BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Failure to improve the inequitable geographic distribution of physicians in Japan: a specialty-specific longitudinal study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-018538
Article Type:	Research
Date Submitted by the Author:	05-Jul-2017
Complete List of Authors:	Hara, Koji; Kyoto University, Department of Healthcare Economics and Quality Management Kunisawa, Susumu; Kyoto University, Department of Healthcare Economics and Quality Management Sasaki, Noriko; Kyoto University, Department of Healthcare Economics and Quality Management Imanaka, Yuichi; Kyoto University, Department of Healthcare Economics and Quality Management
Primary Subject Heading :	Health policy
Secondary Subject Heading:	Public health
Keywords:	Inequity, Aging, Physician, Japan

Page 1 of 36		BMJ Open
1 2 3 4 5		
6 7 8	1	Failure to improve the inