impact of integrating slums 
in the population on epidemic measures. Figure 1 shows the simulation time histories 
(averaged across 25 simulations) for the base case, and when vaccination is applied 
randomly to 30% of the population in each network with vaccine efficacy set at 30%. 
Mean infection rate is the daily fraction of infected individuals. Simulations for other 
vaccine efficacies and compliance rates give qualitatively similar results. Two sets of 
those results are shown in the supplemental information, see Figures S1 and S2. Note 
that Network 1 does not distinguish between slum and non-slum individuals, so the 
epidemic curve is not split by subpopulation. 
 
Results in Network 2 differ significantly from results in Network 1 for both the base case 
and intervention case. In Network 2, the epidemic starts earlier, peaks earlier, has a 
larger epidemic size and has higher peaks compared to the corresponding epidemic 
quantities in Network 1. Thus, if policy planners ignore slums and use Network 1 to 
plan, there will be a false sense of security and lack of urgency to implement 
interventions. For both the base case and the intervention case, ignoring unique 
characteristics of the slums will result in an underestimation of the infections and the 
speed of spread. 
 

Figure 1 goes here  

 
For the intervention cases, the time to peak infection decreases by 35.7%, i.e. from 286 
days for Network 1 to 184 days for Network 2, meaning an influenza epidemic would 
peak roughly 100 days earlier than one would expect based on the results from Network 
1. For the base case, time to peak infection drops by 20.8%, i.e. 34 days reduction for 
Network 2 as compared to Network 1. 
 

Page 8 of 39

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Main manuscript 

 9 

Percentage changes and differences must be viewed cautiously, and to illustrate this 
point, we present data for the key parameters in Tables S4 and S5. The difference in 
the peak infection rate (i.e., the maximum fraction of daily infected individuals during the 
simulation) between Networks 1 and 2 for the base case is 2.2%, or 47.6% in 
percentage change (see Table S4). For the intervention case shown in Table S5, the 
difference between the two networks is less (1.7%), but the percentage change is more 
(123.2%) because the magnitudes of the peak infection rates are reduced when 
effective interventions are used. We make note of this here and mainly use the 
percentage change values in discussing results. For more detailed comparison between 
vaccination intervention and the base case in Network1 and Network 2, we refer to 
Tables S6 and S7, Figures S3 and S4. 
 
 
Comparison between Networks 1 and 2 based on individual demographic 
information 
 
We divide the Delhi population into strata by age, gender, and geographic home 
location (i.e., slum and non-slum), and analyze mean cumulative infection rates by 
subpopulation for the two networks. In simulations, individuals are chosen at random in 
the entire network for vaccination. Various vaccination scenarios are investigated. 
 
Figure 2 displays the cumulative infection rate results. On the x-axis, ‘Total’ refers to the 
entire population of Delhi. There are three breakdowns of the entire population.  ‘Slum’ 
and ‘Non-slum’ refer to slum and non-slum regions, respectively. ‘Male’ and ‘Female’ 
denote the total number of males and females in Delhi, respectively. Four age groups 
are considered: ‘Preschool’ (0-4), ‘School’ (5-18), ‘Adult’ (19-64), and ‘Senior’ (65+). The 
black lines correspond to the mean cumulative infection rates for the base case. Other 
curves indicate vaccination strategies under different levels of vaccination rate (v) and 
vaccine efficacy (α). Two vaccination rates (30%, 50%) and two vaccine efficacy rates 
(30%, 70%) are shown in the figure. 
 
For Network 1, vaccination rate of 50% or higher stops the epidemic for all categories of 
individuals, regardless of vaccine efficacy. An efficacy of 70% also contains the 
epidemic, given a vaccination rate of at least 30%. In comparison, for Network 2, either 
a vaccination rate of 70% is required (not shown in plot for clarity) or a vaccination rate 
of 50% combined with a vaccine efficacy of 70% is required to stop the epidemic for all 
categories of individuals.  
 
In Network 1, slum and non-slums are treated the same so the infection rates are 
identical in Figure 2. However, all scenarios in Network 2 show a higher burden of 
disease on the slum population. This is due to the fact that slum households have larger 
family size and more contacts on average than households in non-slum areas, see 
Chen et al.[27]. As shown later, we find similar patterns of infection in slum and non-
slum subpopulations for other interventions such as ‘close-schools’ and ‘stay-home’.  
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The results in both Figure 1 and Figure 2 indicate that ignoring the effect of slums 
results in overestimation of the benefits of interventions in terms of reduction in the 
mean infection rate and peak infection rate, as well as the time to peak. This optimism 
holds for slum, non-slum and total population under various levels of vaccination rates 
and efficacy rates in Network 2. See Table S8 for more detailed comparison of results 
between slum and non-slum in Network 2. 
 

Figure 2 goes here 

 
Comparison between Networks 1 and 2 across a wide range of intervention 
strategies 
 
Next, we consider a variety of intervention strategies for comparative analysis. We 
consider vaccination, school closure, stay home, and isolation strategies. For vaccines, 
three different trigger points are considered: when cumulative infection rate reaches 0% 
(VAX0), 1% (VAX1) and 5% (VAX5). For close-schools, two trigger points are used: 
when the cumulative infection rate reaches 1% (CS1), and 5% (CS5). Under the stay at 
home (SHO) strategy, all non-home activities and interactions are eliminated but all 
contacts within the household are maintained. Under isolation (ISO) an individual has 
no contact with other individuals (even home interactions are eliminated). The stay-at-
home and isolation interventions are implemented for compliant infectious individuals, 
after they become infectious, for the entire infectious duration. 
 
Figure 3 displays average cumulative infection rates in Network 1 and Network 2 for a 
wide range of intervention strategies.  For each strategy, five different compliance rates 
are considered, i.e., 10%, 30%, 50%, 70% and 90%. The cumulative infection rates 
(i.e., fractions) are displayed as larger numbers in boxes, while smaller-font numbers 
are the actual number of infected individuals. Darker colors correspond to higher 
infection rates. Note that compliance rate is simply the vaccination rate for strategies 
VAX0, VAX1 and VAX5. Compliant individuals are selected at random from the entire 
population. The ‘Base’ values do not vary with compliance because the base case has 
no intervention. Note that all heat maps in this paper use the same color scheme so that 
colors can be compared across figures. 
 
Since Network 1 does not distinguish between slum and non-slum populations, we only 
compare the two networks for the whole of Delhi. The general pattern is similar for both 
networks. However, all interventions have a larger effect on Network 1 under the same 
compliance rate (that is, corresponding numbers are uniformly lower for Network 1 than 
for Network 2). The infection rates drop to zero at a smaller compliance rate for VAX0, 
stay-home, and isolation strategies in Network 1 as compared to those for Network 2. 
 

Figure 3 goes here 

 

Effect of vaccination versus social distancing on slum and non-slum 
subpopulations 
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We now compare the impact of vaccination and social distancing on slum and non-slum 
subpopulations from Network 2. Social distancing interventions are close-schools, stay-
home, and isolation. 
 
The mean cumulative infection rates (and actual numbers of infections underneath) for 
each compliance level are shown in the heat maps in Figure 4 for slum and non-slum 
populations in Network 2. The axis labels are identical to those in Figure 3, as is the 
color scheme of the cells. The base case values are constant since there is no 
intervention and hence no compliance. Darker colors correspond to higher infection 
rates. 
 
Compared to the base case, all interventions reduce infection rates to some extent. As 
the compliance rate increases, infection rates drop for all interventions. Infection rates 
drop to zero in slum and non-slum regions at a compliance level of 70% or higher, 
under SHO, ISO, and VAX0 strategies. Early interventions or lower trigger levels reduce 
the infection rates significantly, and this effect increases with compliance rate.  
 
The following observations can be made from Figure 4. Social distancing i.e. SHO at 
low and intermediate compliance and CS at all compliance levels, are less effective in 
slum regions as compared to non-slum regions. This is because CS only eliminates 
school interactions for those attending school, and there are fewer school edges in 
slums compared to non-slum areas, as shown in Figure S5. The effectiveness of CS in 
slums is mitigated by the greater average number and duration of interactions at home 
in slums as compared to non-slums (see Figure S5 and Chen et al.[27]). Thus, if a 
person is sick, there is a greater chance of transmitting contagion to family members, 
who then may have activities outside of school, thus circumventing the CS intervention. 
At high compliance, SHO is effective because all interactions outside home (including 
school) are eliminated.[27] 
 
These observations are also supported by Figure S6, which contains numbers of edges 
used to transmit contagion for a base-case run of Figure 1. There are several effects 
that bear on the above observations. First, in the cases of activities “work”, “other”, and 
“school”, the number of edges transmitting contagion from slums to non-slums is greater 
than the reverse: from non-slum to slum. Second, in two of these three activity 
categories, there is more slum to non-slum transmissions than slum to slum 
transmissions. Edges of transmission for slum dwellers is dominated by home 
interactions. The infected homes in slums serve as launching points to drive disease to 
non-slums through slum to non-slum interactions. (There are no ``mixed’’ edges at 
homes, and shopping and college activities have low levels of slum activity because of 
socio-economic factors.) We will see the effects of these mechanisms in Figure 5, but 
we now return to Figure 4. 
 
Isolation works well at 30% or higher compliance rates, but it is a much harder strategy 
to implement, especially in slums. However, it is considered here for comparative 
analysis. Vaccination also produces marked decreases in cumulative outbreak sizes as 
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compliance increases. However, close-school is generally less effective because this 
intervention removes only a fraction of interactions for a fraction of the population, i.e. 
school aged children. Simulations were also run for 70% vaccine efficacy. Since results 
are qualitatively similar for those parameters, these plots are provided in Figure S7. 
 

Figure 4 goes here 

 

Constrained resource allocation among slum and non-slum areas  
 
We consider a specific scenario under Network 2. If only a limited number of vaccines 
are available, and only a certain fraction of individuals can be kept home during an 
epidemic, how should these interventions be applied to the slum and non-slum regions 
so that the epidemic can be controlled effectively? Given that slum residents’ attributes 
differ from those of non-slum residents, is there a strategy that works better in slums 
than in non-slum areas? The total population in Delhi is about 13.8 million, which 
includes about 1.8 million slum residents. We assume that only 10% of the total 
population can be covered by interventions, half through vaccination and the other half 
through stay home. Enough vaccines are available to cover 5% of the total population 
(i.e. 692,183 vaccinated, corresponding to about 38.25% of slum or 5.75% of non-slum 
population), and 5% of the individuals can stay home (692,183 individuals; this is 
applied to only the infected individuals). Note that an individual may receive a vaccine 
and also stay at home if this individual, in spite of being vaccinated, gets infected. 
 
We consider 4 different ways of applying interventions to 10% of the total population: (i) 
apply both interventions to slums, i.e. give all vaccines to slums and apply SHO only in 
the slums (VsSs); (ii) apply all interventions to non-slum areas (VnSn); (iii) give vaccines 
to slums and SHO to non-slums (VsSn) and (iv) give vaccines to non-slums and apply 
SHO to slums (VnSs). 
 
For both types of intervention, the same number of individuals is chosen randomly from 
slum or non-slum areas. 10% of the total Delhi population amounts to 76.5% of slum 
population, 11.5% of the non-slum population, or a combination of 38.25% of the slum 
and 5.75% of the non-slum population (i.e. half from slums and half from non-slums). 
Figure 5 shows the mean cumulative infection rates, as well as the number of infected 
from the entire population of Delhi, the slums, and non-slum areas under each of the 
four scenarios. 
 
The results in Figure 5 indicate that the mean infection rates are the lowest when 
vaccines are given to slums and social distancing is applied to non-slums, or both 
vaccines and social distancing are applied to slums. The benefits primarily accrue to the 
slum population because it drives down the fraction of infected slum residents from 0.74 
to 0.55 or 0.58. Also, as described in the context of Figures 4 and S6 above, social 
distancing of the non-slum residents helps to isolate them from the infected slum 
residents. This effect also bears on the following. 
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Note that vaccination is more effective in slums (top 2 rows) than in non-slums (3rd and 
4th rows from top) in reducing infections among slums and in the overall population. 
Although non-slums are marginally better off (compared to the base case), the overall 
infection rate drops and the slum population is significantly better off, leading to a 
Pareto-optimal situation. This is a counterintuitive result, since the density of population 
is much higher in the slums, which may lead to the belief that social distancing in slums 
will break up the dense clusters. However, a careful examination shows that keeping 
slum residents home is not an effective social distancing strategy because their family 
size is, on average, almost 3 times larger than the family size of non-slum 
households.[27] The high level of mixing at home makes social distancing ineffective in 
slums unless the infected individual is completely isolated. However, complete isolation 
is not viable in slum areas where the entire household may live in a single room.  
 

Figure 5 goes here 

 
DISCUSSION  
 
With slum populations expected to grow to 2 billion by 2030,[37] it is becoming 
increasingly urgent to understand how to control the spread of infectious diseases in 
slum areas and measure its effect on urban populations. To our knowledge, a detailed 
study of interventions to control Influenza epidemics in slums, using an agent-based 
simulation model, has never been done before. Slum conditions are important for a city 
beyond the direct effects of disease transmission. For example, civil wars may be 
precipitated or exacerbated by disease outbreaks because they decrease social health 
and welfare. [38] 
 
Even though slum regions contain only 13% of the total population of Delhi, Chen et 
al.[4] show that omitting their attributes leads to underestimation of the overall infection 
rate and the peak infection rate of the epidemic. This paper extends that work by 
evaluating the differential impact of interventions on slum and non-slum regions. 
Various vaccination and social distancing strategies are analyzed under different 
scenarios that show that the slum population is more prone to infections under the same 
control measures. Furthermore, taking account of slum populations significantly alters 
the disease dynamics in the entire population. Differences in key measures are 
demonstrated between the cases of accounting for slum populations and not:  e.g., a 
100% increase in the peak attack rate in some cases when slum regions’ characteristics 
are taken into account, compared to the case when they are ignored. 
 
Figure 4, which compares infections in slum with non-slum areas, shows that at very 
high compliance rates, some interventions can be equally effective in both slums and 
non-slums. However, such high compliance rates are typically not feasible due to 
practical realities on the ground, and also because they require timely diagnosis of 
infected cases. For SHO to be effective, the coverage rate needs to be 70% or more in 
both slums and non-slums, and the diagnosis of the infected individuals needs to be 
correct and immediate. In other words, effective control of a contagious epidemic in a 
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high density place like Delhi, would require either early and drastic action (e.g. ISO) or a 
highly compliant set of individuals, or a combination of these features. 
 
This work overall demonstrates the power of agent-based and population modeling to 
evaluate complicated interaction-based epidemiological phenomena. Clearly, there are 
limitations to this work (noted above). But these agent and population approaches 
provide a platform for adding additional complexity. All of the figures demonstrate that 
quantitative results depend on complicated interplay among inputs. These results are 
important because they inform policy decisions. An equally important benefit of this type 
of work, but not often stated, is developing intuition about epidemic dynamics (in this 
case, with the effects of slums), to enable decision makers to reason about nuanced 
interactions among effects to a degree that is hard to obtain with other approaches that 
lack this level of detail. 
 
Despite this being the first work of its kind—to model the outbreak of influenza in a city-
level population, along with a host of intervention strategies and parameter values, that 
includes the effects of slum populations—there are limitations of this work and areas for 
improvement and for future work. For example: (1) Examination of different population 
level base attack rates. (2) Different susceptibilities and infectivity for individual agents; 
e.g., based on age. (3) Effects of asymptomatic infections (although we have addressed 
this to some extent with compliance and efficacy of interventions). (4) Seasonal 
effects.[39-40] (5) Effects of immunity for an individual from previous infections (in 
previous seasons). (6) Evaluation of interaction of different strains from season to 
season. (7) Comparison of tropical versus subtropical factors. (8) Evaluation of a 
specific outbreak scenario. (9) Impact of sickness on absenteeism from work and its 
economic ramifications. (10) Effects on rural versus urban populations. (11) Using 
combinations of interventions rather than one at a time; this was only done here in 
Figure 5.  However, to disambiguate results, it is prudent to first examine individual 
interventions. (12) To capture close-proximity airborne transmission, one could use 
actual physical proximity. Here, we use colocation. 
 
Returning to the practical implications and recognizing this work’s limitations, this 
research demonstrates that modeling slum populations is important, not only for 
understanding disease dynamics, but also for designing effective control measures. 
Ignoring the influence of slum characteristics on their urban environment will 
significantly underestimate the speed of an outbreak and its extent, and hence will lead 
to misguided interventions by public health officials and policy planners. This research 
also analyzes the effect of different intervention strategies on slum and non-slum 
subpopulations. Under limited resources, policymakers should give special 
consideration to slums in order to control the spread in not only the slum areas, but also 
the city as a whole. Given the large family size and high population density in the slum 
regions, it is harder to break up the social network through social distancing strategies. 
This research provides simulation-based evidence that it may be more effective to 
concentrate pharmaceutical resources in the slum regions to control the epidemic. The 
social distancing strategies are ineffective in slums because of a large number of 
contacts at home. Unless one applies complete isolation, which is not feasible in slums, 

Page 14 of 39

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Main manuscript 

 15

unless isolation is orchestrated by health professional, just staying at home still keeps a 
large number of contacts and pathways of spread intact.  
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FIGURE 1: Epidemic curves for base case and vaccination case. The vaccines are 
given randomly to 30% of the entire population and the vaccine efficacy is 30%. For 
Network 2, epidemic curves are shown for total population and slum and non-slum 
subpopulations. ‘Intervene Total’ refers to the epidemic curve of the entire Delhi 
population when the vaccine intervention is applied. ‘Intervene Slum’ refers to the 
epidemic curve for just the slum population, and ‘Intervene Non-slum’ refers to the 
epidemic curve for just the non-slum population for the intervention case. Epidemic 
curves for a variety of compliances and efficacies are reported in Figures S1 and S2. 
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FIGURE 2: Mean cumulative infection rates for different subgroups in the two networks. 
Two vaccination rates (v = 30%, 50%) and two vaccine efficacy rates (α = 30%, 70%) 
are considered. Individuals are chosen at random in the entire network for vaccination 
on day 0. Mean infection rates are calculated within each group. The last several lines 
in the plot for Network 1 are overlapping at the bottom because the mean infection rates 
are almost zero under those scenarios. ‘Total’ refers to the entire population of Delhi. 
‘Slum’ and ‘Non-slum’ refer to slum and non-slum regions, respectively. ‘Male’ and 
‘Female’ denote the total number of males and females in Delhi, respectively. Age 
groups are denoted by ‘Preschool’, ‘School’, ‘Adult’, and ‘Senior’. 
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       (a) Total Delhi Network 1  (b) Total Delhi Network 2            
 
Figure 3. Mean cumulative infection rates under different interventions for Network 1 
and Network 2. The larger font numbers are fractions of populations that are infected 
and the smaller font numbers are counts of infected individuals.  Colors of the boxes 
correspond to the values of the large numbers (i.e., fractions of infected), and the same 
scheme is used for both plots for comparisons—and for all plots in this paper.  Five 
different compliance rates are examined (10%, 30%, 50%, 70% and 90%), and 4 types 
of intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and 
isolation (ISO)) are considered. For vaccines, three different trigger points are 
considered: when the cumulative infection rate reaches 0% (VAX0), 1% (VAX1) and 5% 
(VAX5) of the total population. The vaccine efficacy is set at 30%. For close-schools, 
two trigger points are used: when cumulative infection rate reaches 1% (CS1) and 5% 
(CS5). Compliant individuals are selected at random from the entire Delhi population, 
and the cumulative infection rates are calculated for each network. 
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       (a) Slum           (b) Non-slum 

 
Figure 4. Heat map of cumulative infection rates in slum and non-slum regions of 
Network 2 under different intervention strategies. The colors of boxes correspond to the 
larger numbers in the boxes—the cumulative infection rates—and the two plots use the 
same scheme for comparisons.  Darker colors correspond to higher infection rates. The 
smaller font numbers are counts of infected individuals. The vaccination efficacy is fixed 
at 30%. Five different compliance rates (10%, 30%, 50%, 70% and 90%) and 4 types of 
intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and 
isolation (ISO)) are considered. For vaccines, three different trigger points are 
considered: when cumulative infection rate reaches 0% (VAX0), 1% (VAX1) and 5% 
(VAX5). For close-schools, two trigger points are used: when the cumulative infection 
rate reaches 1% (CS1) and 5% (CS5). Compliant individuals are selected randomly 
from the entire Delhi population, and the mean infection rates are calculated separately 
for the slum and non-slum subpopulations. Although not reported here, qualitatively 
similar results are found for other transmission rates, as well as for higher vaccine 
efficacy (70%). Base is the baseline case with no interventions. The smaller-font 
numbers under the infection rate show the actual number of infected individuals.  
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Presentation of Results. 
 
For each set of input parameters, 25 replicates were run using agent-based simulation 
and the results presented are the average values over the 25 replicates. Also, 95% 
confidence intervals (CIs) are given when appropriate. 
 
Comparisons Between Network 1 and Network 2. 
 
Table S1 shows some differences between network1 and network 2 due to their 
different ways of modeling slum population. Note that these two networks are the same 
ones as those used in Chen et al.[1]. Further comparisons between the two networks 
are found in Chen et al.[2]. 
 
Table S1. Comparison of two networks as well as data sources for slum and non-slum 
Delhi, India. 

 
Network 1 Network 2 

Slum Non-slum Slum Non-slum 

Population Size 0 13.8 million 1.8 million 12 million 

Average Household 
Size of Slum Region 

5.2 15.5 

Daily Activities 33,890,156 39,077,861 

Number of Edges 210,428,521 231,258,772 

Data Sources MapMyIndia.com 
MapMyIndia.com 

Indiamart.com 
MapMechanic.com 

 
Network 2 contains 298 slum zones, while network 1 models the whole population as 
non-slum. For network 1, the non-slum demographics and activities data is collected by 
survey through MapMyIndia.com. While for slum population, we collected additional 
data by Indiamart.com and MapMechanic.com for slum demographics and activities as 
well as slum polygons. More detailed demographic and activity differences can be found 
in the Chen et al.[1] 
 
Terminology and Abbreviations for Interventions. 
 
Table S2 contains abbreviations for different interventions and their meanings. Stay-at-
home (SHO) and social isolation (ISO) interventions are applied to a person 
immediately after they become infected, while close-schools (CS) and vaccinations 
(VAX) may be applied after a specified fraction of the total population has been infected. 
 
Table S2:  Summary of abbreviations for interventions and their meanings. 

Abbreviation Definition 

CS Close-schools: School-related interactions are eliminated. 

CSx Close-schools is implemented after the total fraction of the population 
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that has been infected reaches x. 

ISO Social isolation: a person who is socially isolated does not interact with 
any other person, even people in their home.  Isolation is triggered only 
after a person becomes infectious. 

SHO Stay at home: All out-of-the-home activities for this person are 
eliminated, and this person only interacts with others at home. Stay at 
home is triggered only after a person becomes infectious. 

VAX Vaccination: a person who is vaccinated has a reduced probability of 
contracting the virus.  

VAXx Vaccination of an individual occurs after the total fraction of the 
population that has been infected reaches x. 

 
Table S3 contains the variables used in simulations. The transmissibility corresponds to 
strong flu in Chen et al.[1]  For vaccination, efficacy is either 30% or 70%. That is, for 
30% efficacy, a person who gets vaccinated has reduced their susceptibility to infection 
by 30%.  
 
Table S3:  Summary of parameters and values used in simulations. 

Category Values 

Networks of Delhi Network 1 (does not model slums); Network 2 (models 
slums). 

Seeding 20 people selected randomly over the entire population at 
time 0 as index cases. 

Transmissibility 0.000027. 

Intervention 
approaches. 

Base case (no intervention); close-schools (CS); stay-home 
(SHO); isolation (ISO); vaccination (VAX). 

Intervention/compliance 
rates. 

10%, 30%, 50%, 70%, 90%. 

Efficacy of vaccination 
intervention. 

30%, 70%. 

Intervention trigger time Cumulative infection rate reaches 0%, 1% and 5%. 

Simulation replicates 25 

 
 
The Agent Epidemic States and Disease Model. 
 
An SEIR, Susceptible (S), Exposed (E), Infectious (I) and Removed or Recovered (R) 
model is considered within each individual.  An infectious person spreads the disease to 
each susceptible neighbor independently with a probability referred to as the 
transmission probability, given by 
 

p = λ (1 – (1 –τ) ∆t), 
 
where λ is a scaling factor to lower the probability (e.g., in the case of vaccination), τ is 
the transmissibility and ∆t is the duration of interaction in minutes. Durations of contact 
are labels on the network edges. A susceptible person undergoes independent trials 
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from all of its neighbors that are infectious. The transmission probability is a function of 
the number and duration of contacts.[3] This is selected to simulate an Influenza model 
resulting in a R0=1.26 (cumulative attack rate 42%, corresponding to a transmissibility of 
0.000027 per minute of contact time) for Network 1, and R0=1.39 (cumulative attack rate 
48%) for Network 2.[4] This transmissibility value is used uniformly throughout this study 
and corresponds to the probability at which an infectious node infects a susceptible 
node per minute of contact. 
 
At each time (day), if an infectious person infects a susceptible person, the susceptible 
person transitions to the exposed (or incubating) state. The exposed person has 
contracted Influenza but cannot yet spread it to others. The incubation period is 
assigned per person, according to the following distribution: 1 day (30%); 2 days (50%); 
3 days (20%). At the end of the exposed or incubation period, the person switches to an 
infected state. The duration of infectiousness is assigned per person, according to the 
distribution: 3 days (30%); 4 days (40%); 5 days (20%); 6 days (10%). After the 
infectious period, the person recovers and stays healthy for the simulation period. This 
sequence of state transitions is irreversible and is the only possible disease 
progression. 
 
Epidemic Curves for Other Interventions, for Varying Efficacy and Compliances. 
 

  
 
Figure S1: Epidemic curves for the base case and the vaccination case. The vaccines 
are given randomly to 50% of the entire population, and the vaccine efficacy is assumed 
to be 30%. The transmissibility is 0.000027. 
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Figure S2: Epidemic curves for the base case and vaccination case. The vaccines are 
given randomly to 10% of the entire population and the vaccine efficacy is 70%. The 
transmissibility is 0.000027. 
 
 
Tabulations of Basic Results: Comparisons between Networks 1 and 2 for 
Compliance of 30% and Efficacy of 30%. 
 
Table S4 summarizes differences in key epidemic parameters for Networks 1 and 2 for 
the base case with no interventions. The peak infection rate is the maximum fraction of 
individuals who are infected on any day, the time to peak is the day on which the peak 
infection rate occurs, and cumulative infection rate is the cumulative fraction of 
individuals who get infected in the epidemic.  Under the base case, the peak infection 
rate in Network 2 is 47.6% (95% CI: 47.4%-47.8%) greater compared to that in Network 
1 (47.6%=(6.87%-4.65%)/4.65%). The time to peak infection for Network 2 is decreased 
by 20.8% (95% CI: 19.2%-22.7%) compared to that in Network 1. The cumulative 
infection rate (or attack rate) is also underestimated under Network 1 by 16.1% (95% 
CI: 16.1%-16.2%) compared to Network 2. These results, presented in the main paper, 
are tabulated here in Table S4 for convenience and comparison. 
 
Table S4: Comparisons of key epidemic parameters for Networks 1 and 2 for the base 
case. 

Base Network 1 Network 2 Compare-absolute Compare-relative 

Time to Peak 162 128 34 
(95% CI: 31-37) 

20.84% 
(95% CI: 19.19%-22.71%) 

Peak Infection 
Rate 

4.65% 6.87% 2.215% 
(95% CI: 2.206%-2.224%) 

47.6% 
(95% CI: 47.4%-47.8%) 

Cumulative 
Infection Rate 

41.70% 48.43% 6.73% 
(95% CI: 6.71%-6.75%) 

16.1% 
(95% CI: 16.1%-16.2%) 
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Table S5 shows results when 30% of the population that is selected uniformly at 
random is vaccinated with a vaccine that is 30% effective. The contrast between the two 
populations is even greater when considering interventions. The peak infection rate of 
the entire population increases by 123.2% (95% CI: 122.7%-123.7%) in Network 2 
compared to Network 1 for the intervention, versus 47.6% difference between the 
networks in Tables S4. The time to peak decreases by 35.7% (95% CI: 32.9%-38.8%) 
in Network 2 compared to that in Network 1, for the intervention case, compared to only 
20.84% percentage change between the two Networks for the base case in Table S4. 
The cumulative infection rate (or attack rate) is also underestimated, which is 42.2% 
(95% CI: 41.5%-42.8%) greater on average in Network 2 compared to Network 1 for the 
intervention case.  Hence, the differences between key epidemic results for Networks 1 
and 2 that are generated for the intervention case are even more pronounced than they 
are for the base case. These values are all statistically significant.  
 
Table S5: Comparisons of key epidemic parameters for Networks 1 and 2 for a 
vaccination intervention before the epidemic starts (VAX0), where the vaccine efficacy 
is 30% and the compliance rate is 30%. 

Vaccination Network 1 Network 2 Compare-absolute Compare-relative 

Time to Peak 286 184 102 
(95% CI: 94-111) 

35.7% 
(95% CI: 32.9%-38.8%) 

Peak Infection 
Rate 

1.34% 2.99% 1.65% 
(95% CI: 1.64%-1.66%) 

123.19% 
(95% CI: 122.69%-123.65%) 

Cumulative 
Infection Rate 

23.3% 33.1% 9.82% 
(95% CI: 9.67%-9.96%) 

42.17% 
(95% CI: 41.51%-42.77%) 

 
Effect of intervention on Networks 1 and 2 individually. 
 
Tables S6 and S7 show that, generally, Network 1 is more responsive to intervention 
than Network 2.  In Network 1, the percentage changes in time-to-peak, peak infection 
rate, and cumulative infection rate, due to intervention, are 76.4%, -71.2%, and -44.1%, 
respectively.  For Network 2, these values are 43.3%, -56.5%, and -31.6%, respectively. 
The reason for lower impact in Network 2 is the greater connectivity of households in 
slums, which helps drive the contagion. 
 

Network 1, With and Without Interventions.  
 
In Network 1, vaccination delays the time to peak infection by 76.41%, from 162 to 286 
days on average, with 95% CI: 71.53%-81.28%.  The peak infection rate is reduced by 
3.3121 percentage points, from 1.34% to 4.65%, which is a relative percentage 
difference (RPD) of -71.20%, with 95% CI: -71.02% to -71.38%. These and cumulative 
infection rate data are given in Table S6. 
 
Table S6: Comparisons of a vaccination intervention (30% vaccination rate, 30% 
efficacy of a vaccination) with the base case in Network 1 Delhi. 
Network 1,Total Base Vaccination Compare-absolute Compare-relative 

Time to Peak 162 286 124 
(95% CI:  116-132) 

76.41% 
(95% CI: 71.53%-
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81.28%) 

Peak Infection Rate 4.65% 1.34% 3.31% 
(95% CI: 3.30%-
3.32%) 

71.20% 
(95% CI: 71.02%-
71.38) 

Cumulative Infection 
Rate 

41.7% 23.3% 18.40% 
(95% CI: 18.25%-
18.55%) 

44.13% 
(95% CI:  43.77%-
44.48%) 

 
Network 2, With and Without Interventions.  
 
The comparison between vaccination intervention and the base case in Network 2 is 
detailed in Table S7 below.  
 
In Network 2, for the total population, vaccination delays the time to peak infection by 
43.27% (95% CI: 40.14%-46.41%) relatively, from 128 to 184 days on average, while 
the peak infection rate is reduced by about 3.88% from 2.99% to 6.87% on average 
(56.47% relatively with 95% CI: 56.35%-56.56%). The total infection rate is reduced by 

15.31% from 33.12% to 48.43% (31.62% relatively with 95% CI: 31.57%-31.67%). 
 
In slum regions in Network 2, vaccination delays the time to peak infection by 43.09% 
(95% CI: 39.78%-46.4%) relatively, from 123 to 176 days on average, while the peak 
infection rate is reduced by about 5.70% from 5.42% to 11.12% on average (51.26% 
relatively with 95% CI: 50.88%-51.64%). The total infection rate in slums is reduced by 
16.35% from 57.53% to 73.88% (22.13% relatively with 95% CI: 22.07% to 22.19%). 
 
In non-slum regions in Network 2, the time to peak is delayed by 43.44% (95% CI: 
40.32%-46.56%) relatively, from 130 to 186 days on average, while the peak infection 
rate is reduced by about 3.68% from 2.69% to 6.36% on average (57.79% relatively 
with 95% CI: 57.64%-57.94%). The total infection rate in non-slums is reduced by 
15.16% from 44.60% to 29.45% (33.98% relatively with 95% CI: 33.93% -34.03%). 

 
Table S7: Comparisons between the base and vaccination cases for Network 2. The 
three parameters (time to peak, peak infection rate and cumulative infection rate) are 
broken out, and for each, values for the total population, and slum and non-slum 
subpopulations are given. The vaccination rate is 30% and efficacy is 30% for those 
receiving the vaccine. 

Network 2, 
Time to Peak 

Base Vaccination Compare-absolute Compare-Relative 

Total 128 184 55 (95% CI:  51-59) 
43.27% 

(95% CI: 40.14%-46.41%) 

Slum 123 176 53 (95% CI:  49-57) 
43.09% 

(95% CI: 39.78%-46.4%) 

Non-Slum 130 186 56 (95% CI: 52-60) 
43.44% 

(95% CI: 40.32% - 
46.56%) 
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Network 2, 
Peak Infection 

Rate 
Base Vaccination Compare-absolute Compare-Relative 

Total 6.87% 2.99% 
-3.88% 

(95% CI: -3.870% -3.884%) 
-56.46% 

(95% CI:  -56.35% -56.56%) 

Slum 11.12% 5.42% 
-5.70% 

(95% CI: -5.66% -5.74%) 
-51.26% 

(95% CI:  -50.88% -51.64%) 

Non-Slum 6.36% 2.69% 
-3.68% 

(95% CI: -3.67% -3.69%) 
-57.79% 

(95% CI:  -57.64% -57.94%) 

 
 

Network 2, 
Cumulative 

Infection Rate 
Base Vaccination Compare-absolute Compare-Relative 

Total 48.43% 33.12% 
-15.31% 

(95% CI: -15.29% -15.34%) 
-31.62% 

(95% CI:  -31.57% -31.67%) 

Slum 73.88% 57.53% 
-16.35% 

(95% CI: -16.30% -16.39%) 
-22.13% 

(95% CI:  -22.07% -22.19%) 

Non-Slum 44.60% 29.45% 
-15.16% 

95% CI: (-15.14% -15.18%) 
-33.98% 

(95% CI:  -33.93% -34.03%) 

 
Effect of interventions on slum and non-slum subpopulations of Network 2, 
compared to the base case. 
 
The data used in comparing key outbreak parameters in slum and non-slum regions are 
taken from Table S7, and the corresponding epidemic curves are in Figure 1. The 
percentage change in peak infection rate due to intervention in slum (-51.3%) and non-
slum (-57.8%) regions in Network 2, are comparable, although the magnitudes of the 
peak infections in slums are about twice those in the non-slum regions.  For the 
cumulative infection rates, the relative drop from the intervention is greater for the non-
slum (-34.0% vs. -22.1%) population than it is for the slum population, but the absolute 
drop is about the same (-16.3% vs. -15.1%). 
 

 
Table S8: Comparison of results between slum and non-slum in Network 2. The input 
data is the same as in Table S7.   

Network 2, 
Base 

Slum Nonslum Compare-absolute Compare-relative 

Time to Peak 123 130 7(95% CI: 4-9) 
5.26% 

(95% CI: 3.37%-7.16%) 

Peak Infection 
Rate 

1.12% 6.36% 
4.76% 

(95% CI: 4.72%-4.80%) 

42.79% 
(95% CI: 42.46%-

43.14%) 

Cumulative 73.88% 44.60% 29.25% 39.63% 
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infection rate (95% CI: 29.25% - 29.31%) (95% CI: 39.59%-
39.67%) 

 
Network 2, 
Vaccination 

Slum Nonslum Compare-absolute Compare-relative 

Time to Peak 176 186 10(95% CI: 5-15) 
5.23% 

(95% CI: 2.58%-8.46%) 

Peak Infection 
Rate 

5.42% 2.69% 
2.74% 

(95% CI: 2.71% - 2.76%) 
50.46% 

(95% CI: 50.06%-50.86%) 

Cumulative 
infection rate 

57.53% 29.45% 
28.08% 

(95% CI: 28.04%-28.12%) 
48.82% 

(95% CI: 48.74%-48.89%) 

 
Figure S3 contains the percentage changes between the base case and intervention 
case for Networks 1 and 2 for the three parameters in the legend, and further breaks 
down Network 2 into slum and non-slum subpopulations. This plot provides a summary 
of differences between the base and intervention cases. For all four conditions 
considered, the intervention reduces the severity of an epidemic. It delays the time 
when the infection peaks, and reduces the peak infection and the cumulative infection 
rates. Note that the intervention has a larger effect on the epidemics when applied to 
Network 1, as consistent with Figure 1.  
 

 
Figure S3: Effects of vaccination on time to peak infection, peak infection rate, and 
cumulative infection rate. The intervention is 30% vaccination rate and 30% vaccine 
efficacy. Each bar refers to the average value of the relative difference over 25 runs. 
Vaccination is more effective for Network 1 than Network 2, while, for Network 2, it is 
slightly more effective for the non-slum population than slum. Details of the data 
associated with this plot are provided in Tables S6 and S7. 
 
Figure S4 provides the same data in as in Figure S6, but now the data are provided as 
absolute differences, rather than as percentage changes. (There are three separate 
plots owing to the different ranges in absolute differences. Qualitatively, the time to peak 
infection (blue bars) does not change between the two networks and the two 
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subpopulations of Network 2 (Figure S3 versus Figure S4(a)). However, the red bars in 
Figure S3 are qualitatively different from those in Figure S4(b), when considering 
absolute changes. That is, the magnitude of the percentage change in peak infection 
rate between the base and intervention cases is greatest in Network 1 (Figure S3, red 
bars), while in Figure S4(b), it is least on an absolute change basis. Similarly, the slum 
population in Network 2 shows the least percentage change in Figure S3, but the 
greatest absolute change in Figure S4(b). Rankings of the subpopulations in Network 2 
is also reversed for cumulative infection rate: the percentage change is greatest in the 
non-slum region, while it is greatest for the slum regions in absolute terms. 

 

 
(a) 

   
                                             (b)                                               (c) 
Figure S4: Comparison of absolute difference in improvement; the relative differences 
are shown in Figure S6. Absolute differences vary across the three parameters, so each 
is given on a separate scale. Data are summarized in Tables S6 and S7.   
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Evaluation of Network 2 Home and School Contacts. 
 

 
Figure S5: Comparison of average contacts per person in slum and non-slum regions 
for home and school activity types in Network 2. 
 
Evaluation of Network 2 Edges Transmitting Infection. 
 
Figure S6 provides counts of edges used to transmit infection for a base case 
simulation in Network 2 of Figure 1 of the main text.  Edges are broken down by activity 
types of people who are interacting during transmission.  Data are also broken down by 
the classifications of individuals interacting (e.g., slum and nonslum, see legend). 
 
 

 
 

Figure S6.  Data for Network 2.  Number of edges transmitting infection (in millions) for 
each of the four types of interactions between slum and nonslum individuals (see 
legend) and for each activity type. The number of slum-to-nonslum edges is greater 
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than nonslum-to-slum ones because once infection gets into a slum household, it may 
spread within the household more (because there are more people and connections).  
Thus, a slum household carries more infection to its interactions with nonslum people.  
The “Other” activity category, like home activity, shows more edges carrying infection 
for slum-to-slum interactions than slum-to-nonslum, which is consistent with Figures S4 
and S6 of Chen et al.[2], where further network characteristics are given. 
 
Table S9 shows the effect of delay in applying interventions. The numbers show the 
percentage difference in cumulative infection rate in slums and non-slums of Network 2 
for the specified interventions and compliance rates at different trigger levels.  For 
example, the value 30.55% at 0.1% compliance means that for intervention close-
schools, where this intervention is implemented after 5% of the total population is 
infected, the fraction of people in slums that get infected is 30.55% greater than the 
fraction of non-slum residents who get infected. 
 
Table S9.  Differences of epidemic size between slum and non-slum regions for 
Network 2 for base case (no intervention); close-schools (CS) after 1% total outbreak 
fraction (CS1) and after 5% total outbreak fraction (CS5); stay at home (SHO); social 
isolation (ISO); vaccination (VAX) after 1% total outbreak fraction (VAX1) and after 5% 
total outbreak fraction (VAX5), under various compliance rates. The vaccination efficacy 
is 30%. 

Compliance Base CS5 CS1 SHO ISO VAX5 VAX1 

0.1 29.30% 30.55% 31.94% 31.06% 28.85% 29.37% 29.27% 

0.3 29.30% 32.52% 37.03% 34.18% 5.31% 28.85% 28.21% 

0.5 29.30% 33.67% 41.07% 20.16% 0.00% 26.72% 24.62% 

0.7 29.30% 34.23% 42.57% 0.01% 0.00% 21.94% 15.87% 

0.9 29.30% 35.07% 43.95% 0.00% 0.00% 18.31% 7.25% 
 

  

   

Table S10 examines the difference in effects of interventions on the cumulative 
infection rate in Network 2. These data use both the stay home (SHO) and the 
isolation (ISO) interventions as base cases. Each entry represents the difference 
between the cumulative infection rates for the specified pharmaceutical 
interventions and SHO or ISO. For example, 18.03% means that the cumulative 
infection rate for vaccinating after 5% of the population is infected, is 18.03% 
greater than that for the intervention of SHO; 31.92% means that the cumulative 
infection rate for vaccinating after 5% of the population is infected is 31.92% 
greater than that for the intervention of ISO. Thus, the larger the magnitude of a 
positive number, the greater the effectiveness of SHO or ISO compared to the 
specified pharmaceutical intervention. 

  

 
Table S10. Differences in epidemic size between stay at home (SHO) interventions, 
social isolation (ISO) interventions and pharmaceutical interventions (VAX0, VAX1, 
VAX5), under various compliance rates.  The compliance rate and efficacy for 
vaccination is 30% and 30%, respectively. 
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Compliance Vax5-SHO Vax1-SHO Vax0-SHO VAX5-ISO VAX1-ISO VAX0-ISO 

0.1 0.71% 0.29% 0.17% 4.92% 4.49% 4.38% 

0.3 4.15% 2.39% 1.89% 31.92% 30.17% 29.66% 

0.5 18.03% 13.51% 11.35% 25.96% 21.44% 19.28% 

0.7 16.82% 9.75% 0.13% 16.82% 9.76% 0.13% 

0.9 13.13% 4.01% 0.00% 13.13% 4.01% 0.00% 

 
 

    
 

(a) Total Delhi             (b) Slum   (c) Non-slum 
 
Figure S7. Heat map of mean cumulative infection rates in Delhi, and slum and non-
slum regions under different intervention strategies for Network 2. The vaccination 
efficacy is fixed at 70%. Five different compliance rates, i.e., 10%, 30%, 50%, 70% and 
90% and 4 types of intervention strategies, i.e. vaccination (VAX), close-schools (CS), 
stay-home (SHO) and isolation (ISO), are considered. For vaccines, three different 
trigger points are considered: when cumulative infection rate reaches 0% (VAX0), 1% 
(VAX1) and 5% (VAX5). For close-schools, two trigger points are used i.e. when 
cumulative infection rate reaches 1% (CS1) and 5% (CS5). Compliant individuals are 
selected randomly from the entire Delhi population and the mean cumulative infection 
rates are calculated separately for the total population, and slum and non-slum 
subpopulations. Base is the baseline case with no interventions. The smaller-font 
numbers under the infection rate show the actual number of infected individuals. Darker 
colors correspond to higher infection rates. 
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ABSTRACT 
 
Objectives This research studies the role of slums in the spread and control of 
infectious diseases in the National Capital Territory of India, Delhi, using a detailed 
social contact network of its residents. 
Methods We use an agent-based model to study the spread of influenza in Delhi 
through person-to-person contact. Two different networks are used; one in which slum 
and non-slum regions are treated the same and the other in which 298 slum zones are 
identified. In the second network, slum-specific demographics and activities are 
assigned to the individuals whose homes reside inside these zones. The main effects of 
integrating slums is that the network has more home-related contacts due to larger 
family sizes and more outside contacts due to more daily activities outside home. 
Various vaccination and social distancing interventions are applied to control the spread 
of influenza. 
Results Simulation based results show that when slum attributes are ignored, the 
effectiveness of vaccination can be overestimated by 30%-55%, in terms of reducing 
the peak number of infections and the size of the epidemic, and in delaying the time to 
peak infection. The slum population sustains greater infection rates under all 
intervention scenarios in the network that treats slums differently. Vaccination strategy 
performs better than social distancing strategies in slums. 
Conclusions Unique characteristics of slums play a significant role in the spread of 
infectious diseases. Modeling slums and estimating their impact on epidemics will help 
policy makers and regulators more accurately prioritize allocation of scarce medical 
resources and implement public health policies.  
Policy Implications Currently, over a billion people reside in slums across the world 
and this population is expected to double by 2030. This study uses influenza as an 
example to demonstrate the need to understand the role of slum populations in the 
spread and containment of infectious diseases.  
 
Strengths and limitations of this study 

� We show that the unique attributes of slums must be accounted for in 

understanding the spread and control of infectious diseases.  

� Intervention strategies have been applied one at a time but a combination of 

them could be used simultaneously to more aggressively control the epidemic. 

� This study does not consider age-specific susceptibility or immunity from past 

infections; all individual persons are assumed to be equally susceptible.  

� The disease transmission risk does not change across activity types, e.g. an hour 

with an infected person at home or at work carries the same risk. 

� Co-location based contact time is used as a proxy for physical proximity and 

short-distance environmentally-mediated transmission. 
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INTRODUCTION 
 
Infectious disease is one of the leading causes of human morbidity and mortality 
worldwide. Reports from Centers for Disease Control (CDC) show that over 200,000 
people in the United States (US) are hospitalized with influenza-like illness (ILI) 
symptoms each year, and the mortality on average is over 36,000 annually.[1-2] In 
Delhi, India, a joint study by CDC, All India Institute of Medical Sciences, and the 
National Institute of Virology has shown that ILI cases are present throughout the year, 
although they peak in rainy and winter seasons.[3] It carries a significant economic 
burden through reduced productivity and high costs of health care.[4-7] A CDC study 
finds that for outpatient and non-medically attended individuals, acute respiratory 
infections cost 1%-5% of monthly per capita income in India. In contrast, cost of 
inpatient care can be as high as 6%-34% of monthly per capita income.[8] For 
developed countries, the annual cost of influenza is estimated to be between $1-$6 
million per 100,000 people, according to the World Health Organization.[9]  
 
In 2007, India established an Integrated Disease Surveillance Program (IDSP), which 
included a network of 12 regional laboratories, to minimize the threat of avian influenza 
and other highly infectious zoonotic diseases.[10] India faces some unique challenges 
in surveillance, prevention and control because of the seasonality of influenza at sub-
regional levels. This seasonal variation depends upon latitude, monsoon season, 
humidity and climatic factors of the regions. Acute respiratory infections are estimated to 
be 43 million per year, of which 4-12% are due to influenza.[11-12] Chadha et al.[13] 
estimated hospitalizations due to respiratory illnesses to be 160 per 10,000 persons in 
year 2011, and children under age 5 had the highest incidence of them.  
 
Given that influenza is environmentally-mediated and spreads through close proximity, 
population density is an important factor in its spread. In India, the average population 
density is about 1000 people per square mile; in the slums, it can be 10 to 100 times 
higher.[14] Larger household size and crowding make it easier to transmit 
infections).[15-18] For example, Baker et al.[16] find that meningococcal disease risk 
among children doubles with the addition of 2 adolescents or adults (10 years or older) 
to a 6-room house. Other than overcrowding, slums are characterized by their lack of 
medical services,[19-20] which makes slum residents highly vulnerable to infectious 
diseases. Diseases like cholera, malaria, dengue and HIV are common in slums across 
the world.[21-23] 
 
This research uses Delhi, the National Capital Territory of India, where 13% of its 13.8 
million people live in slum areas, as an example city to study the spread and control of 
influenza. Delhi is an interesting case study. It ranks fourth in the world in urban 
population, and, among the top 25 largest urban areas, it ranks tenth in population 
density. Moreover, the results are likely to be generalizable to other slum areas within 
and outside of India.  
 
This paper is an extension of the work done in Chen et al.[4], which shows that slum 
populations have a significant effect on influenza transmission in urban areas. Ignoring 
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the influence of slum characteristics underestimates the speed of an outbreak and its 
extent. However, Chen et al.[4] do not consider any interventions on the epidemic 
spread. The focus of this research is to study the effect of different intervention 
strategies on several subpopulations (slum, age and gender) in two different Delhi 
networks, i.e., original (referred to as Network 1) and refined (Network 2). 
 
The original network used in Xia et al.[24] studied the spread and control of influenza in 
Delhi using Network 1, which did not take into account the special attributes of the slum 
population, such as larger family sizes and different types of daily activity schedules. 
Chen et al.[4] used Network 2, the refined social network of Delhi, which accounted for 
slum demographics and slum activities, but did not study intervention strategies. In 
Network 2, there are 298 slum regions in Delhi, containing about 1.8 million people. 
 
The goals of this work focus on understanding the effects of pharmaceutical and non-
pharmaceutical interventions on epidemic outcomes. Pharmaceutical interventions (PI) 
include vaccinations, and non-pharmaceutical interventions (NPI) are social distancing 
measures such as school closure, quarantine and staying home. These effects are 
studied comparatively: (i) in Network 1 versus Network 2, overall and for subpopulations 
in each; and (ii) in the slum and non-slum regions of Network 2. Additionally, in a 
scenario where interventions can be applied to a limited number of individuals, we 
explore how resources should be split between slum and non-slum subpopulations in 
order to achieve the best outcomes with respect to total infection rate (i.e., the 
cumulative fraction of a population infected).  
 
METHODS 
 
We use an agent-based modeling (ABM) approach to simulate the spread and 
containment of influenza in social contact networks of Delhi, India. We compare two 
networks:  one considers slum-specific attributes, and the other does not. In this 
section, we describe the networks, the disease model for each agent, the interventions, 
and the heterogeneities of the problem that make ABM uniquely suited to study 
epidemics.  Throughout this manuscript, each agent in the ABM is an individual human. 
 
Social Contact Networks:  This study uses two synthetic social networks of Delhi, 
created in Xia et al.[24] and in Chen et al.[4]. Details on their construction can be found 
in Xia et al.[24], Chen et al.[4], Barrett et al[25], Bisset et al.[26] and references therein. 
The synthetic social network by Xia et al.[24] is called Network 1, and the more refined 
network developed in Chen et al.[4], Network 2.  
 
Network 1 was developed in part from Land Scan and Census data for Delhi, a daily set 
of activities of individuals, and the locations of those activities including geo-locations of 
residential areas, shopping centers, and schools, collected through surveys by 
MapMyIndia.com. By assigning activity locations to individuals’ activities, people are 
located at particular times at particular geographic coordinates (including office 
buildings, schools, etc.) and within particular rooms of buildings. Next, contacts between 
individuals are estimated when each person is deemed to have made contact with a 
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subset of other people simultaneously present at the same location. This gives rise to a 
synthetic social contact network where network edges represent these contacts.  
 
Network 2 models the slum regions in Delhi and assigns slum-specific attributes to the 
individuals whose homes reside in the slum polygons. Slum residents’ attributes and 
their daily sets of activities are collected through a ground survey in Delhi slums, by a 
vendor, Indiamart (www.Indiamart.com/trips). The slum polygons are obtained from 
MapMechanic.com. Individuals living in the slum regions are a part of the slum 
population. All other individuals are part of the non-slum population. Network 2 is a geo-
located, and contextualized social contact network of Delhi with slums integrated in it.  
 
Following are the main differences between the original network (Network 1) and the 
refined network (Network 2). The original social contact network treats the slum regions 
like any other region in Delhi in terms of assignment of demographics and individual 
activities, i.e. no special consideration is given to slum residents. The refined Network 2 
identifies 298 slum polygons (zones) in Delhi and assigns slum-specific demographics 
and activities to the individuals whose homes reside inside these polygons. Thus, the 
number of individuals is the same in both populations. The slum population constitutes 
about 13% (1.8 million) of the entire Delhi population of 13.8 million people. The main 
effects of integrating slums is that Network 2 has more home-related contacts due to 
larger family sizes and more outside contacts due to more daily activities outside home. 
Also, those individuals who reside outside of slum zones have the same activities in 
both networks. Overall, there are over 231 million daily interactions between pairs of 
individuals. Table S1 compares those two networks as well as data sources for slum 
and non-slum Delhi, India. (Table and figure numbers that are prefixed with ‘S’ are in 
the supplementary information (SI)). For example, the average degree increases from 
30.4 to 33.4 from Network 1 to Network 2, and the maximum degree increases from 170 
to 180.  We refer to Chen et al.[4] for more detailed information about the two networks. 
Several plots of properties and structural characteristics of Networks 1 and 2 are given 
in Chen et al.[27]. 
 
Disease Model: An SEIR, Susceptible (S), Exposed (E), Infectious (I) and Removed or 
Recovered (R) model is considered within each individual. Each node in the network 
represents an individual, and each edge represents a contact on which the disease can 
spread. A contact represents possible transmission between two people that are co-
located for some duration (based on their activity schedules). This is an approximation 
to model direct contact and short-distance environmentally-mediated transmission that 
might include direct physical contact, fomite mediated, and airborne transmission.[28]   
 
We start each epidemic simulation with 20 index cases, randomly chosen. (We find that 
results are not sensitive to the number of initial infections.) The detailed description of 
the SEIR model as well as the choices of transmissibility value, R0, the explicit 
incubation and exposed periods can be found in the supplementary information. This 
disease model has been used in other works such as Liao et al.[29], Marathe et al.[30]. 
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The transmissibility value for disease transmission is that for the strong influenza model 
in Chen et al.[4]. That work used mild, strong, and catastrophic influenza models, so we 
chose the intermediate transmissibility. This corresponds to base attack rates (i.e., 
cumulative infection fractions) of 0.42 and 0.48, respectively, in Networks 1 and 2. 
These rates are generally higher than those in some other studies that either compute 
experimental attack rates from cases or compute them in modeling studies such as this 
one. Attack rates used by past researchers for different strains of influenza include Asia 
[0.22 to 0.50],[31] Southeast Asia [0.11 to 0.31 in children [32]; 0.05 to 0.65 [33]], and 
India [0.111 to 0.235 [34]; 0.074 to 0.424 [35]; 0.045 to 0.294 [36]; 0.008 to 0.100 [37]; 
0.209 for various strains [13]]. The results of Chen et al.[4] indicate that the results here, 
for this particular transmissibility, will be qualitatively the same for other 
transmissibilities, but will scale down or up as transmissibility changes in the same 
direction. 
 
Interventions: This work considers three vaccination scenarios, i.e., vaccinate when 
cumulative infection rate is 0% (VAX0, i.e. vaccinate on day 1), 1% (VAX1), and 5% 
(VAX5). Three classes of social distancing strategies are considered: (i) stay-home 
(SHO) if infected, i.e. eliminate all non-home related contacts but continue to maintain 
contacts within the household; (ii) close-schools when cumulative infection rate has 
reached 1% (CS1) and when it has reached 5% (CS5), i.e. eliminate school related 
contacts; and (iii) (ISO), in which all contacts, including home contacts, of a person are 
eliminated when a person becomes infectious. For vaccination, five different compliance 
rates (10%, 30%, 50%, 70%, 90%) and two different vaccine efficacies (30% and 70%) 
are considered. 
 
VAX0, SHO, ISO are all fairly aggressive interventions because they are implemented 
either before a person gets infected or immediately upon becoming infectious.  These 
are actions taken at the individual or family level. For example, vaccination before the 
influenza season or isolating a sick child at home are family decisions. Even CS1 is an 
aggressive intervention in the sense that this action is taken by government officials 
based on aggregate school sickness levels—closing schools before any outbreaks is 
typically not done.  From these starting points, vaccinations when 1% or 5% of the 
population is infected (VAX1, VAX5), and closing schools when 5% of the population is 
infected are less aggressive treatments (CS5). The five levels of compliance are also 
variations on aggressiveness in treatments. 
 
These conditions and parameters are consistent with results from other studies and 
guidelines put out by international organizations.  A meta-study of immunization and 
slums [38] identifies several vaccination-related studies of slums in India.  Unfortunately, 
these studies are for other diseases such as Hepatitis B, measles, mumps, malaria, and 
typhoid fever.  Nonetheless, slum vaccination rates for children over these ailments 
range from 25% to 69% for full immunity and from 15% to 55% for partial immunity. 
Vaccination effectiveness for influenza-like illness (ILI) in India was determined to be 
about 33% to 36%.[39]  In 2012-2013, of 1000 pregnant women in Srinagar India, none 
were vaccinated against influenza.[40]  With regard to school closures, the World Health 
Organization (WHO) states that school closures may be undertaken proactively (before 
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an outbreak) or reactively (after influenza starts to spread).[41]  WHO recommends that 
school closure occur before 1% of the population becomes infected. It also 
recommends that people (students and staff) stay home when they feel ill. In another 
meta-study[42], it was found that school closure, effected when 0.1% of the population 
was infected, was twice as effective in reducing the total attack rate as school closure 
occurring after 1% of the population was infected.  Moreover, the percentage of people 
infected before school closure was triggered varied between 0.02% to 10% across 
several studies. 
 
When a susceptible node is vaccinated, its probability of getting infected by an 
infectious node is scaled down by the efficacy. If it becomes infectious, its probability of 
infecting susceptible nodes is also scaled down by the efficacy. In other words, both 
incoming and outgoing infection probabilities of vaccinated individuals are reduced by 
the vaccine efficacy.  Interventions are applied to slum residents, non-slum residents, 
and the entire region of Delhi. 
 
For each experiment, 25 replicates are simulated for 400 days, and their mean results 
are reported. The averages are time-point wise averages, e.g. the mean infection rate at 
day 100 is calculated by taking the average of the 25 infection rates that occur on day 
100 of each replicate. Table S2 summarizes all the interventions considered, and Table 
S3 contains all variables in simulations, including intervention parameters.  
 
Heterogeneities captured: There are several heterogeneous aspects to this problem 
that motivate the use of an ABM approach: (i) the 298 slum zones have populations that 
vary by more than four orders of magnitude in size; (ii) the geographic extent of slum 
zones differ; (iii) the slum zones are located at irregular spatial intervals throughout 
Delhi; (iv) the activity patterns of people living in slums are different from those in the 
non-slum region; and (v) each individual interacts with specific others based on co-
location. 
 
The implications of these heterogeneities include the following. First, the particular 
synthetic households that live within slums are predicated on the number of slum zones, 
their locations, and their spatial geometries. These homes have larger family size and 
hence more home contacts. Second, slum individuals have different activity patterns 
which change the co-located contacts of each slum person: that is, with whom they 
interact and for how long. For example, see the supplemental information of Chen et 
al.[27]. The average total contact durations by activity type and by slum/non-slum 
residents are provided, which show that non-slum people have greater contact 
durations for work, school, and college activities, but less for home and other types.  
Overall, a slum person has about 50% greater total contact duration per day compared 
to a non-slum person. The same supplemental shows that in the age range 20 to 60 
years (by year), females that live in slums have more contacts per day than their male 
counterparts. However, females whose homes are outside of slum regions have 
average number of daily contacts that are below their male counterparts. 
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RESULTS AND ANALYSIS  
Our results are grouped as follows. (1) Comparison of Network 1 and Network 2 for 
base case and intervention cases. (2) Results for both networks based on demographic 
classes, such as slum/non-slum, gender, and age groups, for a wider range of 
intervention strategies. (3) Comparison of Network 1 with the non-slum population of 
Network 2. (4) Effects of pharmaceutical and non-pharmaceutical interventions for a 
wide range of parameter values. (5) Effects of different resource allocation strategies.  
 
All differences are tested with the two-sample t-test and they are all statistically 
significant with p-values smaller than 2.2e-16. The 95% confidence intervals are given 
for each comparison.  Here is a brief summary of selected results with examples of 
mechanisms, to provide a high-level overview. Details of results follow this summary 
and these details matter because there are many factors (inputs) in a simulation whose 
interactions change results. 
 
(1) Ignoring the unique attributes of slums in a population overestimates the benefits of 
the interventions. For example, in the case of vaccination intervention (efficacy 30% and 
compliance 30%), the values for the epidemic size (i.e., cumulative percentage of 
infected), peak infection rate (i.e., maximum percentage of a population infected on any 
day), and time to peak are 33.1%, 3.0%, and 184 days, respectively, in Network 2, 
whereas they are 23.3%, 1.34%, and 286 days in Network 1. In relative terms, the 
epidemic size and peak infection rate are underestimated by 42.2% and 123.2% 
respectively, while the time to peak is overestimated by 35.7% in Network 1 (see 
Figures 1, 2 and Table S4). The larger family sizes for slum families in Network 2 and 
the increased number of edges result in larger outbreaks and faster time to peak 
infections. 
 
(2) Interventions are more effective in Network 1 than Network 2 for all types of 
interventions: vaccination, closing schools, staying home, and isolation. These trends 
also hold over wide ranges of efficacy and compliance (see Figures 3, 4, S1, S2 and 
S3). Hence, not accounting for slums gives overly optimistic results for the effectiveness 
of the interventions. The reduced average family size in Network 1 means fewer within-
home edges, which slows infection and reduces spreading. Closing schools and staying 
home interventions do not affect home edges. However, the magnitude of this effect 
varies with intervention conditions (e.g., compliance rate, time at which intervention is 
applied). 
 
(3) Cumulative infection rates by subpopulation in Network 2 show that slums sustain 
greater infection rates than non-slums under all intervention scenarios, sometimes by as 
much as 44.0%. See Figure 4 and Table S5 for more details. This is due to the greater 
household sizes in slums.  
 
(4) For Network 2, under a wide range of intervention compliance rates (10% to 90%), 
the isolation strategy is up to 32% more effective in containing an outbreak than 
vaccination (for 30% efficacy). Staying home is up to 18% more effective than 
vaccination at 50% compliance. See Figure 3 and Table S6 for more details.  Isolation, 
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although hard to implement from practical considerations, is most effective because 
edges to susceptible individuals are removed (isolation also provides a good 
comparative case). Differences between staying home and vaccination depend on 
compliance rates. 
 
(5) For Network 2, delay in triggering interventions has 7.3% to 44.0% more adverse 
effect in slums than in non-slum regions across compliance rates from 10% to 90%. See 
Figure 4 and Table S7 for more details. Early interventions mean actions are taken 
when outbreaks are smaller and are therefore more readily contained.  
 
(6) Comparison of Network 1 (Figure 3a) with the non-slum population (Figure 4b) of 
Network 2 shows that just the presence of slum specific activities and interactions with 
non-slum population makes social-distancing based interventions less effective in the 
non-slum regions of Network 2. 
 
(7) A full-factorial design that splits resources between slum and non-slum regions 
indicates that the most effective intervention is to give vaccines to slums and apply 
social distancing to non-slums. Applying vaccine and social distancing to slum regions 
is the next most effective intervention. See Figure 5. By applying social distancing to 
non-slums, these individuals are kept isolated from slum individuals that are infected.  
The greatest benefits accrue to the slum populations. 
 
 
Comparison between Networks 1 and 2: Base case versus interventions 

 
We start with a comparative analysis of the influenza epidemic, with and without 
interventions, on Network 1 and Network 2 to measure the impact of integrating slums 
in the population on epidemic measures. Figure 1 shows the average simulation time 
histories for the base case, and when vaccination is applied randomly to 30% of the 
population in each network with vaccine efficacy set at 30%. Mean infection rate is the 
daily fraction of infected individuals. It is the time-point wise average over 25 
simulations. For example, the mean infection rate at day 100 is calculated by taking the 
average of all 25 infection rates. Simulations for other vaccine efficacies and 
compliance rates give qualitatively similar results. Two sets of those results are shown 
in the supplemental information, see Figures S1 and S2. Note that Network 1 does not 
distinguish between slum and non-slum individuals, so the epidemic curve is not split by 
subpopulation. 
 
Results in Network 2 differ significantly from results in Network 1 for both the base case 
and intervention case. In Network 2, the epidemic starts earlier, peaks earlier, has a 
larger epidemic size and has higher peaks compared to the corresponding epidemic 
quantities in Network 1. Thus, if policy planners ignore slums and use Network 1 to 
plan, there will be a false sense of security and lack of urgency to implement 
interventions. For both the base case and the intervention case, ignoring unique 
characteristics of the slums will result in an underestimation of the infections and the 
speed of spread. 
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Figure 1 goes here  

 
For the intervention cases, the time to peak infection decreases by 35.7%, i.e. from 286 
days for Network 1 to 184 days for Network 2, meaning an influenza epidemic would 
peak roughly 100 days earlier than one would expect based on the results from Network 
1. For the base case, time to peak infection drops by 20.8%, i.e. 34 days reduction for 
Network 2 as compared to Network 1. 
 
Percentage changes and differences must be viewed cautiously, and to illustrate this 
point, we present data for the key parameters in Tables S4 and S8. The difference in 
the peak infection rate (i.e., the maximum fraction of daily infected individuals during the 
simulation) between Networks 1 and 2 for the base case is 2.2%, or 47.6% in 
percentage change (see Table S8). For the intervention case shown in Table S4, the 
difference between the two networks is less (1.7%), but the percentage change is more 
(123.2%) because the magnitudes of the peak infection rates are reduced when 
effective interventions are used. We make note of this here and mainly use the 
percentage change values in discussing results. For more detailed comparison between 
vaccination intervention and the base case in Network 1 and Network 2, we refer to 
Tables S7 and S9 and Figures S4 and S5. 
 
 
Comparison between Networks 1 and 2 based on individual demographic 
information 
 
We divide the Delhi population into strata by age, gender, and geographic home 
location (i.e., slum and non-slum), and analyze mean cumulative infection rates by 
subpopulation for the two networks. In simulations, individuals are chosen at random in 
the entire network for vaccination. Various vaccination scenarios are investigated. 
 
Figure 2 displays the cumulative infection rate results. On the x-axis, ‘Total’ refers to the 
entire population of Delhi. There are three breakdowns of the entire population.  ‘Slum’ 
and ‘Non-slum’ refer to slum and non-slum regions, respectively. ‘Male’ and ‘Female’ 
denote the total number of males and females in Delhi, respectively. Four age groups 
are considered: ‘Preschool’ (0-4), ‘School’ (5-18), ‘Adult’ (19-64), and ‘Senior’ (65+). The 
black lines correspond to the mean cumulative infection rates for the base case. Other 
curves indicate vaccination strategies under different levels of vaccination rate (v) and 
vaccine efficacy (α). Two vaccination rates (30%, 50%) and two vaccine efficacy rates 
(30%, 70%) are shown in the figure. 
 
For Network 1, vaccination rate of 50% or higher stops the epidemic for all categories of 
individuals, regardless of vaccine efficacy. An efficacy of 70% also contains the 
epidemic, given a vaccination rate of at least 30%. In comparison, for Network 2, either 
a vaccination rate of 70% is required (not shown in plot for clarity) or a vaccination rate 
of 50% combined with a vaccine efficacy of 70% is required to stop the epidemic for all 
categories of individuals.  
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In Network 1, slum and non-slums are treated the same so the infection rates are 
identical in Figure 2. However, all scenarios in Network 2 show a higher burden of 
disease on the slum population. This is due to the fact that slum households have larger 
family size and more contacts on average than households in non-slum areas, see 
Chen et al.[27] As shown later, we find similar patterns of infection in slum and non-
slum subpopulations for other interventions such as ‘close-schools’ and ‘stay-home’.  
 
The results in both Figure 1 and Figure 2 indicate that ignoring the effect of slums 
results in overestimation of the benefits of interventions in terms of reduction in the 
mean cumulative infection rate and peak infection rate, as well as the time to peak. This 
optimism holds for slum, non-slum and total population under various levels of 
vaccination rates and efficacy rates in Network 2. See Table S10 for more detailed 
comparison of results between slum and non-slum in Network 2. 
 

Figure 2 goes here 

 
Comparison between Networks 1 and 2 across a wide range of intervention 
strategies 
 
Next, we consider a variety of intervention strategies for comparative analysis. We 
consider vaccination, school closure, stay home, and isolation strategies. For vaccines, 
three different trigger points are considered: when cumulative infection rate reaches 0% 
(VAX0), 1% (VAX1) and 5% (VAX5). For close-schools, two trigger points are used: 
when the cumulative infection rate reaches 1% (CS1), and 5% (CS5). Under the stay at 
home (SHO) strategy, all non-home activities and interactions are eliminated but all 
contacts within the household are maintained. Under isolation (ISO) an individual has 
no contact with other individuals (even home interactions are eliminated). The stay-at-
home and isolation interventions are implemented for compliant infectious individuals, 
after they become infectious, for the entire infectious duration. 
 
Figure 3 displays average cumulative infection rates in Network 1 and Network 2 for a 
wide range of intervention strategies.  For each strategy, five different compliance rates 
are considered, i.e., 10%, 30%, 50%, 70% and 90%. The cumulative infection rates 
(i.e., fractions) are displayed as larger numbers in boxes, while smaller-font numbers 
are the actual number of infected individuals. Darker colors correspond to higher 
infection rates. Note that compliance rate is simply the vaccination rate for strategies 
VAX0, VAX1 and VAX5. Compliant individuals are selected at random from the entire 
population. The ‘Base’ values do not vary with compliance because the base case has 
no intervention. Note that all heat maps in this paper use the same color scheme so that 
colors can be compared across figures. 
 
Since Network 1 does not distinguish between slum and non-slum populations, we only 
compare the two networks for the whole of Delhi. The general pattern is similar for both 
networks. However, all interventions have a larger effect on Network 1 under the same 
compliance rate (that is, corresponding numbers are uniformly lower for Network 1 than 
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for Network 2). The infection rates drop to zero at a smaller compliance rate for VAX0, 
stay-home, and isolation strategies in Network 1 as compared to those for Network 2. 
 

Figure 3 goes here 

 

At a high level, among all intervention strategies, early vaccination (VAX0 and VAX1), 
social isolation (ISO), and stay home (SHO) are more effective than the other 
strategies, and this is more readily observed at higher compliance rates.  For these 
more effective strategies, the interventions per person are implemented right after (or 
very shortly after) the person is infected.  For example, SHO is implemented 
immediately after a person becomes infectious. Thus, a person that becomes infectious 
can infect their family members, but if these other members become infectious, then 
they, too, will be confined to home.  Thus, home-bound people can infect their family 
members, but no one beyond their family (for 100% compliance). As compliance rate 
increases, this effect approaches, roughly, a “family-based” isolation intervention 
(similar to ISO), consistent with the results in Figure 3 and in subsequent results. 
 
 

Effect of vaccination versus social distancing on slum and non-slum 
subpopulations 
 
We now compare the impact of vaccination and social distancing on slum and non-slum 
subpopulations from Network 2. Social distancing interventions are close-schools, stay-
home, and isolation. 
 
The mean cumulative infection rates (and actual numbers of infections underneath) for 
each compliance level are shown in the heat maps in Figure 4 for slum and non-slum 
populations in Network 2. The axis labels are identical to those in Figure 3, as is the 
color scheme of the cells. The base case values are constant since there is no 
intervention and hence no compliance. Darker colors correspond to higher infection 
rates. 
 
Compared to the base case, all interventions reduce infection rates to some extent. As 
the compliance rate increases, infection rates drop for all interventions. Infection rates 
drop to zero in slum and non-slum regions at a compliance level of 70% or higher, 
under SHO, ISO, and VAX0 strategies. Early interventions or lower trigger levels reduce 
the infection rates significantly, and this effect increases with compliance rate. 
 
The following observations can be made from Figure 4. Social distancing, i.e. SHO, at 
low and intermediate compliance and CS at all compliance levels, are less effective in 
slum regions as compared to non-slum regions. This is because CS only eliminates 
school interactions for those attending school, and there are fewer school edges in 
slums compared to non-slum areas, as shown in Figure S6. The effectiveness of CS in 
slums is mitigated by the greater average number and duration of interactions at home 
in slums as compared to non-slums (see Figure S6 and Chen et al.[27]). Thus, if a 
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person is sick, there is a greater chance of transmitting contagion to family members, 
who then may have activities outside of school, thus circumventing the CS intervention. 
At high compliance, SHO is effective because all interactions outside home (including 
school) are eliminated.[27] 
 
These observations are also supported by Figure S7, which contains numbers of edges 
used to transmit contagion for a base-case run of Figure 1. There are several effects 
that bear on the above observations. First, in the cases of activities “work”, “other”, and 
“school”, the number of edges transmitting contagion from slums to non-slums is greater 
than the reverse: from non-slum to slum. Second, in two of these three activity 
categories, there is more slum to non-slum transmissions than slum to slum 
transmissions. Edges of transmission for slum dwellers is dominated by home 
interactions. The infected homes in slums serve as launching points to drive disease to 
non-slums through slum to non-slum interactions. (There are no ``mixed’’ edges at 
homes, and shopping and college activities have low levels of slum activity because of 
socio-economic factors.) We will see the effects of these mechanisms in Figure 5, but 
we now return to Figure 4. 
 
Isolation works well at 30% or higher compliance rates, but it is a much harder strategy 
to implement, especially in slums. However, it is considered here for comparative 
analysis. Vaccination also produces marked decreases in cumulative outbreak sizes as 
compliance increases. However, close-school is generally less effective because this 
intervention removes only a fraction of interactions for a fraction of the population, i.e. 
school aged children. Simulations were also run for 70% vaccine efficacy. Since results 
are qualitatively similar for those parameters, these plots are provided in Figure S3. 
 

Figure 4 goes here 

 
Comparison between Network 1 and non-slum areas of Network 2 
 
Note that Network 1 treats all parts of the region as non-slum, i.e. all individuals follow 
non-slum activities and demographics. In order to capture the additional disease risk to 
the non-slum population that arises from the interactions with the slum population, we 
compare Network 1 in Figure 3a with the non-slum population of Network 2 in Figure 4b. 
In base case, the additional disease risk to the non-slum population goes up from 42% 
to 45%. However, the beneficial effects of social distancing strategies drop by a large 
amount, e.g. close school strategies are 5-20% less effective in the non-slum areas of 
Network 2. This effect changes non-linearly with the compliance rate. As compliance 
rate goes up, the difference between performance of Network 1 and non-slum parts of 
Network 2 goes up in CS1 and CS5. This implies that in Network 2, non-slum population 
requires much higher levels of compliance to achieve the same results as in Network 1. 
This difference is less stark for vaccination based interventions, i.e. VAX0, VAX1 and 
VAX5. This is expected since the effect of vaccination is less dependent on interactions; 
it is only through herd immunity that interactions come into play.  
 
Constrained resource allocation among slum and non-slum areas  
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We consider a specific scenario under Network 2. If only a limited number of vaccines 
are available, and only a certain fraction of individuals can be kept home during an 
epidemic, how should these interventions be applied to the slum and non-slum regions 
so that the epidemic can be controlled effectively? Given that slum residents’ attributes 
differ from those of non-slum residents, is there a strategy that works better in slums 
than in non-slum areas? The total population in Delhi is about 13.8 million, which 
includes about 1.8 million slum residents. We assume that only 10% of the total 
population can be covered by interventions, half through vaccination and the other half 
through stay home. Enough vaccines are available to cover 5% of the total population 
(i.e. 692,183 vaccinated, corresponding to about 38.25% of slum or 5.75% of non-slum 
population), and 5% of the individuals can stay home (692,183 individuals; this is 
applied to only the infected individuals). Note that an individual may receive a vaccine 
and also stay at home if this individual, in spite of being vaccinated, gets infected. 
 
We consider 4 different ways of applying interventions to 10% of the total population: (i) 
apply both interventions to slums, i.e. give all vaccines to slums and apply SHO only in 
the slums (VsSs); (ii) apply all interventions to non-slum areas (VnSn); (iii) give vaccines 
to slums and SHO to non-slums (VsSn) and (iv) give vaccines to non-slums and apply 
SHO to slums (VnSs). 
 
For both types of intervention, the same number of individuals is chosen randomly from 
slum or non-slum areas. 10% of the total Delhi population amounts to 76.5% of slum 
population, 11.5% of the non-slum population, or a combination of 38.25% of the slum 
and 5.75% of the non-slum population (i.e. half from slums and half from non-slums). 
Figure 5 shows the mean cumulative infection rates, as well as the number of infected 
from the entire population of Delhi, the slums, and non-slum areas under each of the 
four scenarios. The first 3 columns refer to Network 2 and the last column shows results 
for Network 1. Since Network 1 does not distinguish between slum and non-slum areas, 
the infection rates in each subpopulation remain the same as for the total population. 
 
Comparison of the last two columns in Figure 5 indicates that the non-slum population 
in Network 2 faces 3-5% additional disease risk compared to Network 1 in all cases. 
This is primarily driven by the increased interactions within slum populations and 
between slum and non-slum populations in Network 2.  
 
In Figure 5, all four intervention strategies produce essentially the same total attack 
rates (around 43% to 44%), a drop of 4% to 5% over the base case.  The dominant 
effect on Network 2, is the benefits that primarily accrue to the slum population for the 
VsSs and VsSn strategies because they drive down the fraction of infected slum 
residents from 0.74 to 0.55 or 0.58. Also, as described in the context of Figures 4 and 
S6 above, social distancing of the non-slum residents helps to isolate them from the 
infected slum residents. Results such as these may be helpful to policy makers in 
breaking the poverty trap in economically poor regions.[43] 
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Also, the strategy of vaccinating non-slums and social distancing slums (VnSs) is not as 
effective as the interventions in rows 1 and 2 of Figure 5. This is a counterintuitive 
result, since the density of population is much higher in the slums, which may lead to 
the belief that social distancing in slums will break up the dense clusters. However, a 
careful examination shows that keeping slum residents home is not an effective social 
distancing strategy because their family size is, on average, almost 3 times the family 
size of non-slum households.[27] The high level of mixing at home makes social 
distancing ineffective in slums unless the infected individual is completely isolated. 
However, complete isolation is not viable in slum areas where the entire household may 
live in a single room.  
 
 
 

Figure 5 goes here 

 
DISCUSSION  
 
With slum populations expected to grow to 2 billion by 2030,[44] it is becoming 
increasingly urgent to understand how to control the spread of infectious diseases in 
slum areas and measure its effect on urban populations. To our knowledge, a detailed 
study of interventions to control influenza epidemics in slums, using an agent-based 
simulation model, has never been done before. Slum conditions are important for a city 
beyond the direct effects of disease transmission. For example, civil wars may be 
precipitated or exacerbated by disease outbreaks because they decrease social health 
and welfare.[45] 
 
Even though slum regions contain only 13% of the total population of Delhi, Chen et 
al.[4] show that omitting their attributes leads to underestimation of the overall infection 
rate and the peak infection rate of the epidemic. This paper extends that work by 
evaluating the differential impact of interventions on slum and non-slum regions. 
Various vaccination and social distancing strategies are analyzed under different 
scenarios that show that the slum population is more prone to infections under the same 
control measures. Furthermore, taking account of slum populations significantly alters 
the disease dynamics in the entire population. Differences in key measures are 
demonstrated between the cases of accounting for slum populations and not:  e.g., a 
100% increase in the peak attack rate in some cases when slum regions’ characteristics 
are taken into account, compared to the case when they are ignored. 
 
Figure 4, which compares infections in slum with non-slum areas, shows that at very 
high compliance rates, some interventions can be equally effective in both slums and 
non-slums. However, such high compliance rates are typically not feasible due to 
practical realities on the ground, and also because they require timely diagnosis of 
infected cases. For SHO to be effective, the coverage rate needs to be 70% or more in 
both slums and non-slums, and the diagnosis of the infected individuals needs to be 
correct and immediate. In other words, effective control of a contagious epidemic in a 
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high-density place like Delhi, would require either early and drastic action (e.g. ISO) or a 
highly compliant set of individuals, or a combination of these features. 
 
This work overall demonstrates the power of agent-based and population modeling to 
evaluate complicated interaction-based epidemiological phenomena. Clearly, there are 
limitations to this work (several are itemized below). But these agent and population 
approaches provide a platform for adding additional complexity. All of the figures 
demonstrate that quantitative results depend on complicated interplay among inputs. 
These results are important because they inform policy decisions. An equally important 
benefit of this type of work, but not often stated, is developing intuition about epidemic 
dynamics (in this case, with the effects of slums), to enable decision makers to reason 
about nuanced interactions among effects to a degree that is hard to obtain with other 
approaches that lack this level of detail. 
 
Despite the detailed modeling effort, there are limitations of this work and areas for 
improvement in the future. For example: (1) Examination of different population level 
base attack rates derived from different transmission probabilities. (2) Different 
susceptibilities and infectivity for individual agents; e.g., based on age. (3) Effects of 
asymptomatic infections (although we have addressed this to some extent with 
compliance and efficacy of interventions). (4) Seasonal effects.[46-47] (5) Effects of 
immunity for an individual from previous infections (in previous seasons). (6) Evaluation 
of interaction of different strains from season to season. (7) Comparison of tropical 
versus subtropical factors. (8) Evaluation of a specific outbreak scenario. (9) Impact of 
sickness on absenteeism from work and its economic ramifications. (10) Effects on rural 
versus urban populations. (11) Using combinations of interventions rather than one at a 
time; this was only done here in Figure 5. However, to disambiguate results, it is 
prudent to first examine individual interventions. (12) Effect of changing disease 
transmission rate for different activity types. (13) Effect of changing contact times at 
different locations. (14) To capture close-proximity transmission, one could use actual 
physical proximity. Here, we use colocation.  Finally, just as changes in modeling details 
can change model results, so, too, changes in the conditions in actual outbreaks can 
change results; some of these factors are listed above.  It is essentially impossible to 
capture all of these effects—many of which are unknown—down to the level of  
individual humans. 
 
Public health implications: This research demonstrates that modeling slum populations 
is important, not only for understanding disease dynamics, but also for designing 
effective control measures. Ignoring the influence of slum characteristics on their urban 
environment will significantly underestimate the speed of an outbreak and its extent, 
and hence will lead to misguided interventions by public health officials and policy 
planners. Lessons from this research can be applied in the field and observations 
collected from the field can provide valuable data to improve the models and validate 
the results. For example, our results show that a slum resident has about 50% greater 
total contact duration per day compared to a non-slum resident. This makes social 
distancing based interventions more taxing in the slum population. Public health policy 
makers may want to subsidize pharmaceutical resources for the slum population to 
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make them more affordable. Similarly, we find women in slums have a higher number of 
contacts per day than their male counterparts whereas in non-slum regions, women 
have a fewer number of daily contacts than their male counterparts. This kind of 
information can be used to prioritize the distribution of limited resources, e.g. women 
could be given preference over males for vaccination in slum areas. This research 
provides simulation-based evidence that in general social distancing strategies are 
ineffective in slums because of a large number of contacts at home. Unless one applies 
complete isolation, which is not feasible in slums, just staying at home still keeps a large 
number of contacts and pathways of spread intact.   
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FIGURE 1: Epidemic curves for base case and vaccination case. Each time point in the 
curve is an average over 25 replicates. The vaccines are given randomly to 30% of the 
entire population and the vaccine efficacy is 30%. For Network 2, epidemic curves are 
shown for total population and slum and non-slum subpopulations. ‘Intervene Total’ 
refers to the epidemic curve of the entire Delhi population when the vaccine intervention 
is applied. ‘Intervene Slum’ refers to the epidemic curve for just the slum population, 
and ‘Intervene Non-slum’ refers to the epidemic curve for just the non-slum population 
for the intervention case. Epidemic curves for a variety of compliances and efficacies 
are reported in Figures S1 and S2. 
 

FIGURE 2: Mean cumulative infection rates for different subgroups in the two networks. 
Two vaccination rates (v = 30%, 50%) and two vaccine efficacy rates (α = 30%, 70%) 
are considered. Individuals are chosen at random in the entire network for vaccination 
on day 0. Mean infection rates are calculated within each group. The last several lines 
in the plot for Network 1 are overlapping at the bottom because the mean infection rates 
are almost zero under those scenarios. ‘Total’ refers to the entire population of Delhi. 
‘Slum’ and ‘Non-slum’ refer to slum and non-slum regions, respectively. ‘Male’ and 
‘Female’ denote the total number of males and females in Delhi, respectively. Age 
groups are denoted by ‘Preschool’, ‘School’, ‘Adult’, and ‘Senior’. 
 

 

       (a) Total Delhi Network 1  (b) Total Delhi Network 2            
 
Figure 3. Mean cumulative infection rates under different interventions for Network 1 
and Network 2. The larger font numbers are fractions of populations that are infected 
and the smaller font numbers are counts of infected individuals. Colors of the boxes 
correspond to the values of the large numbers (i.e., fractions of infected), and the same 
scheme is used for both plots for comparisons—and for all plots in this paper.  Five 
different compliance rates are examined (10%, 30%, 50%, 70% and 90%), and 4 types 
of intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and 
isolation (ISO)) are considered. For vaccines, three different trigger points are 
considered: when the cumulative infection rate reaches 0% (VAX0), 1% (VAX1) and 5% 
(VAX5) of the total population. The vaccine efficacy is set at 30%. For close-schools, 
two trigger points are used: when cumulative infection rate reaches 1% (CS1) and 5% 
(CS5). Compliant individuals are selected at random from the entire Delhi population, 
and the cumulative infection rates are calculated for each network. 
 

 
(a) Slum           (b) Non-slum 

 
Figure 4. Heat map of cumulative infection rates in slum and non-slum regions of 
Network 2 under different intervention strategies. The colors of boxes correspond to the 
larger numbers in the boxes—the cumulative infection rates—and the two plots use the 
same scheme for comparisons.  Darker colors correspond to higher infection rates. The 
smaller font numbers are counts of infected individuals. The vaccination efficacy is fixed 
at 30%. Five different compliance rates (10%, 30%, 50%, 70% and 90%) and 4 types of 
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intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and 
isolation (ISO)) are considered. For vaccines, three different trigger points are 
considered: when cumulative infection rate reaches 0% (VAX0), 1% (VAX1) and 5% 
(VAX5). For close-schools, two trigger points are used: when the cumulative infection 
rate reaches 1% (CS1) and 5% (CS5). Compliant individuals are selected randomly 
from the entire Delhi population, and the mean infection rates are calculated separately 
for the slum and non-slum subpopulations. Although not reported here, qualitatively 
similar results are found for other transmission rates, as well as for higher vaccine 
efficacy (70%). Base is the baseline case with no interventions. The smaller-font 
numbers under the infection rate show the actual number of infected individuals.  
 

FIGURE 5: Mean cumulative infection rates for each category listed on the x-axis, for 
Network 2 and Network 1, under four different intervention scenarios. The color scheme 
of the boxes are based on the large values in the boxes—the cumulative infection rates. 
Darker colors correspond to higher infection rates. Smaller font values are the number 
of infected individuals. The vaccine efficacy is set at 30%. VsSs refers to the case when 
vaccines and social distancing are both applied to slum residents; VnSn refers to the 
case when vaccines and social distancing are applied to non-slum residents. Similarly, 
VsSn means vaccines are given to slums and stay home is applied to non-slums; and 
VnSs means vaccines are given to non-slums and stay home is applied to slums. Base 
refers to the case where no intervention is applied. The smaller-font numbers under the 
infection rates show the actual number of infected individuals in each category listed on 
the x-axis.  
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Presentation of Results. 
 
For each set of input parameters, 25 replicates were run using agent-based simulation 
and the results presented are the average values over the 25 replicates. Also, 95% 
confidence intervals (CIs) are given when appropriate. 
 
Comparisons Between Network 1 and Network 2. 
 
Table S1 shows some differences between network1 and network 2 due to their 
different ways of modeling slum population. Note that these two networks are the same 
ones as those used in Chen et al.[1]. Further comparisons between the two networks 
are found in Chen et al.[2]. 
 
Table S1. Comparison of two networks as well as data sources for slum and non-slum 
Delhi, India. 

 
Network 1 Network 2 

Slum Non-slum Slum Non-slum 

Population Size 0 13.8 million 1.8 million 12 million 

Average Household 
Size of Slum Region 5.2 15.5 

Daily Activities 33,890,156 39,077,861 

Number of Edges 210,428,521 231,258,772 

Average Degree 30.4 33.4 

Maximum Degree 170 180 

Data Sources MapMyIndia.com 
MapMyIndia.com 

Indiamart.com 
MapMechanic.com 

 
Network 2 contains 298 slum zones, while network 1 models the whole population as 
non-slum. For network 1, the non-slum demographics and activities data is collected by 
survey through MapMyIndia.com. While for slum population, we collected additional 
data by Indiamart.com and MapMechanic.com for slum demographics and activities as 
well as slum polygons. More detailed demographic and activity differences can be found 
in the Chen et al.[1] 
 
Terminology and Abbreviations for Interventions. 
 
Table S2 contains abbreviations for different interventions and their meanings. Stay-at-
home (SHO) and social isolation (ISO) interventions are applied to a person 
immediately after they become infected, while close-schools (CS) and vaccinations 
(VAX) may be applied after a specified fraction of the total population has been infected. 
 
Table S2:  Summary of abbreviations for interventions and their meanings. 
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Abbreviation Definition 
CS Close-schools: School-related interactions are eliminated. 
CSx Close-schools is implemented after the total fraction of the population 

that has been infected reaches x. 
ISO Social isolation: a person who is socially isolated does not interact with 

any other person, even people in their home.  Isolation is triggered only 
after a person becomes infectious. 

SHO Stay at home: All out-of-the-home activities for this person are 
eliminated, and this person only interacts with others at home. Stay at 
home is triggered only after a person becomes infectious. 

VAX Vaccination: a person who is vaccinated has a reduced probability of 
contracting the virus.  

VAXx Vaccination of an individual occurs after the total fraction of the 
population that has been infected reaches x. 

 
Table S3 contains the variables used in simulations. The transmissibility corresponds to 
strong flu in Chen et al.[1]  For vaccination, efficacy is either 30% or 70%. That is, for 
30% efficacy, a person who gets vaccinated has reduced their susceptibility to infection 
by 30%.  
 
Table S3:  Summary of parameters and values used in simulations. 

Category Values 
Networks of Delhi Network 1 (does not model slums); Network 2 (models 

slums). 
Seeding 20 people selected randomly over the entire population at 

time 0 as index cases. 
Transmissibility 0.000027. 
Intervention 
approaches. 

Base case (no intervention); close-schools (CS); stay-home 
(SHO); isolation (ISO); vaccination (VAX). 

Intervention/compliance 
rates. 

10%, 30%, 50%, 70%, 90%. 

Efficacy of vaccination 
intervention. 

30%, 70%. 

Intervention trigger time Cumulative infection rate reaches 0%, 1% and 5%. 
Simulation replicates 25 
 
 
The Agent Epidemic States and Disease Model. 
 
An SEIR, Susceptible (S), Exposed (E), Infectious (I) and Removed or Recovered (R) 
model is considered within each individual.  An infectious person spreads the disease to 
each susceptible neighbor independently with a probability referred to as the 
transmission probability, given by 
 

p = λ (1 – (1 –τ) Δt), 
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where λ is a scaling factor to lower the probability (e.g., in the case of vaccination), τ is 
the transmissibility and Δt is the duration of interaction in minutes. Durations of contact 
are labels on the network edges. A susceptible person undergoes independent trials 
from all of its neighbors that are infectious. The transmission probability is a function of 
the number and duration of contacts.[3] This is selected to simulate an Influenza model 
resulting in a R0=1.26 (cumulative attack rate 42%, corresponding to a transmissibility of 
0.000027 per minute of contact time) for Network 1, and R0=1.39 (cumulative attack rate 
48%) for Network 2.[4] This transmissibility value is used uniformly throughout this study 
and corresponds to the probability at which an infectious node infects a susceptible 
node per minute of contact. 
 
At each time (day), if an infectious person infects a susceptible person, the susceptible 
person transitions to the exposed (or incubating) state. The exposed person has 
contracted Influenza but cannot yet spread it to others. The incubation period is 
assigned per person, according to the following distribution: 1 day (30%); 2 days (50%); 
3 days (20%). At the end of the exposed or incubation period, the person switches to an 
infected state. The duration of infectiousness is assigned per person, according to the 
distribution: 3 days (30%); 4 days (40%); 5 days (20%); 6 days (10%). After the 
infectious period, the person recovers and stays healthy for the simulation period. This 
sequence of state transitions is irreversible and is the only possible disease 
progression. 
 
Epidemic Curves for Other Interventions, for Varying Efficacy and Compliances. 
 

  
 
Figure S1: Epidemic curves for the base case and the vaccination case. The vaccines 
are given randomly to 50% of the entire population, and the vaccine efficacy is assumed 
to be 30%. The transmissibility is 0.000027. 
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Figure S2: Epidemic curves for the base case and vaccination case. The vaccines are 
given randomly to 10% of the entire population and the vaccine efficacy is 70%. The 
transmissibility is 0.000027. 
 

    
 

(a) Total Delhi             (b) Slum   (c) Non-slum 
 
Figure S3. Heat map of mean cumulative infection rates in Delhi, and slum and non-
slum regions under different intervention strategies for Network 2. The vaccination 
efficacy is fixed at 70%. Five different compliance rates, i.e., 10%, 30%, 50%, 70% and 
90% and 4 types of intervention strategies, i.e. vaccination (VAX), close-schools (CS), 
stay-home (SHO) and isolation (ISO), are considered. For vaccines, three different 
trigger points are considered: when cumulative infection rate reaches 0% (VAX0), 1% 
(VAX1) and 5% (VAX5). For close-schools, two trigger points are used i.e. when 
cumulative infection rate reaches 1% (CS1) and 5% (CS5). Compliant individuals are 
selected randomly from the entire Delhi population and the mean cumulative infection 
rates are calculated separately for the total population, and slum and non-slum 
subpopulations. Base is the baseline case with no interventions. The smaller-font 
numbers under the infection rate show the actual number of infected individuals. Darker 
colors correspond to higher infection rates. 
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Tabulations of Basic Results: Comparisons between Networks 1 and 2 for 
Compliance of 30% and Efficacy of 30%. 
 
Table S4 shows results when 30% of the population that is selected uniformly at 
random is vaccinated with a vaccine that is 30% effective. The contrast between the two 
populations is even greater when considering interventions. The peak infection rate of 
the entire population increases by 123.2% (95% CI: 122.7%-123.7%) in Network 2 
compared to Network 1 for the intervention, versus 47.6% difference between the 
networks in Table S8. The time to peak decreases by 35.7% (95% CI: 32.9%-38.8%) in 
Network 2 compared to that in Network 1, for the intervention case, compared to only 
20.84% percentage change between the two Networks for the base case in Table S8. 
The cumulative infection rate (or attack rate) is also underestimated, which is 42.2% 
(95% CI: 41.5%-42.8%) greater on average in Network 2 compared to Network 1 for the 
intervention case.  Hence, the differences between key epidemic results for Networks 1 
and 2 that are generated for the intervention case are even more pronounced than they 
are for the base case. These values are all statistically significant.  
 
Table S4: Comparisons of key epidemic parameters for Networks 1 and 2 for a 
vaccination intervention before the epidemic starts (VAX0), where the vaccine efficacy 
is 30% and the compliance rate is 30%. 

Vaccination Network 1 Network 2 Compare-absolute Compare-relative 
Time to Peak 286 184 102 

(95% CI: 94-111) 
35.7% 

(95% CI: 32.9%-38.8%) 
Peak Infection 

Rate 
1.34% 2.99% 1.65% 

(95% CI: 1.64%-1.66%) 
123.19% 

(95% CI: 122.69%-123.65%) 
Cumulative 

Infection Rate 
23.3% 33.1% 9.82% 

(95% CI: 9.67%-9.96%) 
42.17% 

(95% CI: 41.51%-42.77%) 
 
 
Table S5 shows the effect of delay in applying interventions. The numbers show the 
percentage difference in cumulative infection rate in slums and non-slums of Network 2 
for the specified interventions and compliance rates at different trigger levels.  For 
example, the value 30.55% at 0.1% compliance means that for intervention close-
schools, where this intervention is implemented after 5% of the total population is 
infected, the fraction of people in slums that get infected is 30.55% greater than the 
fraction of non-slum residents who get infected. 
 
Table S5.  Differences of epidemic size between slum and non-slum regions for 
Network 2 for base case (no intervention); close-schools (CS) after 1% total outbreak 
fraction (CS1) and after 5% total outbreak fraction (CS5); stay at home (SHO); social 
isolation (ISO); vaccination (VAX) after 1% total outbreak fraction (VAX1) and after 5% 
total outbreak fraction (VAX5), under various compliance rates. The vaccination efficacy 
is 30%. 

Compliance Base CS5 CS1 SHO ISO VAX5 VAX1 
0.1 29.30% 30.55% 31.94% 31.06% 28.85% 29.37% 29.27% 
0.3 29.30% 32.52% 37.03% 34.18% 5.31% 28.85% 28.21% 
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0.5 29.30% 33.67% 41.07% 20.16% 0.00% 26.72% 24.62% 
0.7 29.30% 34.23% 42.57% 0.01% 0.00% 21.94% 15.87% 
0.9 29.30% 35.07% 43.95% 0.00% 0.00% 18.31% 7.25% 

 

         
Table S6 examines the difference in effects of interventions on the cumulative 
infection rate in Network 2. These data use both the stay home (SHO) and the 
isolation (ISO) interventions as base cases. Each entry represents the difference 
between the cumulative infection rates for the specified pharmaceutical 
interventions and SHO or ISO. For example, 18.03% means that the cumulative 
infection rate for vaccinating after 5% of the population is infected, is 18.03% 
greater than that for the intervention of SHO; 31.92% means that the cumulative 
infection rate for vaccinating after 5% of the population is infected is 31.92% 
greater than that for the intervention of ISO. Thus, the larger the magnitude of a 
positive number, the greater the effectiveness of SHO or ISO compared to the 
specified pharmaceutical intervention. 

        

 
Table S6. Differences in epidemic size between stay at home (SHO) interventions, 
social isolation (ISO) interventions and pharmaceutical interventions (VAX0, VAX1, 
VAX5), under various compliance rates.  The compliance rate and efficacy for 
vaccination is 30% and 30%, respectively. 
Compliance Vax5-SHO Vax1-SHO Vax0-SHO VAX5-ISO VAX1-ISO VAX0-ISO 

0.1 0.71% 0.29% 0.17% 4.92% 4.49% 4.38% 
0.3 4.15% 2.39% 1.89% 31.92% 30.17% 29.66% 
0.5 18.03% 13.51% 11.35% 25.96% 21.44% 19.28% 
0.7 16.82% 9.75% 0.13% 16.82% 9.76% 0.13% 
0.9 13.13% 4.01% 0.00% 13.13% 4.01% 0.00% 

 
Effect of intervention on Network 2, With and Without Interventions.  
 
The comparison between vaccination intervention and the base case in Network 2 is 
detailed in Table S7 below.  
 
In Network 2, for the total population, vaccination delays the time to peak infection by 
43.27% (95% CI: 40.14%-46.41%) relatively, from 128 to 184 days on average, while 
the peak infection rate is reduced by about 3.88% from 2.99% to 6.87% on average 
(56.47% relatively with 95% CI: 56.35%-56.56%). The total infection rate is reduced by 
15.31% from 33.12% to 48.43% (31.62% relatively with 95% CI: 31.57%-31.67%). 
 
In slum regions in Network 2, vaccination delays the time to peak infection by 43.09% 
(95% CI: 39.78%-46.4%) relatively, from 123 to 176 days on average, while the peak 
infection rate is reduced by about 5.70% from 5.42% to 11.12% on average (51.26% 
relatively with 95% CI: 50.88%-51.64%). The total infection rate in slums is reduced by 
16.35% from 57.53% to 73.88% (22.13% relatively with 95% CI: 22.07% to 22.19%). 
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In non-slum regions in Network 2, the time to peak is delayed by 43.44% (95% CI: 
40.32%-46.56%) relatively, from 130 to 186 days on average, while the peak infection 
rate is reduced by about 3.68% from 2.69% to 6.36% on average (57.79% relatively 
with 95% CI: 57.64%-57.94%). The total infection rate in non-slums is reduced by 
15.16% from 44.60% to 29.45% (33.98% relatively with 95% CI: 33.93% -34.03%). 
 
Table S7: Comparisons between the base and vaccination cases for Network 2. The 
three parameters (time to peak, peak infection rate and cumulative infection rate) are 
broken out, and for each, values for the total population, and slum and non-slum 
subpopulations are given. The vaccination rate is 30% and efficacy is 30% for those 
receiving the vaccine. 

Network 2, 
Time to Peak Base Vaccination Compare-absolute Compare-Relative 

Total 128 184 55 (95% CI:  51-59) 43.27% 
(95% CI: 40.14%-46.41%) 

Slum 123 176 53 (95% CI:  49-57) 43.09% 
(95% CI: 39.78%-46.4%) 

Non-Slum 130 186 56 (95% CI: 52-60) 
43.44% 

(95% CI: 40.32% - 
46.56%) 

 
 

Network 2, 
Peak Infection 

Rate 
Base Vaccination Compare-absolute Compare-Relative 

Total 6.87% 2.99% -3.88% 
(95% CI: -3.870% -3.884%) 

-56.46% 
(95% CI:  -56.35% -56.56%) 

Slum 11.12% 5.42% -5.70% 
(95% CI: -5.66% -5.74%) 

-51.26% 
(95% CI:  -50.88% -51.64%) 

Non-Slum 6.36% 2.69% -3.68% 
(95% CI: -3.67% -3.69%) 

-57.79% 
(95% CI:  -57.64% -57.94%) 

 
 

Network 2, 
Cumulative 

Infection Rate 
Base Vaccination Compare-absolute Compare-Relative 

Total 48.43% 33.12% -15.31% 
(95% CI: -15.29% -15.34%) 

-31.62% 
(95% CI:  -31.57% -31.67%) 

Slum 73.88% 57.53% -16.35% 
(95% CI: -16.30% -16.39%) 

-22.13% 
(95% CI:  -22.07% -22.19%) 

Non-Slum 44.60% 29.45% -15.16% 
95% CI: (-15.14% -15.18%) 

-33.98% 
(95% CI:  -33.93% -34.03%) 
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Table S8 summarizes differences in key epidemic parameters for Networks 1 and 2 for 
the base case with no interventions. The peak infection rate is the maximum fraction of 
individuals who are infected on any day, the time to peak is the day on which the peak 
infection rate occurs, and cumulative infection rate is the cumulative fraction of 
individuals who get infected in the epidemic.  Under the base case, the peak infection 
rate in Network 2 is 47.6% (95% CI: 47.4%-47.8%) greater compared to that in Network 
1 (47.6%=(6.87%-4.65%)/4.65%). The time to peak infection for Network 2 is decreased 
by 20.8% (95% CI: 19.2%-22.7%) compared to that in Network 1. The cumulative 
infection rate (or attack rate) is also underestimated under Network 1 by 16.1% (95% 
CI: 16.1%-16.2%) compared to Network 2. These results, presented in the main paper, 
are tabulated here in Table S8 for convenience and comparison. 
 
Table S8: Comparisons of key epidemic parameters for Networks 1 and 2 for the base 
case. 

Base Network 1 Network 2 Compare-absolute Compare-relative 
Time to Peak 162 128 34 

(95% CI: 31-37) 
20.84% 

(95% CI: 19.19%-22.71%) 
Peak Infection 

Rate 
4.65% 6.87% 2.215% 

(95% CI: 2.206%-2.224%) 
47.6% 

(95% CI: 47.4%-47.8%) 
Cumulative 

Infection Rate 
41.70% 48.43% 6.73% 

(95% CI: 6.71%-6.75%) 
16.1% 

(95% CI: 16.1%-16.2%) 

 
Effect of intervention on Network 1, With and Without Interventions.  
 
In Network 1, vaccination delays the time to peak infection by 76.41%, from 162 to 286 
days on average, with 95% CI: 71.53%-81.28%.  The peak infection rate is reduced by 
3.3121 percentage points, from 1.34% to 4.65%, which is a relative percentage 
difference (RPD) of -71.20%, with 95% CI: -71.02% to -71.38%. These and cumulative 
infection rate data are given in Table S9. 
 
Table S9: Comparisons of a vaccination intervention (30% vaccination rate, 30% 
efficacy of a vaccination) with the base case in Network 1 Delhi. 
Network 1,Total Base Vaccination Compare-absolute Compare-relative 
Time to Peak 162 286 124 

(95% CI:  116-132) 
76.41% 
(95% CI: 71.53%-
81.28%) 

Peak Infection Rate 4.65% 1.34% 3.31% 
(95% CI: 3.30%-
3.32%) 

71.20% 
(95% CI: 71.02%-
71.38) 

Cumulative Infection 
Rate 

41.7% 23.3% 18.40% 
(95% CI: 18.25%-
18.55%) 

44.13% 
(95% CI:  43.77%-
44.48%) 

 
Tables S7 and S9 show that, generally, Network 1 is more responsive to intervention 
than Network 2.  In Network 1, the percentage changes in time-to-peak, peak infection 
rate, and cumulative infection rate, due to intervention, are 76.4%, -71.2%, and -44.1%, 
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respectively. For Network 2, these values are 43.3%, -56.5%, and -31.6%, respectively. 
The reason for lower impact in Network 2 is the greater connectivity of households in 
slums, which helps drive the contagion. 
 
Effect of interventions on slum and non-slum subpopulations of Network 2, 
compared to the base case. 
 
The data used in comparing key outbreak parameters in slum and non-slum regions are 
taken from Table S7, and the corresponding epidemic curves are in Figure 1. The 
percentage change in peak infection rate due to intervention in slum (-51.3%) and non-
slum (-57.8%) regions in Network 2, are comparable, although the magnitudes of the 
peak infections in slums are about twice those in the non-slum regions.  For the 
cumulative infection rates, the relative drop from the intervention is greater for the non-
slum (-34.0% vs. -22.1%) population than it is for the slum population, but the absolute 
drop is about the same (-16.3% vs. -15.1%). 
 

 
Table S10: Comparison of results between slum and non-slum in Network 2. The input 
data is the same as in Table S7.   

Network 2, 
Base Slum Nonslum Compare-absolute Compare-relative 

Time to Peak 123 130 7(95% CI: 4-9) 5.26% 
(95% CI: 3.37%-7.16%) 

Peak Infection 
Rate 1.12% 6.36% 4.76% 

(95% CI: 4.72%-4.80%) 

42.79% 
(95% CI: 42.46%-

43.14%) 

Cumulative 
infection rate 73.88% 44.60% 29.25% 

(95% CI: 29.25% - 29.31%) 

39.63% 
(95% CI: 39.59%-

39.67%) 
 

Network 2, 
Vaccination Slum Nonslum Compare-absolute Compare-relative 

Time to Peak 176 186 10(95% CI: 5-15) 5.23% 
(95% CI: 2.58%-8.46%) 

Peak Infection 
Rate 5.42% 2.69% 2.74% 

(95% CI: 2.71% - 2.76%) 
50.46% 

(95% CI: 50.06%-50.86%) 
Cumulative 

infection rate 57.53% 29.45% 28.08% 
(95% CI: 28.04%-28.12%) 

48.82% 
(95% CI: 48.74%-48.89%) 

 
Figure S4 contains the percentage changes between the base case and intervention 
case for Networks 1 and 2 for the three parameters in the legend, and further breaks 
down Network 2 into slum and non-slum subpopulations. This plot provides a summary 
of differences between the base and intervention cases. For all four conditions 
considered, the intervention reduces the severity of an epidemic. It delays the time 
when the infection peaks, and reduces the peak infection and the cumulative infection 
rates. Note that the intervention has a larger effect on the epidemics when applied to 
Network 1, as consistent with Figure 1.  
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Figure S4: Effects of vaccination on time to peak infection, peak infection rate, and 
cumulative infection rate. The intervention is 30% vaccination rate and 30% vaccine 
efficacy. Each bar refers to the average value of the relative difference over 25 runs. 
Vaccination is more effective for Network 1 than Network 2, while, for Network 2, it is 
slightly more effective for the non-slum population than slum. Details of the data 
associated with this plot are provided in Tables S7 and S9. 
 
Figure S5 provides the same data in as in Figure S7, but now the data are provided as 
absolute differences, rather than as percentage changes. (There are three separate 
plots owing to the different ranges in absolute differences. Qualitatively, the time to peak 
infection (blue bars) does not change between the two networks and the two 
subpopulations of Network 2 (Figure S4 versus Figure S5(a)). However, the red bars in 
Figure S4 are qualitatively different from those in Figure S5(b), when considering 
absolute changes. That is, the magnitude of the percentage change in peak infection 
rate between the base and intervention cases is greatest in Network 1 (Figure S4, red 
bars), while in Figure S5(b), it is least on an absolute change basis. Similarly, the slum 
population in Network 2 shows the least percentage change in Figure S4, but the 
greatest absolute change in Figure S5(b). Rankings of the subpopulations in Network 2 
is also reversed for cumulative infection rate: the percentage change is greatest in the 
non-slum region, while it is greatest for the slum regions in absolute terms. 
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(a) 

   
                                             (b)                                               (c) 
Figure S5: Comparison of absolute difference in improvement; the relative differences 
are shown in Figure S7. Absolute differences vary across the three parameters, so each 
is given on a separate scale. Data are summarized in Tables S7 and S9.   
 
Evaluation of Network 2 Home and School Contacts. 
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Figure S6: Comparison of average contacts per person in slum and non-slum regions 
for home and school activity types in Network 2. 
 
Evaluation of Network 2 Edges Transmitting Infection. 
 
Figure S7 provides counts of edges used to transmit infection for a base case 
simulation in Network 2 of Figure 1 of the main text.  Edges are broken down by activity 
types of people who are interacting during transmission.  Data are also broken down by 
the classifications of individuals interacting (e.g., slum and nonslum, see legend). 
 
 

 
 
Figure S7.  Data for Network 2.  Number of edges transmitting infection (in millions) for 
each of the four types of interactions between slum and nonslum individuals (see 
legend) and for each activity type. The number of slum-to-nonslum edges is greater 
than nonslum-to-slum ones because once infection gets into a slum household, it may 
spread within the household more (because there are more people and connections).  
Thus, a slum household carries more infection to its interactions with nonslum people.  
The “Other” activity category, like home activity, shows more edges carrying infection 
for slum-to-slum interactions than slum-to-nonslum, which is consistent with Figures S4 
and S6 of Chen et al.[2], where further network characteristics are given. 
 
 
 
 
 
 
 
 
  

Page 43 of 44

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Supplemental Information 

 14 

References 
 

1. Chen J, Chu S, Chungbaek Y, Khan M, Kuhlman C, Marathe A, Mortveit H, 
Vullikanti A and Xie D. Effect of Modeling Slum Populations on Influenza Spread 
in Delhi. BMJ Open, Vol. 6, Issue 9, 2016a. 
 

2. Chen J, Chu S, Chungbaek Y, Khan M, Kuhlman C, Marathe A, Mortveit H, 
Vullikanti A, Xie D. Supplemental Information for Effect of Modelling Slum 
Populations on Influenza Spread in Delhi. BMJ Open, 2016b, Sep 
1;6(9):e011699. 
Available at: http://bmjopen.bmj.com/content/6/9/e011699/DC1/embed/inline-
supplementary-material-1.pdf 
 

3. Yang Y, Sugimoto JD, Halloran ME, Basta NE, Chao DL, Matrajt L, Potter G, 
Kenah E, Longini IM. The transmissibility and control of pandemic influenza A 
(H1N1) virus. Science 2009 Oct 30;326(5953):729-733. 
 

4. Jesan T, Menon G, Sinha S. Epidemiological dynamics of the 2009 influenza 
A(H1N1) v outbreak in India. Current Science (00113891) 2011; 100(7): 1051. 

 
 

Page 44 of 44

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://bmjopen.bmj.com/content/6/9/e011699/DC1/embed/inline-supplementary-material-1.pdf
http://bmjopen.bmj.com/content/6/9/e011699/DC1/embed/inline-supplementary-material-1.pdf


For peer review
 only

 

 

 

Disparities in Spread and Control of Influenza in Slums of 
Delhi:  

Findings From An Agent-Based Modeling Study  
 

 

Journal: BMJ Open 

Manuscript ID bmjopen-2017-017353.R2 

Article Type: Research 

Date Submitted by the Author: 27-Sep-2017 

Complete List of Authors: Adiga , Abhijin ; Network Dynamics and Simulation Sciences Laboratory, 
Biocomplexity Institute, Virginia Tech 
Chu, Shuyu; Network Dynamics and Simulation Sciences Laboratory, 

Biocomplexity Institute, Virginia Tech 
Eubank, Stephen; Network Dynamics and Simulation Sciences Laboratory, 
Biocomplexity Institute, Virginia Tech 
Kuhlman, Christopher ; Network Dynamics and Simulation Sciences 
Laboratory, Biocomplexity Institute, Virginia Tech 
Lewis, Bryan ; Network Dynamics and Simulation Sciences Laboratory, 
Biocomplexity Institute, Virginia Tech 
Marathe, Achla; Network Dynamics and Simulation Sciences Laboratory, 
Biocomplexity Institute, Virginia Tech, ;   
Marathe, Madhav ; Network Dynamics and Simulation Sciences Laboratory, 
Biocomplexity Institute, Virginia Tech 
Nordberg, Eric ; Network Dynamics and Simulation Sciences Laboratory, 

Biocomplexity Institute, Virginia Tech 
Swarup, Samarth; Network Dynamics and Simulation Sciences Laboratory, 
Biocomplexity Institute, Virginia Tech 
Vullikanti, Anil; Network Dynamics and Simulation Sciences Laboratory, 
Biocomplexity Institute, Virginia Tech 
Wilson, Mandy ; Network Dynamics and Simulation Sciences Laboratory, 
Biocomplexity Institute, Virginia Tech 

<b>Primary Subject 
Heading</b>: 

Global health 

Secondary Subject Heading: Epidemiology, Public health, Health informatics, Infectious diseases 

Keywords: 
Delhi, epidemic, interventions, slum population, synthetic social contact 

network 

  

 

 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open



For peer review
 only

Main manuscript 

 1 

 
 

Disparities in Spread and Control of Influenza in Slums of Delhi: 
Findings From An Agent-Based Modeling Study 

 
A. Adiga, S. Chu, S. Eubank, C. J. Kuhlman, B. Lewis, A. Marathe, M. Marathe, E. K. 

Nordberg, S. Swarup, A. Vullikanti and M. L. Wilson 
 
 
Corresponding Author: 
Achla Marathe 
 
Network Dynamics and Simulation Sciences Laboratory 
Biocomplexity Institute 
Virginia Tech 
1015 Life Science Circle 
Blacksburg, VA 24061-0477, USA 
amarathe@vt.edu 
 
(F): 540-231-2891 
(P): 540-231-9210 
 
Co-authors: 
Abhijin Adiga, Shuyu Chu, Stephen Eubank, Chris J Kuhlman, Bryan Lewis, Achla 
Marathe, Madhav Marathe, Eric K Nordberg, Samarth Swarup, Anil Vullikanti, Mandy L 
Wilson  
 
Network Dynamics and Simulation Sciences Laboratory 
Biocomplexity Institute 
Virginia Tech 
1015 Life Science Circle 
Blacksburg, VA 24061-0477, USA 
 
Keywords: Delhi; epidemic; interventions; slum population; synthetic social contact 
network. 
 
 
Word count:  7057 
  

Page 1 of 44

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Main manuscript 

 2 

ABSTRACT 
 
Objectives This research studies the role of slums in the spread and control of 
infectious diseases in the National Capital Territory of India, Delhi, using a detailed 
social contact network of its residents. 
Methods We use an agent-based model to study the spread of influenza in Delhi 
through person-to-person contact. Two different networks are used; one in which slum 
and non-slum regions are treated the same and the other in which 298 slum zones are 
identified. In the second network, slum-specific demographics and activities are 
assigned to the individuals whose homes reside inside these zones. The main effects of 
integrating slums is that the network has more home-related contacts due to larger 
family sizes and more outside contacts due to more daily activities outside home. 
Various vaccination and social distancing interventions are applied to control the spread 
of influenza. 
Results Simulation based results show that when slum attributes are ignored, the 
effectiveness of vaccination can be overestimated by 30%-55%, in terms of reducing 
the peak number of infections and the size of the epidemic, and in delaying the time to 
peak infection. The slum population sustains greater infection rates under all 
intervention scenarios in the network that treats slums differently. Vaccination strategy 
performs better than social distancing strategies in slums. 
Conclusions Unique characteristics of slums play a significant role in the spread of 
infectious diseases. Modeling slums and estimating their impact on epidemics will help 
policy makers and regulators more accurately prioritize allocation of scarce medical 
resources and implement public health policies.  
Policy Implications Currently, over a billion people reside in slums across the world 
and this population is expected to double by 2030. This study uses influenza as an 
example to demonstrate the need to understand the role of slum populations in the 
spread and containment of infectious diseases.  
 
Strengths and limitations of this study 

 

� We show that the unique attributes of slums must be accounted for in 

understanding the spread and control of infectious diseases.  

� We demonstrate that the granularity afforded by the agent-based model enables 

extraction of subpopulations, and subsets of interactions, to help interpret results. 

� This study does not consider age-specific susceptibility or immunity from past 

infections; all individual persons are assumed to be equally susceptible.  

� The disease transmission risk does not change across activity types, e.g. an hour 

with an infected person at home or at work carries the same risk. 

� Co-location based contact time is used as a proxy for physical proximity and 

short-distance environmentally-mediated transmission. 
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INTRODUCTION 
 
Infectious disease is one of the leading causes of human morbidity and mortality 
worldwide. Reports from Centers for Disease Control (CDC) show that over 200,000 
people in the United States (US) are hospitalized with influenza-like illness (ILI) 
symptoms each year, and the mortality on average is over 36,000 annually.[1-2] In 
Delhi, India, a joint study by CDC, All India Institute of Medical Sciences, and the 
National Institute of Virology has shown that ILI cases are present throughout the year, 
although they peak in rainy and winter seasons.[3] It carries a significant economic 
burden through reduced productivity and high costs of health care.[4-7] A CDC study 
finds that for outpatient and non-medically attended individuals, acute respiratory 
infections cost 1%-5% of monthly per capita income in India. In contrast, cost of 
inpatient care can be as high as 6%-34% of monthly per capita income.[8] For 
developed countries, the annual cost of influenza is estimated to be between $1-$6 
million per 100,000 people, according to the World Health Organization.[9]  
 
In 2007, India established an Integrated Disease Surveillance Program (IDSP), which 
included a network of 12 regional laboratories, to minimize the threat of avian influenza 
and other highly infectious zoonotic diseases.[10] India faces some unique challenges 
in surveillance, prevention and control because of the seasonality of influenza at sub-
regional levels. This seasonal variation depends upon latitude, monsoon season, 
humidity and climatic factors of the regions. Acute respiratory infections are estimated to 
be 43 million per year, of which 4-12% are due to influenza.[11-12] Chadha et al.[13] 
estimated hospitalizations due to respiratory illnesses to be 160 per 10,000 persons in 
year 2011, and children under age 5 had the highest incidence of them.  
 
Given that influenza is environmentally-mediated and spreads through close proximity, 
population density is an important factor in its spread. In India, the average population 
density is about 1000 people per square mile; in the slums, it can be 10 to 100 times 
higher.[14] Larger household size and crowding make it easier to transmit 
infections).[15-18] For example, Baker et al.[16] find that meningococcal disease risk 
among children doubles with the addition of 2 adolescents or adults (10 years or older) 
to a 6-room house. Other than overcrowding, slums are characterized by their lack of 
medical services,[19-20] which makes slum residents highly vulnerable to infectious 
diseases. Diseases like cholera, malaria, dengue and HIV are common in slums across 
the world.[21-23] 
 
This research uses Delhi, the National Capital Territory of India, where 13% of its 13.8 
million people live in slum areas, as an example city to study the spread and control of 
influenza. Delhi is an interesting case study. It ranks fourth in the world in urban 
population, and, among the top 25 largest urban areas, it ranks tenth in population 
density. Moreover, the results are likely to be generalizable to other slum areas within 
and outside of India.  
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This paper is an extension of the work done in Chen et al.[4], which shows that slum 
populations have a significant effect on influenza transmission in urban areas. Ignoring 
the influence of slum characteristics underestimates the speed of an outbreak and its 
extent. However, Chen et al.[4] do not consider any interventions on the epidemic 
spread. The focus of this research is to study the effect of different intervention 
strategies on several subpopulations (slum, age and gender) in two different Delhi 
networks, i.e., original (referred to as Network 1) and refined (Network 2). 
 
The original network used in Xia et al.[24] studied the spread and control of influenza in 
Delhi using Network 1, which did not take into account the special attributes of the slum 
population, such as larger family sizes and different types of daily activity schedules. 
Chen et al.[4] used Network 2, the refined social network of Delhi, which accounted for 
slum demographics and slum activities, but did not study intervention strategies. In 
Network 2, there are 298 slum regions in Delhi, containing about 1.8 million people. 
 
The goals of this work focus on understanding the effects of pharmaceutical and non-
pharmaceutical interventions on epidemic outcomes. Pharmaceutical interventions (PI) 
include vaccinations, and non-pharmaceutical interventions (NPI) are social distancing 
measures such as school closure, quarantine and staying home. These effects are 
studied comparatively: (i) in Network 1 versus Network 2, overall and for subpopulations 
in each; and (ii) in the slum and non-slum regions of Network 2. Additionally, in a 
scenario where interventions can be applied to a limited number of individuals, we 
explore how resources should be split between slum and non-slum subpopulations in 
order to achieve the best outcomes with respect to total infection rate (i.e., the 
cumulative fraction of a population infected).  
 
METHODS 
 
We use an agent-based modeling (ABM) approach to simulate the spread and 
containment of influenza in social contact networks of Delhi, India. We compare two 
networks:  one considers slum-specific attributes, and the other does not. In this 
section, we describe the networks, the disease model for each agent, the interventions, 
and the heterogeneities of the problem that make ABM uniquely suited to study 
epidemics.  Throughout this manuscript, each agent in the ABM is an individual human. 
 
Social Contact Networks:  This study uses two synthetic social networks of Delhi, 
created in Xia et al.[24] and in Chen et al.[4]. Details on their construction can be found 
in Xia et al.[24], Chen et al.[4], Barrett et al[25], Bisset et al.[26] and references therein. 
The synthetic social network by Xia et al.[24] is called Network 1, and the more refined 
network developed in Chen et al.[4], Network 2.  
 
Network 1 was developed in part from Land Scan and Census data for Delhi, a daily set 
of activities of individuals, and the locations of those activities including geo-locations of 
residential areas, shopping centers, and schools, collected through surveys by 
MapMyIndia.com. By assigning activity locations to individuals’ activities, people are 
located at particular times at particular geographic coordinates (including office 
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buildings, schools, etc.) and within particular rooms of buildings. Next, contacts between 
individuals are estimated when each person is deemed to have made contact with a 
subset of other people simultaneously present at the same location. This gives rise to a 
synthetic social contact network where network edges represent these contacts.  
 
Network 2 models the slum regions in Delhi and assigns slum-specific attributes to the 
individuals whose homes reside in the slum polygons. Slum residents’ attributes and 
their daily sets of activities are collected through a ground survey in Delhi slums, by a 
vendor, Indiamart (www.Indiamart.com/trips). The slum polygons are obtained from 
MapMechanic.com. Individuals living in the slum regions are a part of the slum 
population. All other individuals are part of the non-slum population. Network 2 is a geo-
located, and contextualized social contact network of Delhi with slums integrated in it.  
 
Following are the main differences between the original network (Network 1) and the 
refined network (Network 2). The original social contact network treats the slum regions 
like any other region in Delhi in terms of assignment of demographics and individual 
activities, i.e. no special consideration is given to slum residents. The refined Network 2 
identifies 298 slum polygons (zones) in Delhi and assigns slum-specific demographics 
and activities to the individuals whose homes reside inside these polygons. Thus, the 
number of individuals is the same in both populations. The slum population constitutes 
about 13% (1.8 million) of the entire Delhi population of 13.8 million people. The main 
effects of integrating slums is that Network 2 has more home-related contacts due to 
larger family sizes and more outside contacts due to more daily activities outside home. 
Also, those individuals who reside outside of slum zones have the same activities in 
both networks. Overall, there are over 231 million daily interactions between pairs of 
individuals. Table S1 compares those two networks as well as data sources for slum 
and non-slum Delhi, India. (Table and figure numbers that are prefixed with ‘S’ are in 
the supplementary information (SI)). For example, the average degree increases from 
30.4 to 33.4 from Network 1 to Network 2, and the maximum degree increases from 170 
to 180.  We refer to Chen et al.[4] for more detailed information about the two networks. 
Several plots of properties and structural characteristics of Networks 1 and 2 are given 
in Chen et al.[27]. 
 
Disease Model: An SEIR, Susceptible (S), Exposed (E), Infectious (I) and Removed or 
Recovered (R) model is considered within each individual. Each node in the network 
represents an individual, and each edge represents a contact on which the disease can 
spread. A contact represents possible transmission between two people that are co-
located for some duration (based on their activity schedules). This is an approximation 
to model direct contact and short-distance environmentally-mediated transmission that 
might include direct physical contact, fomite mediated, and airborne transmission.[28]   
 
We start each epidemic simulation with 20 index cases, randomly chosen. (We find that 
results are not sensitive to the number of initial infections.) The detailed description of 
the SEIR model as well as the choices of transmissibility value, R0, the explicit 
incubation and exposed periods can be found in the supplementary information. This 
disease model has been used in other works such as Liao et al.[29], Marathe et al.[30]. 
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The transmissibility value for disease transmission is that for the strong influenza model 
in Chen et al.[4]. That work used mild, strong, and catastrophic influenza models, so we 
chose the intermediate transmissibility. This corresponds to base attack rates (i.e., 
cumulative infection fractions) of 0.42 and 0.48, respectively, in Networks 1 and 2. 
These rates are generally higher than those in some other studies that either compute 
experimental attack rates from cases or compute them in modeling studies such as this 
one. Attack rates used by past researchers for different strains of influenza include Asia 
[0.22 to 0.50],[31] Southeast Asia [0.11 to 0.31 in children [32]; 0.05 to 0.65 [33]], and 
India [0.111 to 0.235 [34]; 0.074 to 0.424 [35]; 0.045 to 0.294 [36]; 0.008 to 0.100 [37]; 
0.209 for various strains [13]]. The results of Chen et al.[4] indicate that the results here, 
for this particular transmissibility, will be qualitatively the same for other 
transmissibilities, but will scale down or up as transmissibility changes in the same 
direction. 
 
Interventions: This work considers three vaccination scenarios, i.e., vaccinate when 
cumulative infection rate is 0% (VAX0, i.e. vaccinate on day 1), 1% (VAX1), and 5% 
(VAX5). Three classes of social distancing strategies are considered: (i) stay-home 
(SHO) if infected, i.e. eliminate all non-home related contacts but continue to maintain 
contacts within the household; (ii) close-schools when cumulative infection rate has 
reached 1% (CS1) and when it has reached 5% (CS5), i.e. eliminate school related 
contacts; and (iii) (ISO), in which all contacts, including home contacts, of a person are 
eliminated when a person becomes infectious. For vaccination, five different compliance 
rates (10%, 30%, 50%, 70%, 90%) and two different vaccine efficacies (30% and 70%) 
are considered. 
 
VAX0, SHO, ISO are all fairly aggressive interventions because they are implemented 
either before a person gets infected or immediately upon becoming infectious.  These 
are actions taken at the individual or family level. For example, vaccination before the 
influenza season or isolating a sick child at home are family decisions. Even CS1 is an 
aggressive intervention in the sense that this action is taken by government officials 
based on aggregate school sickness levels—closing schools before any outbreaks is 
typically not done.  From these starting points, vaccinations when 1% or 5% of the 
population is infected (VAX1, VAX5), and closing schools when 5% of the population is 
infected are less aggressive treatments (CS5). The five levels of compliance are also 
variations on aggressiveness in treatments. 
 
These conditions and parameters are consistent with results from other studies and 
guidelines put out by international organizations.  A meta-study of immunization and 
slums [38] identifies several vaccination-related studies of slums in India.  Unfortunately, 
these studies are for other diseases such as Hepatitis B, measles, mumps, malaria, and 
typhoid fever.  Nonetheless, slum vaccination rates for children over these ailments 
range from 25% to 69% for full immunity and from 15% to 55% for partial immunity. 
Vaccination effectiveness for influenza-like illness (ILI) in India was determined to be 
about 33% to 36%.[39]  In 2012-2013, of 1000 pregnant women in Srinagar India, none 
were vaccinated against influenza.[40]  With regard to school closures, the World Health 
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Organization (WHO) states that school closures may be undertaken proactively (before 
an outbreak) or reactively (after influenza starts to spread).[41]  WHO recommends that 
school closure occur before 1% of the population becomes infected. It also 
recommends that people (students and staff) stay home when they feel ill. In another 
meta-study[42], it was found that school closure, effected when 0.1% of the population 
was infected, was twice as effective in reducing the total attack rate as school closure 
occurring after 1% of the population was infected.  Moreover, the percentage of people 
infected before school closure was triggered varied between 0.02% to 10% across 
several studies. 
 
When a susceptible node is vaccinated, its probability of getting infected by an 
infectious node is scaled down by the efficacy. If it becomes infectious, its probability of 
infecting susceptible nodes is also scaled down by the efficacy. In other words, both 
incoming and outgoing infection probabilities of vaccinated individuals are reduced by 
the vaccine efficacy.  Interventions are applied to slum residents, non-slum residents, 
and the entire region of Delhi. 
 
For each experiment, 25 replicates are simulated for 400 days, and their mean results 
are reported. The averages are time-point wise averages, e.g. the mean infection rate at 
day 100 is calculated by taking the average of the 25 infection rates that occur on day 
100 of each replicate. Table S2 summarizes all the interventions considered, and Table 
S3 contains all variables in simulations, including intervention parameters.  
 
Heterogeneities captured: There are several heterogeneous aspects to this problem 
that motivate the use of an ABM approach: (i) the 298 slum zones have populations that 
vary by more than four orders of magnitude in size; (ii) the geographic extent of slum 
zones differ; (iii) the slum zones are located at irregular spatial intervals throughout 
Delhi; (iv) the activity patterns of people living in slums are different from those in the 
non-slum region; and (v) each individual interacts with specific others based on co-
location. 
 
The implications of these heterogeneities include the following. First, the particular 
synthetic households that live within slums are predicated on the number of slum zones, 
their locations, and their spatial geometries. These homes have larger family size and 
hence more home contacts. Second, slum individuals have different activity patterns 
which change the co-located contacts of each slum person: that is, with whom they 
interact and for how long. For example, see the supplemental information of Chen et 
al.[27]. The average total contact durations by activity type and by slum/non-slum 
residents are provided, which show that non-slum people have greater contact 
durations for work, school, and college activities, but less for home and other types.  
Overall, a slum person has about 50% greater total contact duration per day compared 
to a non-slum person. The same supplemental shows that in the age range 20 to 60 
years (by year), females that live in slums have more contacts per day than their male 
counterparts. However, females whose homes are outside of slum regions have 
average number of daily contacts that are below their male counterparts. 
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RESULTS AND ANALYSIS  
Our results are grouped as follows. (1) Comparison of Network 1 and Network 2 for 
base case and intervention cases. (2) Results for both networks based on demographic 
classes, such as slum/non-slum, gender, and age groups, for a wider range of 
intervention strategies. (3) Comparison of Network 1 with the non-slum population of 
Network 2. (4) Effects of pharmaceutical and non-pharmaceutical interventions for a 
wide range of parameter values. (5) Effects of different resource allocation strategies.  
 
All differences are tested with the two-sample t-test and they are all statistically 
significant with p-values smaller than 2.2e-16. The 95% confidence intervals are given 
for each comparison.  Here is a brief summary of selected results with examples of 
mechanisms, to provide a high-level overview. Details of results follow this summary 
and these details matter because there are many factors (inputs) in a simulation whose 
interactions change results. 
 
(1) Ignoring the unique attributes of slums in a population overestimates the benefits of 
the interventions. For example, in the case of vaccination intervention (efficacy 30% and 
compliance 30%), the values for the epidemic size (i.e., cumulative percentage of 
infected), peak infection rate (i.e., maximum percentage of a population infected on any 
day), and time to peak are 33.1%, 3.0%, and 184 days, respectively, in Network 2, 
whereas they are 23.3%, 1.34%, and 286 days in Network 1. In relative terms, the 
epidemic size and peak infection rate are underestimated by 42.2% and 123.2% 
respectively, while the time to peak is overestimated by 35.7% in Network 1 (see 
Figures 1, 2 and Table S4). The larger family sizes for slum families in Network 2 and 
the increased number of edges result in larger outbreaks and faster time to peak 
infections. 
 
(2) Interventions are more effective in Network 1 than Network 2 for all types of 
interventions: vaccination, closing schools, staying home, and isolation. These trends 
also hold over wide ranges of efficacy and compliance (see Figures 3, 4, S1, S2 and 
S3). Hence, not accounting for slums gives overly optimistic results for the effectiveness 
of the interventions. The reduced average family size in Network 1 means fewer within-
home edges, which slows infection and reduces spreading. Closing schools and staying 
home interventions do not affect home edges. However, the magnitude of this effect 
varies with intervention conditions (e.g., compliance rate, time at which intervention is 
applied). 
 
(3) Cumulative infection rates by subpopulation in Network 2 show that slums sustain 
greater infection rates than non-slums under all intervention scenarios, sometimes by as 
much as 44.0%. See Figure 4 and Table S5 for more details. This is due to the greater 
household sizes in slums.  
 
(4) For Network 2, under a wide range of intervention compliance rates (10% to 90%), 
the isolation strategy is up to 32% more effective in containing an outbreak than 
vaccination (for 30% efficacy). Staying home is up to 18% more effective than 
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vaccination at 50% compliance. See Figure 3 and Table S6 for more details.  Isolation, 
although hard to implement from practical considerations, is most effective because 
edges to susceptible individuals are removed (isolation also provides a good 
comparative case). Differences between staying home and vaccination depend on 
compliance rates. 
 
(5) For Network 2, delay in triggering interventions has 7.3% to 44.0% more adverse 
effect in slums than in non-slum regions across compliance rates from 10% to 90%. See 
Figure 4 and Table S7 for more details. Early interventions mean actions are taken 
when outbreaks are smaller and are therefore more readily contained.  
 
(6) Comparison of Network 1 (Figure 3a) with the non-slum population (Figure 4b) of 
Network 2 shows that just the presence of slum specific activities and interactions with 
non-slum population makes social-distancing based interventions less effective in the 
non-slum regions of Network 2. 
 
(7) A full-factorial design that splits resources between slum and non-slum regions 
indicates that the most effective intervention is to give vaccines to slums and apply 
social distancing to non-slums. Applying vaccine and social distancing to slum regions 
is the next most effective intervention. See Figure 5. By applying social distancing to 
non-slums, these individuals are kept isolated from slum individuals that are infected.  
The greatest benefits accrue to the slum populations. 
 
 
Comparison between Networks 1 and 2: Base case versus interventions 

 
We start with a comparative analysis of the influenza epidemic, with and without 
interventions, on Network 1 and Network 2 to measure the impact of integrating slums 
in the population on epidemic measures. Figure 1 shows the average simulation time 
histories for the base case, and when vaccination is applied randomly to 30% of the 
population in each network with vaccine efficacy set at 30%. Mean infection rate is the 
daily fraction of infected individuals. It is the time-point wise average over 25 
simulations. For example, the mean infection rate at day 100 is calculated by taking the 
average of all 25 infection rates. Simulations for other vaccine efficacies and 
compliance rates give qualitatively similar results. Two sets of those results are shown 
in the supplemental information, see Figures S1 and S2. Note that Network 1 does not 
distinguish between slum and non-slum individuals, so the epidemic curve is not split by 
subpopulation. 
 
Results in Network 2 differ significantly from results in Network 1 for both the base case 
and intervention case. In Network 2, the epidemic starts earlier, peaks earlier, has a 
larger epidemic size and has higher peaks compared to the corresponding epidemic 
quantities in Network 1. Thus, if policy planners ignore slums and use Network 1 to 
plan, there will be a false sense of security and lack of urgency to implement 
interventions. For both the base case and the intervention case, ignoring unique 
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characteristics of the slums will result in an underestimation of the infections and the 
speed of spread. 
 

Figure 1 goes here  

 
For the intervention cases, the time to peak infection decreases by 35.7%, i.e. from 286 
days for Network 1 to 184 days for Network 2, meaning an influenza epidemic would 
peak roughly 100 days earlier than one would expect based on the results from Network 
1. For the base case, time to peak infection drops by 20.8%, i.e. 34 days reduction for 
Network 2 as compared to Network 1. 
 
Percentage changes and differences must be viewed cautiously, and to illustrate this 
point, we present data for the key parameters in Tables S4 and S8. The difference in 
the peak infection rate (i.e., the maximum fraction of daily infected individuals during the 
simulation) between Networks 1 and 2 for the base case is 2.2%, or 47.6% in 
percentage change (see Table S8). For the intervention case shown in Table S4, the 
difference between the two networks is less (1.7%), but the percentage change is more 
(123.2%) because the magnitudes of the peak infection rates are reduced when 
effective interventions are used. We make note of this here and mainly use the 
percentage change values in discussing results. For more detailed comparison between 
vaccination intervention and the base case in Network 1 and Network 2, we refer to 
Tables S7 and S9 and Figures S4 and S5. 
 
 
Comparison between Networks 1 and 2 based on individual demographic 
information 
 
We divide the Delhi population into strata by age, gender, and geographic home 
location (i.e., slum and non-slum), and analyze mean cumulative infection rates by 
subpopulation for the two networks. In simulations, individuals are chosen at random in 
the entire network for vaccination. Various vaccination scenarios are investigated. 
 
Figure 2 displays the cumulative infection rate results. On the x-axis, ‘Total’ refers to the 
entire population of Delhi. There are three breakdowns of the entire population.  ‘Slum’ 
and ‘Non-slum’ refer to slum and non-slum regions, respectively. ‘Male’ and ‘Female’ 
denote the total number of males and females in Delhi, respectively. Four age groups 
are considered: ‘Preschool’ (0-4), ‘School’ (5-18), ‘Adult’ (19-64), and ‘Senior’ (65+). The 
black lines correspond to the mean cumulative infection rates for the base case. Other 
curves indicate vaccination strategies under different levels of vaccination rate (v) and 
vaccine efficacy (α). Two vaccination rates (30%, 50%) and two vaccine efficacy rates 
(30%, 70%) are shown in the figure. 
 
For Network 1, vaccination rate of 50% or higher stops the epidemic for all categories of 
individuals, regardless of vaccine efficacy. An efficacy of 70% also contains the 
epidemic, given a vaccination rate of at least 30%. In comparison, for Network 2, either 
a vaccination rate of 70% is required (not shown in plot for clarity) or a vaccination rate 
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of 50% combined with a vaccine efficacy of 70% is required to stop the epidemic for all 
categories of individuals.  
 
In Network 1, slum and non-slums are treated the same so the infection rates are 
identical in Figure 2. However, all scenarios in Network 2 show a higher burden of 
disease on the slum population. This is due to the fact that slum households have larger 
family size and more contacts on average than households in non-slum areas, see 
Chen et al.[27] As shown later, we find similar patterns of infection in slum and non-
slum subpopulations for other interventions such as ‘close-schools’ and ‘stay-home’.  
 
The results in both Figure 1 and Figure 2 indicate that ignoring the effect of slums 
results in overestimation of the benefits of interventions in terms of reduction in the 
mean cumulative infection rate and peak infection rate, as well as the time to peak. This 
optimism holds for slum, non-slum and total population under various levels of 
vaccination rates and efficacy rates in Network 2. See Table S10 for more detailed 
comparison of results between slum and non-slum in Network 2. 
 

Figure 2 goes here 

 
Comparison between Networks 1 and 2 across a wide range of intervention 
strategies 
 
Next, we consider a variety of intervention strategies for comparative analysis. We 
consider vaccination, school closure, stay home, and isolation strategies. For vaccines, 
three different trigger points are considered: when cumulative infection rate reaches 0% 
(VAX0), 1% (VAX1) and 5% (VAX5). For close-schools, two trigger points are used: 
when the cumulative infection rate reaches 1% (CS1), and 5% (CS5). Under the stay at 
home (SHO) strategy, all non-home activities and interactions are eliminated but all 
contacts within the household are maintained. Under isolation (ISO) an individual has 
no contact with other individuals (even home interactions are eliminated). The stay-at-
home and isolation interventions are implemented for compliant infectious individuals, 
after they become infectious, for the entire infectious duration. 
 
Figure 3 displays average cumulative infection rates in Network 1 and Network 2 for a 
wide range of intervention strategies.  For each strategy, five different compliance rates 
are considered, i.e., 10%, 30%, 50%, 70% and 90%. The cumulative infection rates 
(i.e., fractions) are displayed as larger numbers in boxes, while smaller-font numbers 
are the actual number of infected individuals. Darker colors correspond to higher 
infection rates. Note that compliance rate is simply the vaccination rate for strategies 
VAX0, VAX1 and VAX5. Compliant individuals are selected at random from the entire 
population. The ‘Base’ values do not vary with compliance because the base case has 
no intervention. Note that all heat maps in this paper use the same color scheme so that 
colors can be compared across figures. 
 
Since Network 1 does not distinguish between slum and non-slum populations, we only 
compare the two networks for the whole of Delhi. The general pattern is similar for both 
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networks. However, all interventions have a larger effect on Network 1 under the same 
compliance rate (that is, corresponding numbers are uniformly lower for Network 1 than 
for Network 2). The infection rates drop to zero at a smaller compliance rate for VAX0, 
stay-home, and isolation strategies in Network 1 as compared to those for Network 2. 
 

Figure 3 goes here 

 

At a high level, among all intervention strategies, early vaccination (VAX0 and VAX1), 
social isolation (ISO), and stay home (SHO) are more effective than the other 
strategies, and this is more readily observed at higher compliance rates.  For these 
more effective strategies, the interventions per person are implemented right after (or 
very shortly after) the person is infected.  For example, SHO is implemented 
immediately after a person becomes infectious. Thus, a person that becomes infectious 
can infect their family members, but if these other members become infectious, then 
they, too, will be confined to home.  Thus, home-bound people can infect their family 
members, but no one beyond their family (for 100% compliance). As compliance rate 
increases, this effect approaches, roughly, a “family-based” isolation intervention 
(similar to ISO), consistent with the results in Figure 3 and in subsequent results. 
 
 

Effect of vaccination versus social distancing on slum and non-slum 
subpopulations 
 
We now compare the impact of vaccination and social distancing on slum and non-slum 
subpopulations from Network 2. Social distancing interventions are close-schools, stay-
home, and isolation. 
 
The mean cumulative infection rates (and actual numbers of infections underneath) for 
each compliance level are shown in the heat maps in Figure 4 for slum and non-slum 
populations in Network 2. The axis labels are identical to those in Figure 3, as is the 
color scheme of the cells. The base case values are constant since there is no 
intervention and hence no compliance. Darker colors correspond to higher infection 
rates. 
 
Compared to the base case, all interventions reduce infection rates to some extent. As 
the compliance rate increases, infection rates drop for all interventions. Infection rates 
drop to zero in slum and non-slum regions at a compliance level of 70% or higher, 
under SHO, ISO, and VAX0 strategies. Early interventions or lower trigger levels reduce 
the infection rates significantly, and this effect increases with compliance rate. 
 
The following observations can be made from Figure 4. Social distancing, i.e. SHO, at 
low and intermediate compliance and CS at all compliance levels, are less effective in 
slum regions as compared to non-slum regions. This is because CS only eliminates 
school interactions for those attending school, and there are fewer school edges in 
slums compared to non-slum areas, as shown in Figure S6. The effectiveness of CS in 
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slums is mitigated by the greater average number and duration of interactions at home 
in slums as compared to non-slums (see Figure S6 and Chen et al.[27]). Thus, if a 
person is sick, there is a greater chance of transmitting contagion to family members, 
who then may have activities outside of school, thus circumventing the CS intervention. 
At high compliance, SHO is effective because all interactions outside home (including 
school) are eliminated.[27] 
 
These observations are also supported by Figure S7, which contains numbers of edges 
used to transmit contagion for a base-case run of Figure 1. There are several effects 
that bear on the above observations. First, in the cases of activities “work”, “other”, and 
“school”, the number of edges transmitting contagion from slums to non-slums is greater 
than the reverse: from non-slum to slum. Second, in two of these three activity 
categories, there is more slum to non-slum transmissions than slum to slum 
transmissions. Edges of transmission for slum dwellers is dominated by home 
interactions. The infected homes in slums serve as launching points to drive disease to 
non-slums through slum to non-slum interactions. (There are no ``mixed’’ edges at 
homes, and shopping and college activities have low levels of slum activity because of 
socio-economic factors.) We will see the effects of these mechanisms in Figure 5, but 
we now return to Figure 4. 
 
Isolation works well at 30% or higher compliance rates, but it is a much harder strategy 
to implement, especially in slums. However, it is considered here for comparative 
analysis. Vaccination also produces marked decreases in cumulative outbreak sizes as 
compliance increases. However, close-school is generally less effective because this 
intervention removes only a fraction of interactions for a fraction of the population, i.e. 
school aged children. Simulations were also run for 70% vaccine efficacy. Since results 
are qualitatively similar for those parameters, these plots are provided in Figure S3. 
 

Figure 4 goes here 

 
Comparison between Network 1 and non-slum areas of Network 2 
 
Note that Network 1 treats all parts of the region as non-slum, i.e. all individuals follow 
non-slum activities and demographics. In order to capture the additional disease risk to 
the non-slum population that arises from the interactions with the slum population, we 
compare Network 1 in Figure 3a with the non-slum population of Network 2 in Figure 4b. 
In base case, the additional disease risk to the non-slum population goes up from 42% 
to 45%. However, the beneficial effects of social distancing strategies drop by a large 
amount, e.g. close school strategies are 5-20% less effective in the non-slum areas of 
Network 2. This effect changes non-linearly with the compliance rate. As compliance 
rate goes up, the difference between performance of Network 1 and non-slum parts of 
Network 2 goes up in CS1 and CS5. This implies that in Network 2, non-slum population 
requires much higher levels of compliance to achieve the same results as in Network 1. 
This difference is less stark for vaccination based interventions, i.e. VAX0, VAX1 and 
VAX5. This is expected since the effect of vaccination is less dependent on interactions; 
it is only through herd immunity that interactions come into play.  
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Constrained resource allocation among slum and non-slum areas  
 
We consider a specific scenario under Network 2. If only a limited number of vaccines 
are available, and only a certain fraction of individuals can be kept home during an 
epidemic, how should these interventions be applied to the slum and non-slum regions 
so that the epidemic can be controlled effectively? Given that slum residents’ attributes 
differ from those of non-slum residents, is there a strategy that works better in slums 
than in non-slum areas? The total population in Delhi is about 13.8 million, which 
includes about 1.8 million slum residents. We assume that only 10% of the total 
population can be covered by interventions, half through vaccination and the other half 
through stay home. Enough vaccines are available to cover 5% of the total population 
(i.e. 692,183 vaccinated, corresponding to about 38.25% of slum or 5.75% of non-slum 
population), and 5% of the individuals can stay home (692,183 individuals; this is 
applied to only the infected individuals). Note that an individual may receive a vaccine 
and also stay at home if this individual, in spite of being vaccinated, gets infected. 
 
We consider 4 different ways of applying interventions to 10% of the total population: (i) 
apply both interventions to slums, i.e. give all vaccines to slums and apply SHO only in 
the slums (VsSs); (ii) apply all interventions to non-slum areas (VnSn); (iii) give vaccines 
to slums and SHO to non-slums (VsSn) and (iv) give vaccines to non-slums and apply 
SHO to slums (VnSs). 
 
For both types of intervention, the same number of individuals is chosen randomly from 
slum or non-slum areas. 10% of the total Delhi population amounts to 76.5% of slum 
population, 11.5% of the non-slum population, or a combination of 38.25% of the slum 
and 5.75% of the non-slum population (i.e. half from slums and half from non-slums). 
Figure 5 shows the mean cumulative infection rates, as well as the number of infected 
from the entire population of Delhi, the slums, and non-slum areas under each of the 
four scenarios. The first 3 columns refer to Network 2 and the last column shows results 
for Network 1. Since Network 1 does not distinguish between slum and non-slum areas, 
the infection rates in each subpopulation remain the same as for the total population. 
 
Comparison of the last two columns in Figure 5 indicates that the non-slum population 
in Network 2 faces 3-5% additional disease risk compared to Network 1 in all cases. 
This is primarily driven by the increased interactions within slum populations and 
between slum and non-slum populations in Network 2.  
 
In Figure 5, all four intervention strategies produce essentially the same total attack 
rates (around 43% to 44%), a drop of 4% to 5% over the base case.  The dominant 
effect on Network 2, is the benefits that primarily accrue to the slum population for the 
VsSs and VsSn strategies because they drive down the fraction of infected slum 
residents from 0.74 to 0.55 or 0.58. Also, as described in the context of Figures 4 and 
S6 above, social distancing of the non-slum residents helps to isolate them from the 
infected slum residents. Results such as these may be helpful to policy makers in 
breaking the poverty trap in economically poor regions.[43] 
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Also, the strategy of vaccinating non-slums and social distancing slums (VnSs) is not as 
effective as the interventions in rows 1 and 2 of Figure 5. This is a counterintuitive 
result, since the density of population is much higher in the slums, which may lead to 
the belief that social distancing in slums will break up the dense clusters. However, a 
careful examination shows that keeping slum residents home is not an effective social 
distancing strategy because their family size is, on average, almost 3 times the family 
size of non-slum households.[27] The high level of mixing at home makes social 
distancing ineffective in slums unless the infected individual is completely isolated. 
However, complete isolation is not viable in slum areas where the entire household may 
live in a single room.  
 
 
 

Figure 5 goes here 

 
DISCUSSION  
 
With slum populations expected to grow to 2 billion by 2030,[44] it is becoming 
increasingly urgent to understand how to control the spread of infectious diseases in 
slum areas and measure its effect on urban populations. To our knowledge, a detailed 
study of interventions to control influenza epidemics in slums, using an agent-based 
simulation model, has never been done before. Slum conditions are important for a city 
beyond the direct effects of disease transmission. For example, civil wars may be 
precipitated or exacerbated by disease outbreaks because they decrease social health 
and welfare.[45] 
 
Even though slum regions contain only 13% of the total population of Delhi, Chen et 
al.[4] show that omitting their attributes leads to underestimation of the overall infection 
rate and the peak infection rate of the epidemic. This paper extends that work by 
evaluating the differential impact of interventions on slum and non-slum regions. 
Various vaccination and social distancing strategies are analyzed under different 
scenarios that show that the slum population is more prone to infections under the same 
control measures. Furthermore, taking account of slum populations significantly alters 
the disease dynamics in the entire population. Differences in key measures are 
demonstrated between the cases of accounting for slum populations and not:  e.g., a 
100% increase in the peak attack rate in some cases when slum regions’ characteristics 
are taken into account, compared to the case when they are ignored. 
 
Figure 4, which compares infections in slum with non-slum areas, shows that at very 
high compliance rates, some interventions can be equally effective in both slums and 
non-slums. However, such high compliance rates are typically not feasible due to 
practical realities on the ground, and also because they require timely diagnosis of 
infected cases. For SHO to be effective, the coverage rate needs to be 70% or more in 
both slums and non-slums, and the diagnosis of the infected individuals needs to be 
correct and immediate. In other words, effective control of a contagious epidemic in a 
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high-density place like Delhi, would require either early and drastic action (e.g. ISO) or a 
highly compliant set of individuals, or a combination of these features. 
 
This work overall demonstrates the power of agent-based and population modeling to 
evaluate complicated interaction-based epidemiological phenomena. Clearly, there are 
limitations to this work (several are itemized below). But these agent and population 
approaches provide a platform for adding additional complexity. All of the figures 
demonstrate that quantitative results depend on complicated interplay among inputs. 
These results are important because they inform policy decisions. An equally important 
benefit of this type of work, but not often stated, is developing intuition about epidemic 
dynamics (in this case, with the effects of slums), to enable decision makers to reason 
about nuanced interactions among effects to a degree that is hard to obtain with other 
approaches that lack this level of detail. However, we believe that other modeling 
approaches may also be valuable in understanding epidemic dynamics in slum 
populations. 
 
Despite the detailed modeling effort, there are limitations of this work and areas for 
improvement in the future. For example: (1) Examination of different population level 
base attack rates derived from different transmission probabilities. (2) Different 
susceptibilities and infectivity for individual agents; e.g., based on age. (3) Effects of 
asymptomatic infections (although we have addressed this to some extent with 
compliance and efficacy of interventions). (4) Seasonal effects.[46-47] (5) Effects of 
immunity for an individual from previous infections (in previous seasons). (6) Evaluation 
of interaction of different strains from season to season. (7) Comparison of tropical 
versus subtropical factors. (8) Evaluation of a specific outbreak scenario. (9) Impact of 
sickness on absenteeism from work and its economic ramifications. (10) Effects on rural 
versus urban populations. (11) Using combinations of interventions rather than one at a 
time; this was only done here in Figure 5. However, to disambiguate results, it is 
prudent to first examine individual interventions. (12) Effect of changing disease 
transmission rate for different activity types. (13) Effect of changing contact times at 
different locations. (14) To capture close-proximity transmission, one could use actual 
physical proximity. Here, we use colocation.  Finally, just as changes in modeling details 
can change model results, so, too, changes in the conditions in actual outbreaks can 
change results; some of these factors are listed above.  It is essentially impossible to 
capture all of these effects—many of which are unknown—down to the level of  
individual humans. 
 
Public health implications: This research demonstrates that modeling slum populations 
is important, not only for understanding disease dynamics, but also for designing 
effective control measures. Ignoring the influence of slum characteristics on their urban 
environment will significantly underestimate the speed of an outbreak and its extent, 
and hence will lead to misguided interventions by public health officials and policy 
planners. Lessons from this research can be applied in the field and observations 
collected from the field can provide valuable data to improve the models and validate 
the results. For example, our results show that a slum resident has about 50% greater 
total contact duration per day compared to a non-slum resident. This makes social 

Page 16 of 44

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Main manuscript 

 17

distancing based interventions more taxing in the slum population. Public health policy 
makers may want to subsidize pharmaceutical resources for the slum population to 
make them more affordable. Similarly, we find women in slums have a higher number of 
contacts per day than their male counterparts whereas in non-slum regions, women 
have a fewer number of daily contacts than their male counterparts. This kind of 
information can be used to prioritize the distribution of limited resources, e.g. women 
could be given preference over males for vaccination in slum areas. This research 
provides simulation-based evidence that in general social distancing strategies are 
ineffective in slums because of a large number of contacts at home. Unless one applies 
complete isolation, which is not feasible in slums, just staying at home still keeps a large 
number of contacts and pathways of spread intact.   
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FIGURE 1: Epidemic curves for base case and vaccination case. Each time point in the 
curve is an average over 25 replicates. The vaccines are given randomly to 30% of the 
entire population and the vaccine efficacy is 30%. For Network 2, epidemic curves are 
shown for total population and slum and non-slum subpopulations. ‘Intervene Total’ 
refers to the epidemic curve of the entire Delhi population when the vaccine intervention 
is applied. ‘Intervene Slum’ refers to the epidemic curve for just the slum population, 
and ‘Intervene Non-slum’ refers to the epidemic curve for just the non-slum population 
for the intervention case. Epidemic curves for a variety of compliances and efficacies 
are reported in Figures S1 and S2. 
 

FIGURE 2: Mean cumulative infection rates for different subgroups in the two networks. 
Two vaccination rates (v = 30%, 50%) and two vaccine efficacy rates (α = 30%, 70%) 
are considered. Individuals are chosen at random in the entire network for vaccination 
on day 0. Mean infection rates are calculated within each group. The last several lines 
in the plot for Network 1 are overlapping at the bottom because the mean infection rates 
are almost zero under those scenarios. ‘Total’ refers to the entire population of Delhi. 
‘Slum’ and ‘Non-slum’ refer to slum and non-slum regions, respectively. ‘Male’ and 
‘Female’ denote the total number of males and females in Delhi, respectively. Age 
groups are denoted by ‘Preschool’, ‘School’, ‘Adult’, and ‘Senior’. 
 

 

       (a) Total Delhi Network 1  (b) Total Delhi Network 2            
 
Figure 3. Mean cumulative infection rates under different interventions for Network 1 
and Network 2. The larger font numbers are fractions of populations that are infected 
and the smaller font numbers are counts of infected individuals. Colors of the boxes 
correspond to the values of the large numbers (i.e., fractions of infected), and the same 
scheme is used for both plots for comparisons—and for all plots in this paper.  Five 
different compliance rates are examined (10%, 30%, 50%, 70% and 90%), and 4 types 
of intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and 
isolation (ISO)) are considered. For vaccines, three different trigger points are 
considered: when the cumulative infection rate reaches 0% (VAX0), 1% (VAX1) and 5% 
(VAX5) of the total population. The vaccine efficacy is set at 30%. For close-schools, 
two trigger points are used: when cumulative infection rate reaches 1% (CS1) and 5% 
(CS5). Compliant individuals are selected at random from the entire Delhi population, 
and the cumulative infection rates are calculated for each network. 
 

 
(a) Slum           (b) Non-slum 

 
Figure 4. Heat map of cumulative infection rates in slum and non-slum regions of 
Network 2 under different intervention strategies. The colors of boxes correspond to the 
larger numbers in the boxes—the cumulative infection rates—and the two plots use the 
same scheme for comparisons.  Darker colors correspond to higher infection rates. The 
smaller font numbers are counts of infected individuals. The vaccination efficacy is fixed 
at 30%. Five different compliance rates (10%, 30%, 50%, 70% and 90%) and 4 types of 
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intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and 
isolation (ISO)) are considered. For vaccines, three different trigger points are 
considered: when cumulative infection rate reaches 0% (VAX0), 1% (VAX1) and 5% 
(VAX5). For close-schools, two trigger points are used: when the cumulative infection 
rate reaches 1% (CS1) and 5% (CS5). Compliant individuals are selected randomly 
from the entire Delhi population, and the mean infection rates are calculated separately 
for the slum and non-slum subpopulations. Although not reported here, qualitatively 
similar results are found for other transmission rates, as well as for higher vaccine 
efficacy (70%). Base is the baseline case with no interventions. The smaller-font 
numbers under the infection rate show the actual number of infected individuals.  
 

FIGURE 5: Mean cumulative infection rates for each category listed on the x-axis, for 
Network 2 and Network 1, under four different intervention scenarios. The color scheme 
of the boxes are based on the large values in the boxes—the cumulative infection rates. 
Darker colors correspond to higher infection rates. Smaller font values are the number 
of infected individuals. The vaccine efficacy is set at 30%. VsSs refers to the case when 
vaccines and social distancing are both applied to slum residents; VnSn refers to the 
case when vaccines and social distancing are applied to non-slum residents. Similarly, 
VsSn means vaccines are given to slums and stay home is applied to non-slums; and 
VnSs means vaccines are given to non-slums and stay home is applied to slums. Base 
refers to the case where no intervention is applied. The smaller-font numbers under the 
infection rates show the actual number of infected individuals in each category listed on 
the x-axis.  
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Presentation of Results. 
 
For each set of input parameters, 25 replicates were run using agent-based simulation 
and the results presented are the average values over the 25 replicates. Also, 95% 
confidence intervals (CIs) are given when appropriate. 
 
Comparisons Between Network 1 and Network 2. 
 
Table S1 shows some differences between network1 and network 2 due to their 
different ways of modeling slum population. Note that these two networks are the same 
ones as those used in Chen et al.[1]. Further comparisons between the two networks 
are found in Chen et al.[2]. 
 
Table S1. Comparison of two networks as well as data sources for slum and non-slum 
Delhi, India. 

 
Network 1 Network 2 

Slum Non-slum Slum Non-slum 

Population Size 0 13.8 million 1.8 million 12 million 

Average Household 
Size of Slum Region 5.2 15.5 

Daily Activities 33,890,156 39,077,861 

Number of Edges 210,428,521 231,258,772 

Average Degree 30.4 33.4 

Maximum Degree 170 180 

Data Sources MapMyIndia.com 
MapMyIndia.com 

Indiamart.com 
MapMechanic.com 

 
Network 2 contains 298 slum zones, while network 1 models the whole population as 
non-slum. For network 1, the non-slum demographics and activities data is collected by 
survey through MapMyIndia.com. While for slum population, we collected additional 
data by Indiamart.com and MapMechanic.com for slum demographics and activities as 
well as slum polygons. More detailed demographic and activity differences can be found 
in the Chen et al.[1] 
 
Terminology and Abbreviations for Interventions. 
 
Table S2 contains abbreviations for different interventions and their meanings. Stay-at-
home (SHO) and social isolation (ISO) interventions are applied to a person 
immediately after they become infected, while close-schools (CS) and vaccinations 
(VAX) may be applied after a specified fraction of the total population has been infected. 
 
Table S2:  Summary of abbreviations for interventions and their meanings. 
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Abbreviation Definition 
CS Close-schools: School-related interactions are eliminated. 
CSx Close-schools is implemented after the total fraction of the population 

that has been infected reaches x. 
ISO Social isolation: a person who is socially isolated does not interact with 

any other person, even people in their home.  Isolation is triggered only 
after a person becomes infectious. 

SHO Stay at home: All out-of-the-home activities for this person are 
eliminated, and this person only interacts with others at home. Stay at 
home is triggered only after a person becomes infectious. 

VAX Vaccination: a person who is vaccinated has a reduced probability of 
contracting the virus.  

VAXx Vaccination of an individual occurs after the total fraction of the 
population that has been infected reaches x. 

 
Table S3 contains the variables used in simulations. The transmissibility corresponds to 
strong flu in Chen et al.[1]  For vaccination, efficacy is either 30% or 70%. That is, for 
30% efficacy, a person who gets vaccinated has reduced their susceptibility to infection 
by 30%.  
 
Table S3:  Summary of parameters and values used in simulations. 

Category Values 
Networks of Delhi Network 1 (does not model slums); Network 2 (models 

slums). 
Seeding 20 people selected randomly over the entire population at 

time 0 as index cases. 
Transmissibility 0.000027. 
Intervention 
approaches. 

Base case (no intervention); close-schools (CS); stay-home 
(SHO); isolation (ISO); vaccination (VAX). 

Intervention/compliance 
rates. 

10%, 30%, 50%, 70%, 90%. 

Efficacy of vaccination 
intervention. 

30%, 70%. 

Intervention trigger time Cumulative infection rate reaches 0%, 1% and 5%. 
Simulation replicates 25 
 
 
The Agent Epidemic States and Disease Model. 
 
An SEIR, Susceptible (S), Exposed (E), Infectious (I) and Removed or Recovered (R) 
model is considered within each individual.  An infectious person spreads the disease to 
each susceptible neighbor independently with a probability referred to as the 
transmission probability, given by 
 

p = λ (1 – (1 –τ) Δt), 
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where λ is a scaling factor to lower the probability (e.g., in the case of vaccination), τ is 
the transmissibility and Δt is the duration of interaction in minutes. Durations of contact 
are labels on the network edges. A susceptible person undergoes independent trials 
from all of its neighbors that are infectious. The transmission probability is a function of 
the number and duration of contacts.[3] This is selected to simulate an Influenza model 
resulting in a R0=1.26 (cumulative attack rate 42%, corresponding to a transmissibility of 
0.000027 per minute of contact time) for Network 1, and R0=1.39 (cumulative attack rate 
48%) for Network 2.[4] This transmissibility value is used uniformly throughout this study 
and corresponds to the probability at which an infectious node infects a susceptible 
node per minute of contact. 
 
At each time (day), if an infectious person infects a susceptible person, the susceptible 
person transitions to the exposed (or incubating) state. The exposed person has 
contracted Influenza but cannot yet spread it to others. The incubation period is 
assigned per person, according to the following distribution: 1 day (30%); 2 days (50%); 
3 days (20%). At the end of the exposed or incubation period, the person switches to an 
infected state. The duration of infectiousness is assigned per person, according to the 
distribution: 3 days (30%); 4 days (40%); 5 days (20%); 6 days (10%). After the 
infectious period, the person recovers and stays healthy for the simulation period. This 
sequence of state transitions is irreversible and is the only possible disease 
progression. 
 
Epidemic Curves for Other Interventions, for Varying Efficacy and Compliances. 
 

  
 
Figure S1: Epidemic curves for the base case and the vaccination case. The vaccines 
are given randomly to 50% of the entire population, and the vaccine efficacy is assumed 
to be 30%. The transmissibility is 0.000027. 
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Figure S2: Epidemic curves for the base case and vaccination case. The vaccines are 
given randomly to 10% of the entire population and the vaccine efficacy is 70%. The 
transmissibility is 0.000027. 
 

    
 

(a) Total Delhi             (b) Slum   (c) Non-slum 
 
Figure S3. Heat map of mean cumulative infection rates in Delhi, and slum and non-
slum regions under different intervention strategies for Network 2. The vaccination 
efficacy is fixed at 70%. Five different compliance rates, i.e., 10%, 30%, 50%, 70% and 
90% and 4 types of intervention strategies, i.e. vaccination (VAX), close-schools (CS), 
stay-home (SHO) and isolation (ISO), are considered. For vaccines, three different 
trigger points are considered: when cumulative infection rate reaches 0% (VAX0), 1% 
(VAX1) and 5% (VAX5). For close-schools, two trigger points are used i.e. when 
cumulative infection rate reaches 1% (CS1) and 5% (CS5). Compliant individuals are 
selected randomly from the entire Delhi population and the mean cumulative infection 
rates are calculated separately for the total population, and slum and non-slum 
subpopulations. Base is the baseline case with no interventions. The smaller-font 
numbers under the infection rate show the actual number of infected individuals. Darker 
colors correspond to higher infection rates. 
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Tabulations of Basic Results: Comparisons between Networks 1 and 2 for 
Compliance of 30% and Efficacy of 30%. 
 
Table S4 shows results when 30% of the population that is selected uniformly at 
random is vaccinated with a vaccine that is 30% effective. The contrast between the two 
populations is even greater when considering interventions. The peak infection rate of 
the entire population increases by 123.2% (95% CI: 122.7%-123.7%) in Network 2 
compared to Network 1 for the intervention, versus 47.6% difference between the 
networks in Table S8. The time to peak decreases by 35.7% (95% CI: 32.9%-38.8%) in 
Network 2 compared to that in Network 1, for the intervention case, compared to only 
20.84% percentage change between the two Networks for the base case in Table S8. 
The cumulative infection rate (or attack rate) is also underestimated, which is 42.2% 
(95% CI: 41.5%-42.8%) greater on average in Network 2 compared to Network 1 for the 
intervention case.  Hence, the differences between key epidemic results for Networks 1 
and 2 that are generated for the intervention case are even more pronounced than they 
are for the base case. These values are all statistically significant.  
 
Table S4: Comparisons of key epidemic parameters for Networks 1 and 2 for a 
vaccination intervention before the epidemic starts (VAX0), where the vaccine efficacy 
is 30% and the compliance rate is 30%. 

Vaccination Network 1 Network 2 Compare-absolute Compare-relative 
Time to Peak 286 184 102 

(95% CI: 94-111) 
35.7% 

(95% CI: 32.9%-38.8%) 
Peak Infection 

Rate 
1.34% 2.99% 1.65% 

(95% CI: 1.64%-1.66%) 
123.19% 

(95% CI: 122.69%-123.65%) 
Cumulative 

Infection Rate 
23.3% 33.1% 9.82% 

(95% CI: 9.67%-9.96%) 
42.17% 

(95% CI: 41.51%-42.77%) 
 
 
Table S5 shows the effect of delay in applying interventions. The numbers show the 
percentage difference in cumulative infection rate in slums and non-slums of Network 2 
for the specified interventions and compliance rates at different trigger levels.  For 
example, the value 30.55% at 0.1% compliance means that for intervention close-
schools, where this intervention is implemented after 5% of the total population is 
infected, the fraction of people in slums that get infected is 30.55% greater than the 
fraction of non-slum residents who get infected. 
 
Table S5.  Differences of epidemic size between slum and non-slum regions for 
Network 2 for base case (no intervention); close-schools (CS) after 1% total outbreak 
fraction (CS1) and after 5% total outbreak fraction (CS5); stay at home (SHO); social 
isolation (ISO); vaccination (VAX) after 1% total outbreak fraction (VAX1) and after 5% 
total outbreak fraction (VAX5), under various compliance rates. The vaccination efficacy 
is 30%. 

Compliance Base CS5 CS1 SHO ISO VAX5 VAX1 
0.1 29.30% 30.55% 31.94% 31.06% 28.85% 29.37% 29.27% 
0.3 29.30% 32.52% 37.03% 34.18% 5.31% 28.85% 28.21% 
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0.5 29.30% 33.67% 41.07% 20.16% 0.00% 26.72% 24.62% 
0.7 29.30% 34.23% 42.57% 0.01% 0.00% 21.94% 15.87% 
0.9 29.30% 35.07% 43.95% 0.00% 0.00% 18.31% 7.25% 

 

         
Table S6 examines the difference in effects of interventions on the cumulative 
infection rate in Network 2. These data use both the stay home (SHO) and the 
isolation (ISO) interventions as base cases. Each entry represents the difference 
between the cumulative infection rates for the specified pharmaceutical 
interventions and SHO or ISO. For example, 18.03% means that the cumulative 
infection rate for vaccinating after 5% of the population is infected, is 18.03% 
greater than that for the intervention of SHO; 31.92% means that the cumulative 
infection rate for vaccinating after 5% of the population is infected is 31.92% 
greater than that for the intervention of ISO. Thus, the larger the magnitude of a 
positive number, the greater the effectiveness of SHO or ISO compared to the 
specified pharmaceutical intervention. 

        

 
Table S6. Differences in epidemic size between stay at home (SHO) interventions, 
social isolation (ISO) interventions and pharmaceutical interventions (VAX0, VAX1, 
VAX5), under various compliance rates.  The compliance rate and efficacy for 
vaccination is 30% and 30%, respectively. 
Compliance Vax5-SHO Vax1-SHO Vax0-SHO VAX5-ISO VAX1-ISO VAX0-ISO 

0.1 0.71% 0.29% 0.17% 4.92% 4.49% 4.38% 
0.3 4.15% 2.39% 1.89% 31.92% 30.17% 29.66% 
0.5 18.03% 13.51% 11.35% 25.96% 21.44% 19.28% 
0.7 16.82% 9.75% 0.13% 16.82% 9.76% 0.13% 
0.9 13.13% 4.01% 0.00% 13.13% 4.01% 0.00% 

 
Effect of intervention on Network 2, With and Without Interventions.  
 
The comparison between vaccination intervention and the base case in Network 2 is 
detailed in Table S7 below.  
 
In Network 2, for the total population, vaccination delays the time to peak infection by 
43.27% (95% CI: 40.14%-46.41%) relatively, from 128 to 184 days on average, while 
the peak infection rate is reduced by about 3.88% from 2.99% to 6.87% on average 
(56.47% relatively with 95% CI: 56.35%-56.56%). The total infection rate is reduced by 
15.31% from 33.12% to 48.43% (31.62% relatively with 95% CI: 31.57%-31.67%). 
 
In slum regions in Network 2, vaccination delays the time to peak infection by 43.09% 
(95% CI: 39.78%-46.4%) relatively, from 123 to 176 days on average, while the peak 
infection rate is reduced by about 5.70% from 5.42% to 11.12% on average (51.26% 
relatively with 95% CI: 50.88%-51.64%). The total infection rate in slums is reduced by 
16.35% from 57.53% to 73.88% (22.13% relatively with 95% CI: 22.07% to 22.19%). 
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In non-slum regions in Network 2, the time to peak is delayed by 43.44% (95% CI: 
40.32%-46.56%) relatively, from 130 to 186 days on average, while the peak infection 
rate is reduced by about 3.68% from 2.69% to 6.36% on average (57.79% relatively 
with 95% CI: 57.64%-57.94%). The total infection rate in non-slums is reduced by 
15.16% from 44.60% to 29.45% (33.98% relatively with 95% CI: 33.93% -34.03%). 
 
Table S7: Comparisons between the base and vaccination cases for Network 2. The 
three parameters (time to peak, peak infection rate and cumulative infection rate) are 
broken out, and for each, values for the total population, and slum and non-slum 
subpopulations are given. The vaccination rate is 30% and efficacy is 30% for those 
receiving the vaccine. 

Network 2, 
Time to Peak Base Vaccination Compare-absolute Compare-Relative 

Total 128 184 55 (95% CI:  51-59) 43.27% 
(95% CI: 40.14%-46.41%) 

Slum 123 176 53 (95% CI:  49-57) 43.09% 
(95% CI: 39.78%-46.4%) 

Non-Slum 130 186 56 (95% CI: 52-60) 
43.44% 

(95% CI: 40.32% - 
46.56%) 

 
 

Network 2, 
Peak Infection 

Rate 
Base Vaccination Compare-absolute Compare-Relative 

Total 6.87% 2.99% -3.88% 
(95% CI: -3.870% -3.884%) 

-56.46% 
(95% CI:  -56.35% -56.56%) 

Slum 11.12% 5.42% -5.70% 
(95% CI: -5.66% -5.74%) 

-51.26% 
(95% CI:  -50.88% -51.64%) 

Non-Slum 6.36% 2.69% -3.68% 
(95% CI: -3.67% -3.69%) 

-57.79% 
(95% CI:  -57.64% -57.94%) 

 
 

Network 2, 
Cumulative 

Infection Rate 
Base Vaccination Compare-absolute Compare-Relative 

Total 48.43% 33.12% -15.31% 
(95% CI: -15.29% -15.34%) 

-31.62% 
(95% CI:  -31.57% -31.67%) 

Slum 73.88% 57.53% -16.35% 
(95% CI: -16.30% -16.39%) 

-22.13% 
(95% CI:  -22.07% -22.19%) 

Non-Slum 44.60% 29.45% -15.16% 
95% CI: (-15.14% -15.18%) 

-33.98% 
(95% CI:  -33.93% -34.03%) 
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Table S8 summarizes differences in key epidemic parameters for Networks 1 and 2 for 
the base case with no interventions. The peak infection rate is the maximum fraction of 
individuals who are infected on any day, the time to peak is the day on which the peak 
infection rate occurs, and cumulative infection rate is the cumulative fraction of 
individuals who get infected in the epidemic.  Under the base case, the peak infection 
rate in Network 2 is 47.6% (95% CI: 47.4%-47.8%) greater compared to that in Network 
1 (47.6%=(6.87%-4.65%)/4.65%). The time to peak infection for Network 2 is decreased 
by 20.8% (95% CI: 19.2%-22.7%) compared to that in Network 1. The cumulative 
infection rate (or attack rate) is also underestimated under Network 1 by 16.1% (95% 
CI: 16.1%-16.2%) compared to Network 2. These results, presented in the main paper, 
are tabulated here in Table S8 for convenience and comparison. 
 
Table S8: Comparisons of key epidemic parameters for Networks 1 and 2 for the base 
case. 

Base Network 1 Network 2 Compare-absolute Compare-relative 
Time to Peak 162 128 34 

(95% CI: 31-37) 
20.84% 

(95% CI: 19.19%-22.71%) 
Peak Infection 

Rate 
4.65% 6.87% 2.215% 

(95% CI: 2.206%-2.224%) 
47.6% 

(95% CI: 47.4%-47.8%) 
Cumulative 

Infection Rate 
41.70% 48.43% 6.73% 

(95% CI: 6.71%-6.75%) 
16.1% 

(95% CI: 16.1%-16.2%) 

 
Effect of intervention on Network 1, With and Without Interventions.  
 
In Network 1, vaccination delays the time to peak infection by 76.41%, from 162 to 286 
days on average, with 95% CI: 71.53%-81.28%.  The peak infection rate is reduced by 
3.3121 percentage points, from 1.34% to 4.65%, which is a relative percentage 
difference (RPD) of -71.20%, with 95% CI: -71.02% to -71.38%. These and cumulative 
infection rate data are given in Table S9. 
 
Table S9: Comparisons of a vaccination intervention (30% vaccination rate, 30% 
efficacy of a vaccination) with the base case in Network 1 Delhi. 
Network 1,Total Base Vaccination Compare-absolute Compare-relative 
Time to Peak 162 286 124 

(95% CI:  116-132) 
76.41% 
(95% CI: 71.53%-
81.28%) 

Peak Infection Rate 4.65% 1.34% 3.31% 
(95% CI: 3.30%-
3.32%) 

71.20% 
(95% CI: 71.02%-
71.38) 

Cumulative Infection 
Rate 

41.7% 23.3% 18.40% 
(95% CI: 18.25%-
18.55%) 

44.13% 
(95% CI:  43.77%-
44.48%) 

 
Tables S7 and S9 show that, generally, Network 1 is more responsive to intervention 
than Network 2.  In Network 1, the percentage changes in time-to-peak, peak infection 
rate, and cumulative infection rate, due to intervention, are 76.4%, -71.2%, and -44.1%, 
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respectively. For Network 2, these values are 43.3%, -56.5%, and -31.6%, respectively. 
The reason for lower impact in Network 2 is the greater connectivity of households in 
slums, which helps drive the contagion. 
 
Effect of interventions on slum and non-slum subpopulations of Network 2, 
compared to the base case. 
 
The data used in comparing key outbreak parameters in slum and non-slum regions are 
taken from Table S7, and the corresponding epidemic curves are in Figure 1. The 
percentage change in peak infection rate due to intervention in slum (-51.3%) and non-
slum (-57.8%) regions in Network 2, are comparable, although the magnitudes of the 
peak infections in slums are about twice those in the non-slum regions.  For the 
cumulative infection rates, the relative drop from the intervention is greater for the non-
slum (-34.0% vs. -22.1%) population than it is for the slum population, but the absolute 
drop is about the same (-16.3% vs. -15.1%). 
 

 
Table S10: Comparison of results between slum and non-slum in Network 2. The input 
data is the same as in Table S7.   

Network 2, 
Base Slum Nonslum Compare-absolute Compare-relative 

Time to Peak 123 130 7(95% CI: 4-9) 5.26% 
(95% CI: 3.37%-7.16%) 

Peak Infection 
Rate 1.12% 6.36% 4.76% 

(95% CI: 4.72%-4.80%) 

42.79% 
(95% CI: 42.46%-

43.14%) 

Cumulative 
infection rate 73.88% 44.60% 29.25% 

(95% CI: 29.25% - 29.31%) 

39.63% 
(95% CI: 39.59%-

39.67%) 
 

Network 2, 
Vaccination Slum Nonslum Compare-absolute Compare-relative 

Time to Peak 176 186 10(95% CI: 5-15) 5.23% 
(95% CI: 2.58%-8.46%) 

Peak Infection 
Rate 5.42% 2.69% 2.74% 

(95% CI: 2.71% - 2.76%) 
50.46% 

(95% CI: 50.06%-50.86%) 
Cumulative 

infection rate 57.53% 29.45% 28.08% 
(95% CI: 28.04%-28.12%) 

48.82% 
(95% CI: 48.74%-48.89%) 

 
Figure S4 contains the percentage changes between the base case and intervention 
case for Networks 1 and 2 for the three parameters in the legend, and further breaks 
down Network 2 into slum and non-slum subpopulations. This plot provides a summary 
of differences between the base and intervention cases. For all four conditions 
considered, the intervention reduces the severity of an epidemic. It delays the time 
when the infection peaks, and reduces the peak infection and the cumulative infection 
rates. Note that the intervention has a larger effect on the epidemics when applied to 
Network 1, as consistent with Figure 1.  
 

Page 40 of 44

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Supplemental Information 

 11 

 
Figure S4: Effects of vaccination on time to peak infection, peak infection rate, and 
cumulative infection rate. The intervention is 30% vaccination rate and 30% vaccine 
efficacy. Each bar refers to the average value of the relative difference over 25 runs. 
Vaccination is more effective for Network 1 than Network 2, while, for Network 2, it is 
slightly more effective for the non-slum population than slum. Details of the data 
associated with this plot are provided in Tables S7 and S9. 
 
Figure S5 provides the same data in as in Figure S7, but now the data are provided as 
absolute differences, rather than as percentage changes. (There are three separate 
plots owing to the different ranges in absolute differences. Qualitatively, the time to peak 
infection (blue bars) does not change between the two networks and the two 
subpopulations of Network 2 (Figure S4 versus Figure S5(a)). However, the red bars in 
Figure S4 are qualitatively different from those in Figure S5(b), when considering 
absolute changes. That is, the magnitude of the percentage change in peak infection 
rate between the base and intervention cases is greatest in Network 1 (Figure S4, red 
bars), while in Figure S5(b), it is least on an absolute change basis. Similarly, the slum 
population in Network 2 shows the least percentage change in Figure S4, but the 
greatest absolute change in Figure S5(b). Rankings of the subpopulations in Network 2 
is also reversed for cumulative infection rate: the percentage change is greatest in the 
non-slum region, while it is greatest for the slum regions in absolute terms. 
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(a) 

   
                                             (b)                                               (c) 
Figure S5: Comparison of absolute difference in improvement; the relative differences 
are shown in Figure S7. Absolute differences vary across the three parameters, so each 
is given on a separate scale. Data are summarized in Tables S7 and S9.   
 
Evaluation of Network 2 Home and School Contacts. 
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Figure S6: Comparison of average contacts per person in slum and non-slum regions 
for home and school activity types in Network 2. 
 
Evaluation of Network 2 Edges Transmitting Infection. 
 
Figure S7 provides counts of edges used to transmit infection for a base case 
simulation in Network 2 of Figure 1 of the main text.  Edges are broken down by activity 
types of people who are interacting during transmission.  Data are also broken down by 
the classifications of individuals interacting (e.g., slum and nonslum, see legend). 
 
 

 
 
Figure S7.  Data for Network 2.  Number of edges transmitting infection (in millions) for 
each of the four types of interactions between slum and nonslum individuals (see 
legend) and for each activity type. The number of slum-to-nonslum edges is greater 
than nonslum-to-slum ones because once infection gets into a slum household, it may 
spread within the household more (because there are more people and connections).  
Thus, a slum household carries more infection to its interactions with nonslum people.  
The “Other” activity category, like home activity, shows more edges carrying infection 
for slum-to-slum interactions than slum-to-nonslum, which is consistent with Figures S4 
and S6 of Chen et al.[2], where further network characteristics are given. 
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ABSTRACT 
 
Objectives This research studies the role of slums in the spread and control of 
infectious diseases in the National Capital Territory of India, Delhi, using a detailed 
social contact network of its residents. 
Methods We use an agent-based model to study the spread of influenza in Delhi 
through person-to-person contact. Two different networks are used; one in which slum 
and non-slum regions are treated the same and the other in which 298 slum zones are 
identified. In the second network, slum-specific demographics and activities are 
assigned to the individuals whose homes reside inside these zones. The main effects of 
integrating slums is that the network has more home-related contacts due to larger 
family sizes and more outside contacts due to more daily activities outside home. 
Various vaccination and social distancing interventions are applied to control the spread 
of influenza. 
Results Simulation based results show that when slum attributes are ignored, the 
effectiveness of vaccination can be overestimated by 30%-55%, in terms of reducing 
the peak number of infections and the size of the epidemic, and in delaying the time to 
peak infection. The slum population sustains greater infection rates under all 
intervention scenarios in the network that treats slums differently. Vaccination strategy 
performs better than social distancing strategies in slums. 
Conclusions Unique characteristics of slums play a significant role in the spread of 
infectious diseases. Modeling slums and estimating their impact on epidemics will help 
policy makers and regulators more accurately prioritize allocation of scarce medical 
resources and implement public health policies.  
 
Strengths and limitations of this study 

 

� We show that the unique attributes of slums must be accounted for in 

understanding the spread and control of infectious diseases.  

� We demonstrate that the granularity afforded by the agent-based model enables 

extraction of subpopulations, and subsets of interactions, to help interpret results. 

� This study does not consider age-specific susceptibility or immunity from past 

infections; all individual persons are assumed to be equally susceptible.  

� The disease transmission risk does not change across activity types, e.g. an hour 

with an infected person at home or at work carries the same risk. 

� Co-location based contact time is used as a proxy for physical proximity and 

short-distance environmentally-mediated transmission. 

 
INTRODUCTION 
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Infectious disease is one of the leading causes of human morbidity and mortality 
worldwide. Reports from Centers for Disease Control (CDC) show that over 200,000 
people in the United States (US) are hospitalized with influenza-like illness (ILI) 
symptoms each year, and the mortality on average is over 36,000 annually.[1-2] In 
Delhi, India, a joint study by CDC, All India Institute of Medical Sciences, and the 
National Institute of Virology has shown that ILI cases are present throughout the year, 
although they peak in rainy and winter seasons.[3] It carries a significant economic 
burden through reduced productivity and high costs of health care.[4-7] A CDC study 
finds that for outpatient and non-medically attended individuals, acute respiratory 
infections cost 1%-5% of monthly per capita income in India. In contrast, cost of 
inpatient care can be as high as 6%-34% of monthly per capita income.[8] For 
developed countries, the annual cost of influenza is estimated to be between $1-$6 
million per 100,000 people, according to the World Health Organization.[9]  
 
In 2007, India established an Integrated Disease Surveillance Program (IDSP), which 
included a network of 12 regional laboratories, to minimize the threat of avian influenza 
and other highly infectious zoonotic diseases.[10] India faces some unique challenges 
in surveillance, prevention and control because of the seasonality of influenza at sub-
regional levels. This seasonal variation depends upon latitude, monsoon season, 
humidity and climatic factors of the regions. Acute respiratory infections are estimated to 
be 43 million per year, of which 4-12% are due to influenza.[11-12] Chadha et al.[13] 
estimated hospitalizations due to respiratory illnesses to be 160 per 10,000 persons in 
year 2011, and children under age 5 had the highest incidence of them.  
 
Given that influenza is environmentally-mediated and spreads through close proximity, 
population density is an important factor in its spread. In India, the average population 
density is about 1000 people per square mile; in the slums, it can be 10 to 100 times 
higher.[14] Larger household size and crowding make it easier to transmit 
infections).[15-18] For example, Baker et al.[16] find that meningococcal disease risk 
among children doubles with the addition of 2 adolescents or adults (10 years or older) 
to a 6-room house. Other than overcrowding, slums are characterized by their lack of 
medical services,[19-20] which makes slum residents highly vulnerable to infectious 
diseases. Diseases like cholera, malaria, dengue and HIV are common in slums across 
the world.[21-23] 
 
This research uses Delhi, the National Capital Territory of India, where 13% of its 13.8 
million people live in slum areas, as an example city to study the spread and control of 
influenza. Delhi is an interesting case study. It ranks fourth in the world in urban 
population, and, among the top 25 largest urban areas, it ranks tenth in population 
density. Although Delhi is our target population, the results are likely to be useful in 
studying other slum areas within and outside of India because of the wide range of 
intervention types and parameter values examined.  
 
This paper is an extension of the work done in Chen et al.[4], which shows that slum 
populations have a significant effect on influenza transmission in urban areas. Ignoring 
the influence of slum characteristics underestimates the speed of an outbreak and its 
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extent. However, Chen et al.[4] do not consider any interventions on the epidemic 
spread. The focus of this research is to study the effect of different intervention 
strategies on several subpopulations (slum, age and gender) in two different Delhi 
networks, i.e., original (referred to as Network 1) and refined (Network 2). 
 
The original network used in Xia et al.[24] studied the spread and control of influenza in 
Delhi using Network 1, which did not take into account the special attributes of the slum 
population, such as larger family sizes and different types of daily activity schedules. 
Chen et al.[4] used Network 2, the refined social network of Delhi, which accounted for 
slum demographics and slum activities, but did not study intervention strategies. In 
Network 2, there are 298 slum regions in Delhi, containing about 1.8 million people. 
 
The goals of this work focus on understanding the effects of pharmaceutical and non-
pharmaceutical interventions on epidemic outcomes. Pharmaceutical interventions (PI) 
include vaccinations, and non-pharmaceutical interventions (NPI) are social distancing 
measures such as school closure, quarantine and staying home. These effects are 
studied comparatively: (i) in Network 1 versus Network 2, overall and for subpopulations 
in each; and (ii) in the slum and non-slum regions of Network 2. Additionally, in a 
scenario where interventions can be applied to a limited number of individuals, we 
explore how resources should be split between slum and non-slum subpopulations in 
order to achieve the best outcomes with respect to total infection rate (i.e., the 
cumulative fraction of a population infected).  
 
METHODS 
 
We use an agent-based modeling (ABM) approach to simulate the spread and 
containment of influenza in social contact networks of Delhi, India. We compare two 
networks: one considers slum-specific attributes, and the other does not. In this section, 
we describe the networks, the disease model for each agent, the interventions, and the 
heterogeneities of the problem that make ABM uniquely suited to study epidemics.  
Throughout this manuscript, each agent in the ABM is an individual human. 
 
Social Contact Networks:  This study uses two synthetic social networks of Delhi, 
created in Xia et al.[24] and in Chen et al.[4]. Details on their construction can be found 
in Xia et al.[24], Chen et al.[4], Barrett et al.[25], Bisset et al.[26] and references therein. 
The synthetic social network by Xia et al.[24] is called Network 1, and the more refined 
network developed in Chen et al.[4], Network 2. 
 
It is important to note that while the social contact networks are inputs in 
epidemiological simulations, these networks are not specified directly.  Rather, these 
networks are the outputs of population generation methods that are overviewed below 
and cited immediately above, and include activity surveys and demographic data, both 
inside and outside of slums.  Thus, the topologies of the networks arise from the 
population generation process, and its inputs. 
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Network 1 was developed in part from Land Scan and Census data for Delhi, a daily set 
of activities of individuals, and the locations of those activities including geo-locations of 
residential areas, shopping centers, and schools, collected through surveys by 
MapMyIndia.com. By assigning activity locations to individuals’ activities, people are 
located at particular times at particular geographic coordinates (including office 
buildings, schools, etc.) and within particular rooms of buildings. Next, contacts between 
individuals are estimated when each person is deemed to have made contact with a 
subset of other people simultaneously present at the same location. This gives rise to a 
synthetic social contact network where network edges represent these contacts.  
 
Network 2 models the slum regions in Delhi and assigns slum-specific attributes to the 
individuals whose homes reside in the slum polygons. Slum residents’ attributes and 
their daily sets of activities are collected through a ground survey in Delhi slums, by a 
vendor, Indiamart (www.Indiamart.com/trips). The slum polygons are obtained from 
MapMechanic.com. Individuals living in the slum regions are a part of the slum 
population. All other individuals are part of the non-slum population. Network 2 is a geo-
located, and contextualized social contact network of Delhi with slums integrated in it.  
 
Following are the main differences between the original network (Network 1) and the 
refined network (Network 2). The original social contact Network 1 treats the slum 
regions like any other region in Delhi in terms of assignment of demographics and 
individual activities, i.e. no special consideration is given to slum residents. The refined 
Network 2 identifies 298 slum polygons (zones) in Delhi and assigns slum-specific 
demographics and activities to the individuals whose homes reside inside these 
polygons. Thus, the number of individuals is the same in both populations. The slum 
population constitutes about 13% (1.8 million) of the entire Delhi population of 13.8 
million people. The main effects of integrating slums is that Network 2 has more home-
related contacts due to larger family sizes and more outside contacts due to more daily 
activities outside home. Also, those individuals who reside outside of slum zones have 
the same activities in both networks (but their contacts may change if their interactions 
include slum residents). Overall, there are over 231 million daily interactions between 
pairs of individuals. Table S1 compares those two networks as well as data sources for 
slum and non-slum Delhi, India. (Table and figure numbers that are prefixed with ‘S’ are 
in the supplementary information (SI)). For example, the average degree increases from 
30.4 to 33.4 from Network 1 to Network 2, and the maximum degree increases from 170 
to 180.  We refer to Chen et al.[4] for more detailed information about the two networks. 
Several plots of properties and structural characteristics of Networks 1 and 2 are given 
in Chen et al.[27]. 
 
Disease Model: An SEIR, Susceptible (S), Exposed (E), Infectious (I) and Removed or 
Recovered (R) model is considered within each individual. Each node in the network 
represents an individual, and each edge represents a contact on which the disease can 
spread. A contact represents possible transmission between two people that are co-
located for some duration (based on their activity schedules). This is an approximation 
to model direct contact and short-distance environmentally-mediated transmission that 
might include direct physical contact, fomite mediated, and airborne transmission.[28]   
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We start each epidemic simulation with 20 index cases, randomly chosen. (We find that 
results are not sensitive to the number of initial infections.) The detailed description of 
the SEIR model as well as the choices of transmissibility value, R0, the explicit 
incubation and exposed periods can be found in the supplementary information. This 
disease model has been used in other works such as Liao et al.[29], Marathe et al.[30]. 
 
The transmissibility value for disease transmission is that for the strong influenza model 
in Chen et al.[4]. That work used mild, strong, and catastrophic influenza models, so we 
chose the intermediate transmissibility. This corresponds to base attack rates (i.e., 
cumulative infection fractions) of 0.42 and 0.48, respectively, in Networks 1 and 2. 
These rates are generally higher than those in some other studies that either compute 
experimental attack rates from cases or compute them in modeling studies such as this 
one. Attack rates used by past researchers for different strains of influenza include Asia 
[0.22 to 0.50],[31] Southeast Asia [0.11 to 0.31 in children [32]; 0.05 to 0.65 [33]], and 
India [0.111 to 0.235 [34]; 0.074 to 0.424 [35]; 0.045 to 0.294 [36]; 0.008 to 0.100 [37]; 
0.209 for various strains [13]]. The results of Chen et al.[4] indicate that the results here, 
for this particular transmissibility, will be qualitatively the same for other 
transmissibilities, but will scale down or up as transmissibility changes in the same 
direction. 
 
Interventions: This work considers three vaccination scenarios, i.e., vaccinate when 
cumulative infection rate is 0% (VAX0, i.e. vaccinate on day 1), 1% (VAX1), and 5% 
(VAX5). Three classes of social distancing strategies are considered: (i) stay-home 
(SHO) if infected, i.e. eliminate all non-home related contacts but continue to maintain 
contacts within the household; (ii) close-schools when cumulative infection rate has 
reached 1% (CS1) and when it has reached 5% (CS5), i.e. eliminate school related 
contacts; and (iii) (ISO), in which all contacts, including home contacts, of a person are 
eliminated when a person becomes infectious. For vaccination, five different compliance 
rates (10%, 30%, 50%, 70%, 90%) and two different vaccine efficacies (30% and 70%) 
are considered. 
 
VAX0, SHO, ISO are all fairly aggressive interventions because they are implemented 
either before a person gets infected or immediately upon becoming infectious.  These 
are actions taken at the individual or family level. For example, vaccination before the 
influenza season or isolating a sick child at home are family decisions. Even CS1 is an 
aggressive intervention in the sense that this action is taken by government officials 
based on aggregate school sickness levels—closing schools before any outbreaks is 
typically not done.  From these starting points, vaccinations when 1% or 5% of the 
population is infected (VAX1, VAX5), and closing schools when 5% of the population is 
infected (CS5) are less aggressive treatments. The five levels of compliance are also 
variations on aggressiveness in treatments. 
 
These conditions and parameters are consistent with results from other studies and 
guidelines put out by international organizations.  A meta-study of immunization and 
slums [38] identifies several vaccination-related studies of slums in India.  Unfortunately, 
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these studies are for other diseases such as Hepatitis B, measles, mumps, malaria, and 
typhoid fever.  Nonetheless, slum vaccination rates for children over these ailments 
range from 25% to 69% for full immunity and from 15% to 55% for partial immunity. 
Vaccination effectiveness for influenza-like illness (ILI) in India was determined to be 
about 33% to 36%.[39]  In 2012-2013, of 1000 pregnant women in Srinagar India, none 
were vaccinated against influenza.[40]  With regard to school closures, the World Health 
Organization (WHO) states that school closures may be undertaken proactively (before 
an outbreak) or reactively (after influenza starts to spread).[41]  WHO recommends that 
school closure occur before 1% of the population becomes infected. It also 
recommends that people (students and staff) stay home when they feel ill. In another 
meta-study[42], it was found that school closure, effected when 0.1% of the population 
was infected, was twice as effective in reducing the total attack rate as school closure 
occurring after 1% of the population was infected.  Moreover, the percentage of people 
infected before school closure was triggered varied between 0.02% to 10% across 
several studies. 
 
When a susceptible node is vaccinated, its probability of getting infected by an 
infectious node is scaled down by the efficacy. If it becomes infectious, its probability of 
infecting susceptible nodes is also scaled down by the efficacy. In other words, both 
incoming and outgoing infection probabilities of vaccinated individuals are reduced by 
the vaccine efficacy.  Interventions are applied to slum residents, non-slum residents, 
and the entire region of Delhi. 
 
For each experiment, 25 replicates are simulated for 400 days, and their mean results 
are reported. The averages are time-point wise averages, e.g. the mean infection rate at 
day 100 is calculated by taking the average of the 25 infection rates that occur on day 
100 of each replicate. Table S2 summarizes all the interventions considered, and Table 
S3 contains all variables in simulations, including intervention parameters.  
 
Heterogeneities captured: There are several heterogeneous aspects to this problem 
that motivate the use of an ABM approach: (i) the 298 slum zones have populations that 
vary by more than four orders of magnitude in size; (ii) the geographic extent of slum 
zones differ; (iii) the slum zones are located at irregular spatial intervals throughout 
Delhi; (iv) the activity patterns of people living in slums are different from those in the 
non-slum region; and (v) each individual interacts with specific others based on co-
location. 
 
The implications of these heterogeneities include the following. First, the particular 
synthetic households that live within slums are predicated on the number of slum zones, 
their locations, and their spatial geometries. These homes have larger family size and 
hence more home contacts. Second, slum individuals have different activity patterns 
which change the co-located contacts of each slum person: that is, with whom they 
interact and for how long. For example, see the supplemental information of Chen et 
al.[27]. The average total contact durations by activity type and by slum/non-slum 
residents are provided, which show that non-slum people have greater contact 
durations for work, school, and college activities, but less for home and other types.  

Page 7 of 44

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Main manuscript 

 8 

Overall, a slum person has about 50% greater total contact duration per day compared 
to a non-slum person. The same supplemental shows that in the age range 20 to 60 
years (by year), females that live in slums have more contacts per day than their male 
counterparts. However, females whose homes are outside of slum regions have 
average number of daily contacts that are below their male counterparts. 
 
 
RESULTS AND ANALYSIS  
Our results are grouped as follows. (1) Comparison of Network 1 and Network 2 for 
base case and intervention cases. (2) Results for both networks based on demographic 
classes, such as slum/non-slum, gender, and age groups, for a wider range of 
intervention strategies. (3) Comparison of Network 1 with the non-slum population of 
Network 2. (4) Effects of pharmaceutical and non-pharmaceutical interventions for a 
wide range of parameter values. (5) Effects of different resource allocation strategies.  
 
All differences are tested with the two-sample t-test and they are all statistically 
significant with p-values smaller than 2.2e-16. The 95% confidence intervals are given 
for each comparison.  Here is a brief summary of selected results with examples of 
mechanisms, to provide a high-level overview. Details of results follow this summary 
and these details matter because there are many factors (inputs) in a simulation whose 
interactions change results. 
 
(1) Ignoring the unique attributes of slums in a population overestimates the benefits of 
the interventions. For example, in the case of vaccination intervention (efficacy 30% and 
compliance 30%), the values for the epidemic size (i.e., cumulative percentage of 
infected), peak infection rate (i.e., maximum percentage of a population infected on any 
day), and time to peak are 33.1%, 3.0%, and 184 days, respectively, in Network 2, 
whereas they are 23.3%, 1.34%, and 286 days in Network 1. In relative terms, the 
epidemic size and peak infection rate are underestimated by 42.2% and 123.2% 
respectively, while the time to peak is overestimated by 35.7% in Network 1 (see 
Figures 1, 2 and Table S4). The larger family sizes for slum families in Network 2 and 
the increased number of edges result in larger outbreaks and faster time to peak 
infections. 
 
(2) Interventions are more effective in Network 1 than Network 2 for all types of 
interventions: vaccination, closing schools, staying home, and isolation. These trends 
also hold over wide ranges of efficacy and compliance (see Figures 3, 4, S1, S2 and 
S3). Hence, not accounting for slums gives overly optimistic results for the effectiveness 
of the interventions. The reduced average family size in Network 1 means fewer within-
home edges, which slows infection and reduces spreading. Closing schools and staying 
home interventions do not affect home edges. However, the magnitude of this effect 
varies with intervention conditions (e.g., compliance rate, time at which intervention is 
applied). 
 
(3) Cumulative infection rates by subpopulation in Network 2 show that slums sustain 
greater infection rates than non-slums under all intervention scenarios, sometimes by as 
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much as 44.0%. See Figure 4 and Table S5 for more details. This is due to the greater 
household sizes in slums.  
 
(4) For Network 2, under a wide range of intervention compliance rates (10% to 90%), 
the isolation strategy is up to 32% more effective in containing an outbreak than 
vaccination (for 30% efficacy). Staying home is up to 18% more effective than 
vaccination at 50% compliance. See Figure 3 and Table S6 for more details.  Isolation, 
although hard to implement from practical considerations, is most effective because 
edges to susceptible individuals are removed (isolation also provides a good 
comparative case). Differences between staying home and vaccination depend on 
compliance rates. 
 
(5) For Network 2, delay in triggering interventions has 7.3% to 44.0% more adverse 
effect in slums than in non-slum regions across compliance rates from 10% to 90%. See 
Figure 4 and Table S7 for more details. Early interventions mean actions are taken 
when outbreaks are smaller and are therefore more readily contained.  
 
(6) Comparison of Network 1 (Figure 3a) with the non-slum population (Figure 4b) of 
Network 2 shows that just the presence of slum specific activities and interactions with 
non-slum population makes social-distancing based interventions less effective in the 
non-slum regions of Network 2. 
 
(7) A full-factorial design that splits resources between slum and non-slum regions 
indicates that the most effective intervention is to give vaccines to slums and apply 
social distancing to non-slums. Applying vaccine and social distancing to slum regions 
is the next most effective intervention. See Figure 5. By applying social distancing to 
non-slums, these individuals are kept isolated from slum individuals that are infected.  
The greatest benefits accrue to the slum populations. 
 
 
Comparison between Networks 1 and 2: Base case versus interventions 

 
We start with a comparative analysis of the influenza epidemic, with and without 
interventions, on Network 1 and Network 2, to measure the impact of integrating slums 
in the population on epidemic measures. Figure 1 shows the average simulation time 
histories for the base case, and when vaccination is applied randomly to 30% of the 
population in each network with vaccine efficacy set at 30%. Mean infection rate is the 
daily fraction of infected individuals. It is the time-point wise average over 25 
simulations. For example, the mean infection rate at day 100 is calculated by taking the 
average of all 25 infection rates. Simulations for other vaccine efficacies and 
compliance rates give qualitatively similar results. Two sets of those results are shown 
in the supplemental information, see Figures S1 and S2. Note that Network 1 does not 
distinguish between slum and non-slum individuals, so the epidemic curve is not split by 
subpopulation. 
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Results in Network 2 differ significantly from results in Network 1 for both the base case 
and intervention case. In Network 2, the epidemic starts earlier, peaks earlier, has a 
larger epidemic size and has higher peaks compared to the corresponding epidemic 
quantities in Network 1. Thus, if policy planners ignore slums and use Network 1 to 
plan, there will be a false sense of security and lack of urgency to implement 
interventions. For both the base case and the intervention case, ignoring unique 
characteristics of the slums will result in an underestimation of the infections and the 
speed of spread. 
 

Figure 1 goes here  

 
For the intervention cases, the time to peak infection decreases by 35.7%, i.e. from 286 
days for Network 1 to 184 days for Network 2, meaning an influenza epidemic would 
peak roughly 100 days earlier than one would expect based on the results from Network 
1. For the base case, time to peak infection drops by 20.8%, i.e. 34 days reduction for 
Network 2 as compared to Network 1. 
 
Percentage changes and differences must be viewed cautiously, and to illustrate this 
point, we present data for the key parameters in Tables S4 and S8. The difference in 
the peak infection rate (i.e., the maximum fraction of daily infected individuals during the 
simulation) between Networks 1 and 2 for the base case is 2.2%, or 47.6% in 
percentage change (see Table S8). For the intervention case shown in Table S4, the 
difference between the two networks is less (1.7%), but the percentage change is more 
(123.2%) because the magnitudes of the peak infection rates are reduced when 
effective interventions are used. We make note of this here and mainly use the 
percentage change values in discussing results. For more detailed comparison between 
vaccination intervention and the base case in Network 1 and Network 2, we refer to 
Tables S7 and S9 and Figures S4 and S5. 
 
 
Comparison between Networks 1 and 2 based on individual demographic 
information 
 
We divide the Delhi population into strata by age, gender, and geographic home 
location (i.e., slum and non-slum), and analyze mean cumulative infection rates by 
subpopulation for the two networks. In simulations, individuals are chosen at random in 
the entire network for vaccination. Various vaccination scenarios are investigated. 
 
Figure 2 displays the cumulative infection rate results. On the x-axis, ‘Total’ refers to the 
entire population of Delhi. There are three breakdowns of the entire population.  ‘Slum’ 
and ‘Non-slum’ refer to slum and non-slum regions, respectively. ‘Male’ and ‘Female’ 
denote the total number of males and females in Delhi, respectively. Four age groups 
are considered: ‘Preschool’ (0-4), ‘School’ (5-18), ‘Adult’ (19-64), and ‘Senior’ (65+). The 
black lines correspond to the mean cumulative infection rates for the base case. Other 
curves indicate vaccination strategies under different levels of vaccination rate (v) and 
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vaccine efficacy (α). Two vaccination rates (30%, 50%) and two vaccine efficacy rates 
(30%, 70%) are shown in the figure. 
 
For Network 1, vaccination rate of 50% or higher stops the epidemic for all categories of 
individuals, regardless of vaccine efficacy. An efficacy of 70% also contains the 
epidemic, given a vaccination rate of at least 30%. In comparison, for Network 2, either 
a vaccination rate of 70% is required (not shown in plot for clarity) or a vaccination rate 
of 50% combined with a vaccine efficacy of 70% is required to stop the epidemic for all 
categories of individuals.  
 
In Network 1, slum and non-slums are treated the same so the infection rates are 
identical in Figure 2. However, all scenarios in Network 2 show a higher burden of 
disease on the slum population. This is due to the fact that slum households have larger 
family size and more contacts on average than households in non-slum areas, see 
Chen et al.[27] As shown later, we find similar patterns of infection in slum and non-
slum subpopulations for other interventions such as ‘close-schools’ and ‘stay-home’.  
 
The results in both Figure 1 and Figure 2 indicate that ignoring the effect of slums 
results in overestimation of the benefits of interventions in terms of reduction in the 
mean cumulative infection rate and peak infection rate, as well as the time to peak. This 
optimism holds for slum, non-slum and total population under various levels of 
vaccination rates and efficacy rates in Network 2. See Table S10 for more detailed 
comparison of results between slum and non-slum in Network 2. 
 

Figure 2 goes here 

 
Comparison between Networks 1 and 2 across a wide range of intervention 
strategies 
 
Next, we consider a variety of intervention strategies for comparative analysis. We 
consider vaccination, school closure, stay home, and isolation strategies. For vaccines, 
three different trigger points are considered: when cumulative infection rate reaches 0% 
(VAX0), 1% (VAX1) and 5% (VAX5). For close-schools, two trigger points are used: 
when the cumulative infection rate reaches 1% (CS1), and 5% (CS5). Under the stay at 
home (SHO) strategy, all non-home activities and interactions are eliminated but all 
contacts within the household are maintained. Under isolation (ISO) an individual has 
no contact with other individuals (even home interactions are eliminated). The stay-at-
home and isolation interventions are implemented for compliant infectious individuals, 
after they become infectious, for the entire infectious duration. 
 
Figure 3 displays average cumulative infection rates in Network 1 and Network 2 for a 
wide range of intervention strategies.  For each strategy, five different compliance rates 
are considered, i.e., 10%, 30%, 50%, 70% and 90%. The cumulative infection rates 
(i.e., fractions) are displayed as larger numbers in boxes, while smaller-font numbers 
are the actual number of infected individuals. Darker colors correspond to higher 
infection rates. Note that compliance rate is simply the vaccination rate for strategies 
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VAX0, VAX1 and VAX5. Compliant individuals are selected at random from the entire 
population. The ‘Base’ values do not vary with compliance because the base case has 
no intervention. Note that all heat maps in this paper use the same color scheme so that 
colors can be compared across figures. 
 
Since Network 1 does not distinguish between slum and non-slum populations, we only 
compare the two networks for the whole of Delhi. The general pattern is similar for both 
networks. However, all interventions have a larger effect on Network 1 under the same 
compliance rate (that is, corresponding numbers are uniformly lower for Network 1 than 
for Network 2). The infection rates drop to zero at a smaller compliance rate for VAX0, 
stay-home, and isolation strategies in Network 1 as compared to those for Network 2. 
 

Figure 3 goes here 

 

At a high level, among all intervention strategies, early vaccination (VAX0 and VAX1), 
social isolation (ISO), and stay home (SHO) are more effective than the other 
strategies, and this is more readily observed at higher compliance rates.  For these 
more effective strategies, the interventions per person are implemented right after (or 
very shortly after) the person is infected.  For example, SHO is implemented 
immediately after a person becomes infectious. Thus, a person that becomes infectious 
can infect their family members, but if these other members become infectious, then 
they, too, will be confined to home.  Thus, home-bound people can infect their family 
members, but no one beyond their family (for 100% compliance). As compliance rate 
increases, this effect approaches, roughly, a “family-based” isolation intervention 
(similar to ISO), consistent with the results in Figure 3 and in subsequent results. 
 
 

Effect of vaccination versus social distancing on slum and non-slum 
subpopulations 
 
We now compare the impact of vaccination and social distancing on slum and non-slum 
subpopulations from Network 2. Social distancing interventions are close-schools, stay-
home, and isolation. 
 
The mean cumulative infection rates (and actual numbers of infections underneath) for 
each compliance level are shown in the heat maps in Figure 4 for slum and non-slum 
populations in Network 2. The axis labels are identical to those in Figure 3, as is the 
color scheme of the cells. The base case values are constant since there is no 
intervention and hence no compliance. Darker colors correspond to higher infection 
rates. 
 
Compared to the base case, all interventions reduce infection rates to some extent. As 
the compliance rate increases, infection rates drop for all interventions. Infection rates 
drop to zero in slum and non-slum regions at a compliance level of 70% or higher, 
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under SHO, ISO, and VAX0 strategies. Early interventions or lower trigger levels reduce 
the infection rates significantly, and this effect increases with compliance rate. 
 
The following observations can be made from Figure 4. Social distancing, i.e. SHO, at 
low and intermediate compliance and CS at all compliance levels, are less effective in 
slum regions as compared to non-slum regions. This is because CS only eliminates 
school interactions for those attending school, and there are fewer school edges in 
slums compared to non-slum areas, as shown in Figure S6. The effectiveness of CS in 
slums is mitigated by the greater average number and duration of interactions at home 
in slums as compared to non-slums (see Figure S6 and Chen et al.[27]). Thus, if a 
person is sick, there is a greater chance of transmitting contagion to family members, 
who then may have activities outside of school, thus circumventing the CS intervention. 
At high compliance, SHO is effective because all interactions outside home (including 
school) are eliminated.[27] 
 
These observations are also supported by Figure S7, which contains numbers of edges 
used to transmit contagion for a base-case run of Figure 1. There are several effects 
that bear on the above observations. First, in the cases of activities “work”, “other”, and 
“school”, the number of edges transmitting contagion from slums to non-slums is greater 
than the reverse: from non-slum to slum. Second, in two of these three activity 
categories, there is more slum to non-slum transmissions than slum to slum 
transmissions. Edges of transmission for slum dwellers is dominated by home 
interactions. The infected homes in slums serve as launching points to drive disease to 
non-slums through slum to non-slum interactions. (There are no ``mixed’’ edges at 
homes, and shopping and college activities have low levels of slum activity because of 
socio-economic factors.) We will see the effects of these mechanisms in Figure 5, but 
we now return to Figure 4. 
 
Isolation works well at 30% or higher compliance rates, but it is a much harder strategy 
to implement, especially in slums. However, it is considered here for comparative 
analysis. Vaccination also produces marked decreases in cumulative outbreak sizes as 
compliance increases. However, close-school is generally less effective because this 
intervention removes only a fraction of interactions for a fraction of the population, i.e. 
school aged children. Simulations were also run for 70% vaccine efficacy. Since results 
are qualitatively similar for those parameters, these plots are provided in Figure S3. 
 

Figure 4 goes here 

 
Comparison between Network 1 and non-slum areas of Network 2 
 
Note that Network 1 treats all parts of the region as non-slum, i.e. all individuals follow 
non-slum activities and demographics. In order to capture the additional disease risk to 
the non-slum population that arises from the interactions with the slum population, we 
compare Network 1 in Figure 3a with the non-slum population of Network 2 in Figure 4b. 
In base case, the additional disease risk to the non-slum population goes up from 42% 
to 45%. However, the beneficial effects of social distancing strategies drop by a large 
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amount, e.g. close school strategies are 5-20% less effective in the non-slum areas of 
Network 2. This effect changes non-linearly with the compliance rate. As compliance 
rate goes up, the difference between performance of Network 1 and non-slum parts of 
Network 2 goes up in CS1 and CS5. This implies that in Network 2, non-slum population 
requires much higher levels of compliance to achieve the same results as in Network 1. 
This difference is less stark for vaccination based interventions, i.e. VAX0, VAX1 and 
VAX5. This is expected since the effect of vaccination is less dependent on interactions; 
it is only through herd immunity that interactions come into play.  
 
Constrained resource allocation among slum and non-slum areas  
 
We consider a specific scenario under Network 2. If only a limited number of vaccines 
are available, and only a certain fraction of individuals can be kept home during an 
epidemic, how should these interventions be applied to the slum and non-slum regions 
so that the epidemic can be controlled effectively? Given that slum residents’ attributes 
differ from those of non-slum residents, is there a strategy that works better in slums 
than in non-slum areas? The total population in Delhi is about 13.8 million, which 
includes about 1.8 million slum residents. We assume that only 10% of the total 
population can be covered by interventions, half through vaccination and the other half 
through stay home. Enough vaccines are available to cover 5% of the total population 
(i.e. 692,183 vaccinated, corresponding to about 38.25% of slum or 5.75% of non-slum 
population), and 5% of the individuals can stay home (692,183 individuals; this is 
applied to only the infected individuals). Note that an individual may receive a vaccine 
and also stay at home if this individual, in spite of being vaccinated, gets infected. 
 
We consider 4 different ways of applying interventions to 10% of the total population: (i) 
apply both interventions to slums, i.e. give all vaccines to slums and apply SHO only in 
the slums (VsSs); (ii) apply all interventions to non-slum areas (VnSn); (iii) give vaccines 
to slums and SHO to non-slums (VsSn) and (iv) give vaccines to non-slums and apply 
SHO to slums (VnSs). 
 
For both types of intervention, the same number of individuals is chosen randomly from 
slum or non-slum areas. 10% of the total Delhi population amounts to 76.5% of slum 
population, 11.5% of the non-slum population, or a combination of 38.25% of the slum 
and 5.75% of the non-slum population (i.e. half from slums and half from non-slums). 
Figure 5 shows the mean cumulative infection rates, as well as the number of infected 
from the entire population of Delhi, the slums, and non-slum areas under each of the 
four scenarios. The first 3 columns refer to Network 2 and the last column shows results 
for Network 1. Since Network 1 does not distinguish between slum and non-slum areas, 
the infection rates in each subpopulation remain the same as for the total population. 
 
Comparison of the last two columns in Figure 5 indicates that the non-slum population 
in Network 2 faces 3-5% additional disease risk compared to Network 1 in all cases. 
This is primarily driven by the increased interactions within slum populations and 
between slum and non-slum populations in Network 2.  
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In Figure 5, all four intervention strategies produce essentially the same total attack 
rates (around 43% to 44%), a drop of 4% to 5% over the base case. The dominant 
effect on Network 2, is the benefits that primarily accrue to the slum population for the 
VsSs and VsSn strategies because they drive down the fraction of infected slum 
residents from 0.74 to 0.55 or 0.58. Also, as described in the context of Figures 4 and 
S6 above, social distancing of the non-slum residents helps to isolate them from the 
infected slum residents. Results such as these may be helpful to policy makers in 
breaking the poverty trap in economically poor regions.[43] 
 
Also, the strategy of vaccinating non-slums and social distancing slums (VnSs) is not as 
effective as the interventions in rows 1 and 2 of Figure 5. This is a counterintuitive 
result, since the density of population is much higher in the slums, which may lead to 
the belief that social distancing in slums will break up the dense clusters. However, a 
careful examination shows that keeping slum residents home is not an effective social 
distancing strategy because their family size is, on average, almost 3 times the family 
size of non-slum households.[27] The high level of mixing at home makes social 
distancing ineffective in slums unless the infected individual is completely isolated. 
However, complete isolation is not viable in slum areas where the entire household may 
live in a single room.  
 
 
 

Figure 5 goes here 

 
DISCUSSION  
 
With slum populations expected to grow to 2 billion by 2030,[44] it is becoming 
increasingly urgent to understand how to control the spread of infectious diseases in 
slum areas and measure its effect on urban populations. To our knowledge, a detailed 
study of interventions to control influenza epidemics in slums, using an agent-based 
simulation model, has never been done before. Slum conditions are important for a city 
beyond the direct effects of disease transmission. For example, civil wars may be 
precipitated or exacerbated by disease outbreaks because they decrease social health 
and welfare.[45] 
 
Even though slum regions contain only 13% of the total population of Delhi, Chen et 
al.[4] show that omitting their attributes leads to underestimation of the overall infection 
rate and the peak infection rate of the epidemic. This paper extends that work by 
evaluating the differential impact of interventions on slum and non-slum regions. 
Various vaccination and social distancing strategies are analyzed under different 
scenarios that show that the slum population is more prone to infections under the same 
control measures. Furthermore, taking account of slum populations significantly alters 
the disease dynamics in the entire population. Differences in key measures are 
demonstrated between the cases of accounting for slum populations and not: e.g., a 
100% increase in the peak attack rate in some cases when slum regions’ characteristics 
are taken into account, compared to the case when they are ignored. 
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Figure 4, which compares infections in slum with non-slum areas, shows that at very 
high compliance rates, some interventions can be equally effective in both slums and 
non-slums. However, such high compliance rates are typically not feasible due to 
practical realities on the ground, and also because they require timely diagnosis of 
infected cases. For SHO to be effective, the coverage rate needs to be 70% or more in 
both slums and non-slums, and the diagnosis of the infected individuals needs to be 
correct and immediate. In other words, effective control of a contagious epidemic in a 
high-density place like Delhi would require either early and drastic action (e.g. ISO) or a 
highly compliant set of individuals, or a combination of these features. 
 
This work overall demonstrates the power of agent-based and population modeling to 
evaluate complicated interaction-based epidemiological phenomena. Clearly, there are 
limitations to this work (several are itemized below). But these agent and population 
approaches provide a platform for adding additional complexity. All of the figures 
demonstrate that quantitative results depend on complicated interplay among inputs. 
These results are important because they inform policy decisions. An equally important 
benefit of this type of work, but not often stated, is developing intuition about epidemic 
dynamics (in this case, with the effects of slums), to enable decision makers to reason 
about nuanced interactions among effects to a degree that is hard to obtain with other 
approaches that lack this level of detail. However, we believe that other modeling 
approaches may also be valuable in understanding epidemic dynamics in slum 
populations. 
 
Despite the detailed modeling effort, there are limitations of this work and areas for 
improvement in the future. For example, this model assumes that both slum and non-
slum individuals have the same level of immunity. This may not be true for seasonal 
infections. Previous researchers have argued that individuals who live in smaller family 
sizes, who have access to household amenities and maintain a high level of personal 
cleanliness, face declining microbial exposure which can modify their immune response 
and reduce their level of tolerance to respiratory infections.[46] Slum households 
characterized by larger family size and overcrowding, are likely to encounter much 
higher microbial exposure and therefore may be protected by their greater immunity.[16-
17] 
 
 
Areas for future work include: (1) Examination of different population level base attack 
rates derived from different transmission probabilities. (2) Different susceptibilities and 
infectivity for individual agents; e.g., based on age. (3) Effects of asymptomatic 
infections (although we have addressed this to some extent with compliance and 
efficacy of interventions). (4) Seasonal effects.[47-48] (5) Effects of immunity for an 
individual from previous infections (in previous seasons). (6) Evaluation of interaction of 
different strains from season to season. (7) Comparison of tropical versus subtropical 
factors. (8) Evaluation of a specific outbreak scenario. (9) Impact of sickness on 
absenteeism from work and its economic ramifications. (10) Effects on rural versus 
urban populations. (11) Using combinations of interventions rather than one at a time; 
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this was only done here in Figure 5. However, to disambiguate results, it is prudent to 
first examine individual interventions. (12) Effect of changing disease transmission rate 
for different activity types. (13) Effect of changing contact times at different locations. 
(14) To capture close-proximity transmission, one could use actual physical proximity. 
Here, we use colocation.  Finally, just as changes in modeling details can change model 
results, so, too, changes in the conditions in actual outbreaks can change results; some 
of these factors are listed above.  It is essentially impossible to capture all of these 
effects—many of which are unknown—down to the level of individual humans. 
 
Public health implications: This research demonstrates that modeling slum populations 
is important, not only for understanding disease dynamics, but also for designing 
effective control measures. Ignoring the influence of slum characteristics on their urban 
environment will significantly underestimate the speed of an outbreak and its extent, 
and hence will lead to misguided interventions by public health officials and policy 
planners. Lessons from this research can be applied in the field and observations 
collected from the field can provide valuable data to improve the models and validate 
the results. For example, our results show that a slum resident has about 50% greater 
total contact duration per day compared to a non-slum resident. This makes social 
distancing based interventions more taxing in the slum population. Public health policy 
makers may want to subsidize pharmaceutical resources for the slum population to 
make them more affordable. Similarly, we find women in slums have a higher number of 
contacts per day than their male counterparts whereas in non-slum regions, women 
have a fewer number of daily contacts than their male counterparts. This kind of 
information can be used to prioritize the distribution of limited resources, e.g. women 
could be given preference over males for vaccination in slum areas. This research 
provides simulation-based evidence that in general social distancing strategies are 
ineffective in slums because of a large number of contacts at home. Unless one applies 
complete isolation, which is not feasible in slums, just staying at home still keeps a large 
number of contacts and pathways of spread intact.   
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FIGURE 1: Epidemic curves for base case and vaccination case. Each time point in the 
curve is an average over 25 replicates. The vaccines are given randomly to 30% of the 
entire population and the vaccine efficacy is 30%. For Network 2, epidemic curves are 
shown for total population and slum and non-slum subpopulations. ‘Intervene Total’ 
refers to the epidemic curve of the entire Delhi population when the vaccine intervention 
is applied. ‘Intervene Slum’ refers to the epidemic curve for just the slum population, 
and ‘Intervene Non-slum’ refers to the epidemic curve for just the non-slum population 
for the intervention case. Epidemic curves for a variety of compliances and efficacies 
are reported in Figures S1 and S2. 
 

FIGURE 2: Mean cumulative infection rates for different subgroups in the two networks. 
Two vaccination rates (v = 30%, 50%) and two vaccine efficacy rates (α = 30%, 70%) 
are considered. Individuals are chosen at random in the entire network for vaccination 
on day 0. Mean infection rates are calculated within each group. The last several lines 
in the plot for Network 1 are overlapping at the bottom because the mean infection rates 
are almost zero under those scenarios. ‘Total’ refers to the entire population of Delhi. 
‘Slum’ and ‘Non-slum’ refer to slum and non-slum regions, respectively. ‘Male’ and 
‘Female’ denote the total number of males and females in Delhi, respectively. Age 
groups are denoted by ‘Preschool’, ‘School’, ‘Adult’, and ‘Senior’. 
 

 

       (a) Total Delhi Network 1  (b) Total Delhi Network 2            
 
Figure 3. Mean cumulative infection rates under different interventions for Network 1 
and Network 2. The larger font numbers are fractions of populations that are infected 
and the smaller font numbers are counts of infected individuals. Colors of the boxes 
correspond to the values of the large numbers (i.e., fractions of infected), and the same 
scheme is used for both plots for comparisons—and for all plots in this paper.  Five 
different compliance rates are examined (10%, 30%, 50%, 70% and 90%), and 4 types 
of intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and 
isolation (ISO)) are considered. For vaccines, three different trigger points are 
considered: when the cumulative infection rate reaches 0% (VAX0), 1% (VAX1) and 5% 
(VAX5) of the total population. The vaccine efficacy is set at 30%. For close-schools, 
two trigger points are used: when cumulative infection rate reaches 1% (CS1) and 5% 
(CS5). Compliant individuals are selected at random from the entire Delhi population, 
and the cumulative infection rates are calculated for each network. 
 

 
(a) Slum           (b) Non-slum 

 
Figure 4. Heat map of cumulative infection rates in slum and non-slum regions of 
Network 2 under different intervention strategies. The colors of boxes correspond to the 
larger numbers in the boxes—the cumulative infection rates—and the two plots use the 
same scheme for comparisons.  Darker colors correspond to higher infection rates. The 
smaller font numbers are counts of infected individuals. The vaccination efficacy is fixed 
at 30%. Five different compliance rates (10%, 30%, 50%, 70% and 90%) and 4 types of 
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intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and 
isolation (ISO)) are considered. For vaccines, three different trigger points are 
considered: when cumulative infection rate reaches 0% (VAX0), 1% (VAX1) and 5% 
(VAX5). For close-schools, two trigger points are used: when the cumulative infection 
rate reaches 1% (CS1) and 5% (CS5). Compliant individuals are selected randomly 
from the entire Delhi population, and the mean infection rates are calculated separately 
for the slum and non-slum subpopulations. Although not reported here, qualitatively 
similar results are found for other transmission rates, as well as for higher vaccine 
efficacy (70%). Base is the baseline case with no interventions. The smaller-font 
numbers under the infection rate show the actual number of infected individuals.  
 

FIGURE 5: Mean cumulative infection rates for each category listed on the x-axis, for 
Network 2 and Network 1, under four different intervention scenarios. The color scheme 
of the boxes are based on the large values in the boxes—the cumulative infection rates. 
Darker colors correspond to higher infection rates. Smaller font values are the number 
of infected individuals. The vaccine efficacy is set at 30%. VsSs refers to the case when 
vaccines and social distancing are both applied to slum residents; VnSn refers to the 
case when vaccines and social distancing are applied to non-slum residents. Similarly, 
VsSn means vaccines are given to slums and stay home is applied to non-slums; and 
VnSs means vaccines are given to non-slums and stay home is applied to slums. Base 
refers to the case where no intervention is applied. The smaller-font numbers under the 
infection rates show the actual number of infected individuals in each category listed on 
the x-axis.  
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Presentation of Results. 
 
For each set of input parameters, 25 replicates were run using agent-based simulation 
and the results presented are the average values over the 25 replicates. Also, 95% 
confidence intervals (CIs) are given when appropriate. 
 
Comparisons Between Network 1 and Network 2. 
 
Table S1 shows some differences between network1 and network 2 due to their 
different ways of modeling slum population. Note that these two networks are the same 
ones as those used in Chen et al.[1]. Further comparisons between the two networks 
are found in Chen et al.[2]. 
 
Table S1. Comparison of two networks as well as data sources for slum and non-slum 
Delhi, India. 

 
Network 1 Network 2 

Slum Non-slum Slum Non-slum 

Population Size 0 13.8 million 1.8 million 12 million 

Average Household 
Size of Slum Region 5.2 15.5 

Daily Activities 33,890,156 39,077,861 

Number of Edges 210,428,521 231,258,772 

Average Degree 30.4 33.4 

Maximum Degree 170 180 

Data Sources MapMyIndia.com 
MapMyIndia.com 

Indiamart.com 
MapMechanic.com 

 
Network 2 contains 298 slum zones, while network 1 models the whole population as 
non-slum. For network 1, the non-slum demographics and activities data is collected by 
survey through MapMyIndia.com. While for slum population, we collected additional 
data by Indiamart.com and MapMechanic.com for slum demographics and activities as 
well as slum polygons. More detailed demographic and activity differences can be found 
in the Chen et al.[1] 
 
Terminology and Abbreviations for Interventions. 
 
Table S2 contains abbreviations for different interventions and their meanings. Stay-at-
home (SHO) and social isolation (ISO) interventions are applied to a person 
immediately after they become infected, while close-schools (CS) and vaccinations 
(VAX) may be applied after a specified fraction of the total population has been infected. 
 
Table S2:  Summary of abbreviations for interventions and their meanings. 

Page 32 of 44

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Supplemental Information 

 3 

Abbreviation Definition 
CS Close-schools: School-related interactions are eliminated. 
CSx Close-schools is implemented after the total fraction of the population 

that has been infected reaches x. 
ISO Social isolation: a person who is socially isolated does not interact with 

any other person, even people in their home.  Isolation is triggered only 
after a person becomes infectious. 

SHO Stay at home: All out-of-the-home activities for this person are 
eliminated, and this person only interacts with others at home. Stay at 
home is triggered only after a person becomes infectious. 

VAX Vaccination: a person who is vaccinated has a reduced probability of 
contracting the virus.  

VAXx Vaccination of an individual occurs after the total fraction of the 
population that has been infected reaches x. 

 
Table S3 contains the variables used in simulations. The transmissibility corresponds to 
strong flu in Chen et al.[1]  For vaccination, efficacy is either 30% or 70%. That is, for 
30% efficacy, a person who gets vaccinated has reduced their susceptibility to infection 
by 30%.  
 
Table S3:  Summary of parameters and values used in simulations. 

Category Values 
Networks of Delhi Network 1 (does not model slums); Network 2 (models 

slums). 
Seeding 20 people selected randomly over the entire population at 

time 0 as index cases. 
Transmissibility 0.000027. 
Intervention 
approaches. 

Base case (no intervention); close-schools (CS); stay-home 
(SHO); isolation (ISO); vaccination (VAX). 

Intervention/compliance 
rates. 

10%, 30%, 50%, 70%, 90%. 

Efficacy of vaccination 
intervention. 

30%, 70%. 

Intervention trigger time Cumulative infection rate reaches 0%, 1% and 5%. 
Simulation replicates 25 
 
 
The Agent Epidemic States and Disease Model. 
 
An SEIR, Susceptible (S), Exposed (E), Infectious (I) and Removed or Recovered (R) 
model is considered within each individual.  An infectious person spreads the disease to 
each susceptible neighbor independently with a probability referred to as the 
transmission probability, given by 
 

p = λ (1 – (1 –τ) Δt), 
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where λ is a scaling factor to lower the probability (e.g., in the case of vaccination), τ is 
the transmissibility and Δt is the duration of interaction in minutes. Durations of contact 
are labels on the network edges. A susceptible person undergoes independent trials 
from all of its neighbors that are infectious. The transmission probability is a function of 
the number and duration of contacts.[3] This is selected to simulate an Influenza model 
resulting in a R0=1.26 (cumulative attack rate 42%, corresponding to a transmissibility of 
0.000027 per minute of contact time) for Network 1, and R0=1.39 (cumulative attack rate 
48%) for Network 2.[4] This transmissibility value is used uniformly throughout this study 
and corresponds to the probability at which an infectious node infects a susceptible 
node per minute of contact. 
 
At each time (day), if an infectious person infects a susceptible person, the susceptible 
person transitions to the exposed (or incubating) state. The exposed person has 
contracted Influenza but cannot yet spread it to others. The incubation period is 
assigned per person, according to the following distribution: 1 day (30%); 2 days (50%); 
3 days (20%). At the end of the exposed or incubation period, the person switches to an 
infected state. The duration of infectiousness is assigned per person, according to the 
distribution: 3 days (30%); 4 days (40%); 5 days (20%); 6 days (10%). After the 
infectious period, the person recovers and stays healthy for the simulation period. This 
sequence of state transitions is irreversible and is the only possible disease 
progression. 
 
Epidemic Curves for Other Interventions, for Varying Efficacy and Compliances. 
 

  
 
Figure S1: Epidemic curves for the base case and the vaccination case. The vaccines 
are given randomly to 50% of the entire population, and the vaccine efficacy is assumed 
to be 30%. The transmissibility is 0.000027. 
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Figure S2: Epidemic curves for the base case and vaccination case. The vaccines are 
given randomly to 10% of the entire population and the vaccine efficacy is 70%. The 
transmissibility is 0.000027. 
 

    
 

(a) Total Delhi             (b) Slum   (c) Non-slum 
 
Figure S3. Heat map of mean cumulative infection rates in Delhi, and slum and non-
slum regions under different intervention strategies for Network 2. The vaccination 
efficacy is fixed at 70%. Five different compliance rates, i.e., 10%, 30%, 50%, 70% and 
90% and 4 types of intervention strategies, i.e. vaccination (VAX), close-schools (CS), 
stay-home (SHO) and isolation (ISO), are considered. For vaccines, three different 
trigger points are considered: when cumulative infection rate reaches 0% (VAX0), 1% 
(VAX1) and 5% (VAX5). For close-schools, two trigger points are used i.e. when 
cumulative infection rate reaches 1% (CS1) and 5% (CS5). Compliant individuals are 
selected randomly from the entire Delhi population and the mean cumulative infection 
rates are calculated separately for the total population, and slum and non-slum 
subpopulations. Base is the baseline case with no interventions. The smaller-font 
numbers under the infection rate show the actual number of infected individuals. Darker 
colors correspond to higher infection rates. 
 

Page 35 of 44

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review
 only

Supplemental Information 

 6 

Tabulations of Basic Results: Comparisons between Networks 1 and 2 for 
Compliance of 30% and Efficacy of 30%. 
 
Table S4 shows results when 30% of the population that is selected uniformly at 
random is vaccinated with a vaccine that is 30% effective. The contrast between the two 
populations is even greater when considering interventions. The peak infection rate of 
the entire population increases by 123.2% (95% CI: 122.7%-123.7%) in Network 2 
compared to Network 1 for the intervention, versus 47.6% difference between the 
networks in Table S8. The time to peak decreases by 35.7% (95% CI: 32.9%-38.8%) in 
Network 2 compared to that in Network 1, for the intervention case, compared to only 
20.84% percentage change between the two Networks for the base case in Table S8. 
The cumulative infection rate (or attack rate) is also underestimated, which is 42.2% 
(95% CI: 41.5%-42.8%) greater on average in Network 2 compared to Network 1 for the 
intervention case.  Hence, the differences between key epidemic results for Networks 1 
and 2 that are generated for the intervention case are even more pronounced than they 
are for the base case. These values are all statistically significant.  
 
Table S4: Comparisons of key epidemic parameters for Networks 1 and 2 for a 
vaccination intervention before the epidemic starts (VAX0), where the vaccine efficacy 
is 30% and the compliance rate is 30%. 

Vaccination Network 1 Network 2 Compare-absolute Compare-relative 
Time to Peak 286 184 102 

(95% CI: 94-111) 
35.7% 

(95% CI: 32.9%-38.8%) 
Peak Infection 

Rate 
1.34% 2.99% 1.65% 

(95% CI: 1.64%-1.66%) 
123.19% 

(95% CI: 122.69%-123.65%) 
Cumulative 

Infection Rate 
23.3% 33.1% 9.82% 

(95% CI: 9.67%-9.96%) 
42.17% 

(95% CI: 41.51%-42.77%) 
 
 
Table S5 shows the effect of delay in applying interventions. The numbers show the 
percentage difference in cumulative infection rate in slums and non-slums of Network 2 
for the specified interventions and compliance rates at different trigger levels.  For 
example, the value 30.55% at 0.1% compliance means that for intervention close-
schools, where this intervention is implemented after 5% of the total population is 
infected, the fraction of people in slums that get infected is 30.55% greater than the 
fraction of non-slum residents who get infected. 
 
Table S5.  Differences of epidemic size between slum and non-slum regions for 
Network 2 for base case (no intervention); close-schools (CS) after 1% total outbreak 
fraction (CS1) and after 5% total outbreak fraction (CS5); stay at home (SHO); social 
isolation (ISO); vaccination (VAX) after 1% total outbreak fraction (VAX1) and after 5% 
total outbreak fraction (VAX5), under various compliance rates. The vaccination efficacy 
is 30%. 

Compliance Base CS5 CS1 SHO ISO VAX5 VAX1 
0.1 29.30% 30.55% 31.94% 31.06% 28.85% 29.37% 29.27% 
0.3 29.30% 32.52% 37.03% 34.18% 5.31% 28.85% 28.21% 
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0.5 29.30% 33.67% 41.07% 20.16% 0.00% 26.72% 24.62% 
0.7 29.30% 34.23% 42.57% 0.01% 0.00% 21.94% 15.87% 
0.9 29.30% 35.07% 43.95% 0.00% 0.00% 18.31% 7.25% 

 

         
Table S6 examines the difference in effects of interventions on the cumulative 
infection rate in Network 2. These data use both the stay home (SHO) and the 
isolation (ISO) interventions as base cases. Each entry represents the difference 
between the cumulative infection rates for the specified pharmaceutical 
interventions and SHO or ISO. For example, 18.03% means that the cumulative 
infection rate for vaccinating after 5% of the population is infected, is 18.03% 
greater than that for the intervention of SHO; 31.92% means that the cumulative 
infection rate for vaccinating after 5% of the population is infected is 31.92% 
greater than that for the intervention of ISO. Thus, the larger the magnitude of a 
positive number, the greater the effectiveness of SHO or ISO compared to the 
specified pharmaceutical intervention. 

        

 
Table S6. Differences in epidemic size between stay at home (SHO) interventions, 
social isolation (ISO) interventions and pharmaceutical interventions (VAX0, VAX1, 
VAX5), under various compliance rates.  The compliance rate and efficacy for 
vaccination is 30% and 30%, respectively. 
Compliance Vax5-SHO Vax1-SHO Vax0-SHO VAX5-ISO VAX1-ISO VAX0-ISO 

0.1 0.71% 0.29% 0.17% 4.92% 4.49% 4.38% 
0.3 4.15% 2.39% 1.89% 31.92% 30.17% 29.66% 
0.5 18.03% 13.51% 11.35% 25.96% 21.44% 19.28% 
0.7 16.82% 9.75% 0.13% 16.82% 9.76% 0.13% 
0.9 13.13% 4.01% 0.00% 13.13% 4.01% 0.00% 

 
Effect of intervention on Network 2, With and Without Interventions.  
 
The comparison between vaccination intervention and the base case in Network 2 is 
detailed in Table S7 below.  
 
In Network 2, for the total population, vaccination delays the time to peak infection by 
43.27% (95% CI: 40.14%-46.41%) relatively, from 128 to 184 days on average, while 
the peak infection rate is reduced by about 3.88% from 2.99% to 6.87% on average 
(56.47% relatively with 95% CI: 56.35%-56.56%). The total infection rate is reduced by 
15.31% from 33.12% to 48.43% (31.62% relatively with 95% CI: 31.57%-31.67%). 
 
In slum regions in Network 2, vaccination delays the time to peak infection by 43.09% 
(95% CI: 39.78%-46.4%) relatively, from 123 to 176 days on average, while the peak 
infection rate is reduced by about 5.70% from 5.42% to 11.12% on average (51.26% 
relatively with 95% CI: 50.88%-51.64%). The total infection rate in slums is reduced by 
16.35% from 57.53% to 73.88% (22.13% relatively with 95% CI: 22.07% to 22.19%). 
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In non-slum regions in Network 2, the time to peak is delayed by 43.44% (95% CI: 
40.32%-46.56%) relatively, from 130 to 186 days on average, while the peak infection 
rate is reduced by about 3.68% from 2.69% to 6.36% on average (57.79% relatively 
with 95% CI: 57.64%-57.94%). The total infection rate in non-slums is reduced by 
15.16% from 44.60% to 29.45% (33.98% relatively with 95% CI: 33.93% -34.03%). 
 
Table S7: Comparisons between the base and vaccination cases for Network 2. The 
three parameters (time to peak, peak infection rate and cumulative infection rate) are 
broken out, and for each, values for the total population, and slum and non-slum 
subpopulations are given. The vaccination rate is 30% and efficacy is 30% for those 
receiving the vaccine. 

Network 2, 
Time to Peak Base Vaccination Compare-absolute Compare-Relative 

Total 128 184 55 (95% CI:  51-59) 43.27% 
(95% CI: 40.14%-46.41%) 

Slum 123 176 53 (95% CI:  49-57) 43.09% 
(95% CI: 39.78%-46.4%) 

Non-Slum 130 186 56 (95% CI: 52-60) 
43.44% 

(95% CI: 40.32% - 
46.56%) 

 
 

Network 2, 
Peak Infection 

Rate 
Base Vaccination Compare-absolute Compare-Relative 

Total 6.87% 2.99% -3.88% 
(95% CI: -3.870% -3.884%) 

-56.46% 
(95% CI:  -56.35% -56.56%) 

Slum 11.12% 5.42% -5.70% 
(95% CI: -5.66% -5.74%) 

-51.26% 
(95% CI:  -50.88% -51.64%) 

Non-Slum 6.36% 2.69% -3.68% 
(95% CI: -3.67% -3.69%) 

-57.79% 
(95% CI:  -57.64% -57.94%) 

 
 

Network 2, 
Cumulative 

Infection Rate 
Base Vaccination Compare-absolute Compare-Relative 

Total 48.43% 33.12% -15.31% 
(95% CI: -15.29% -15.34%) 

-31.62% 
(95% CI:  -31.57% -31.67%) 

Slum 73.88% 57.53% -16.35% 
(95% CI: -16.30% -16.39%) 

-22.13% 
(95% CI:  -22.07% -22.19%) 

Non-Slum 44.60% 29.45% -15.16% 
95% CI: (-15.14% -15.18%) 

-33.98% 
(95% CI:  -33.93% -34.03%) 
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Table S8 summarizes differences in key epidemic parameters for Networks 1 and 2 for 
the base case with no interventions. The peak infection rate is the maximum fraction of 
individuals who are infected on any day, the time to peak is the day on which the peak 
infection rate occurs, and cumulative infection rate is the cumulative fraction of 
individuals who get infected in the epidemic.  Under the base case, the peak infection 
rate in Network 2 is 47.6% (95% CI: 47.4%-47.8%) greater compared to that in Network 
1 (47.6%=(6.87%-4.65%)/4.65%). The time to peak infection for Network 2 is decreased 
by 20.8% (95% CI: 19.2%-22.7%) compared to that in Network 1. The cumulative 
infection rate (or attack rate) is also underestimated under Network 1 by 16.1% (95% 
CI: 16.1%-16.2%) compared to Network 2. These results, presented in the main paper, 
are tabulated here in Table S8 for convenience and comparison. 
 
Table S8: Comparisons of key epidemic parameters for Networks 1 and 2 for the base 
case. 

Base Network 1 Network 2 Compare-absolute Compare-relative 
Time to Peak 162 128 34 

(95% CI: 31-37) 
20.84% 

(95% CI: 19.19%-22.71%) 
Peak Infection 

Rate 
4.65% 6.87% 2.215% 

(95% CI: 2.206%-2.224%) 
47.6% 

(95% CI: 47.4%-47.8%) 
Cumulative 

Infection Rate 
41.70% 48.43% 6.73% 

(95% CI: 6.71%-6.75%) 
16.1% 

(95% CI: 16.1%-16.2%) 

 
Effect of intervention on Network 1, With and Without Interventions.  
 
In Network 1, vaccination delays the time to peak infection by 76.41%, from 162 to 286 
days on average, with 95% CI: 71.53%-81.28%.  The peak infection rate is reduced by 
3.3121 percentage points, from 1.34% to 4.65%, which is a relative percentage 
difference (RPD) of -71.20%, with 95% CI: -71.02% to -71.38%. These and cumulative 
infection rate data are given in Table S9. 
 
Table S9: Comparisons of a vaccination intervention (30% vaccination rate, 30% 
efficacy of a vaccination) with the base case in Network 1 Delhi. 
Network 1,Total Base Vaccination Compare-absolute Compare-relative 
Time to Peak 162 286 124 

(95% CI:  116-132) 
76.41% 
(95% CI: 71.53%-
81.28%) 

Peak Infection Rate 4.65% 1.34% 3.31% 
(95% CI: 3.30%-
3.32%) 

71.20% 
(95% CI: 71.02%-
71.38) 

Cumulative Infection 
Rate 

41.7% 23.3% 18.40% 
(95% CI: 18.25%-
18.55%) 

44.13% 
(95% CI:  43.77%-
44.48%) 

 
Tables S7 and S9 show that, generally, Network 1 is more responsive to intervention 
than Network 2.  In Network 1, the percentage changes in time-to-peak, peak infection 
rate, and cumulative infection rate, due to intervention, are 76.4%, -71.2%, and -44.1%, 
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respectively. For Network 2, these values are 43.3%, -56.5%, and -31.6%, respectively. 
The reason for lower impact in Network 2 is the greater connectivity of households in 
slums, which helps drive the contagion. 
 
Effect of interventions on slum and non-slum subpopulations of Network 2, 
compared to the base case. 
 
The data used in comparing key outbreak parameters in slum and non-slum regions are 
taken from Table S7, and the corresponding epidemic curves are in Figure 1. The 
percentage change in peak infection rate due to intervention in slum (-51.3%) and non-
slum (-57.8%) regions in Network 2, are comparable, although the magnitudes of the 
peak infections in slums are about twice those in the non-slum regions.  For the 
cumulative infection rates, the relative drop from the intervention is greater for the non-
slum (-34.0% vs. -22.1%) population than it is for the slum population, but the absolute 
drop is about the same (-16.3% vs. -15.1%). 
 

 
Table S10: Comparison of results between slum and non-slum in Network 2. The input 
data is the same as in Table S7.   

Network 2, 
Base Slum Nonslum Compare-absolute Compare-relative 

Time to Peak 123 130 7(95% CI: 4-9) 5.26% 
(95% CI: 3.37%-7.16%) 

Peak Infection 
Rate 1.12% 6.36% 4.76% 

(95% CI: 4.72%-4.80%) 

42.79% 
(95% CI: 42.46%-

43.14%) 

Cumulative 
infection rate 73.88% 44.60% 29.25% 

(95% CI: 29.25% - 29.31%) 

39.63% 
(95% CI: 39.59%-

39.67%) 
 

Network 2, 
Vaccination Slum Nonslum Compare-absolute Compare-relative 

Time to Peak 176 186 10(95% CI: 5-15) 5.23% 
(95% CI: 2.58%-8.46%) 

Peak Infection 
Rate 5.42% 2.69% 2.74% 

(95% CI: 2.71% - 2.76%) 
50.46% 

(95% CI: 50.06%-50.86%) 
Cumulative 

infection rate 57.53% 29.45% 28.08% 
(95% CI: 28.04%-28.12%) 

48.82% 
(95% CI: 48.74%-48.89%) 

 
Figure S4 contains the percentage changes between the base case and intervention 
case for Networks 1 and 2 for the three parameters in the legend, and further breaks 
down Network 2 into slum and non-slum subpopulations. This plot provides a summary 
of differences between the base and intervention cases. For all four conditions 
considered, the intervention reduces the severity of an epidemic. It delays the time 
when the infection peaks, and reduces the peak infection and the cumulative infection 
rates. Note that the intervention has a larger effect on the epidemics when applied to 
Network 1, as consistent with Figure 1.  
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Figure S4: Effects of vaccination on time to peak infection, peak infection rate, and 
cumulative infection rate. The intervention is 30% vaccination rate and 30% vaccine 
efficacy. Each bar refers to the average value of the relative difference over 25 runs. 
Vaccination is more effective for Network 1 than Network 2, while, for Network 2, it is 
slightly more effective for the non-slum population than slum. Details of the data 
associated with this plot are provided in Tables S7 and S9. 
 
Figure S5 provides the same data in as in Figure S7, but now the data are provided as 
absolute differences, rather than as percentage changes. (There are three separate 
plots owing to the different ranges in absolute differences. Qualitatively, the time to peak 
infection (blue bars) does not change between the two networks and the two 
subpopulations of Network 2 (Figure S4 versus Figure S5(a)). However, the red bars in 
Figure S4 are qualitatively different from those in Figure S5(b), when considering 
absolute changes. That is, the magnitude of the percentage change in peak infection 
rate between the base and intervention cases is greatest in Network 1 (Figure S4, red 
bars), while in Figure S5(b), it is least on an absolute change basis. Similarly, the slum 
population in Network 2 shows the least percentage change in Figure S4, but the 
greatest absolute change in Figure S5(b). Rankings of the subpopulations in Network 2 
is also reversed for cumulative infection rate: the percentage change is greatest in the 
non-slum region, while it is greatest for the slum regions in absolute terms. 
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(a) 

   
                                             (b)                                               (c) 
Figure S5: Comparison of absolute difference in improvement; the relative differences 
are shown in Figure S7. Absolute differences vary across the three parameters, so each 
is given on a separate scale. Data are summarized in Tables S7 and S9.   
 
Evaluation of Network 2 Home and School Contacts. 
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Figure S6: Comparison of average contacts per person in slum and non-slum regions 
for home and school activity types in Network 2. 
 
Evaluation of Network 2 Edges Transmitting Infection. 
 
Figure S7 provides counts of edges used to transmit infection for a base case 
simulation in Network 2 of Figure 1 of the main text.  Edges are broken down by activity 
types of people who are interacting during transmission.  Data are also broken down by 
the classifications of individuals interacting (e.g., slum and nonslum, see legend). 
 
 

 
 
Figure S7.  Data for Network 2.  Number of edges transmitting infection (in millions) for 
each of the four types of interactions between slum and nonslum individuals (see 
legend) and for each activity type. The number of slum-to-nonslum edges is greater 
than nonslum-to-slum ones because once infection gets into a slum household, it may 
spread within the household more (because there are more people and connections).  
Thus, a slum household carries more infection to its interactions with nonslum people.  
The “Other” activity category, like home activity, shows more edges carrying infection 
for slum-to-slum interactions than slum-to-nonslum, which is consistent with Figures S4 
and S6 of Chen et al.[2], where further network characteristics are given. 
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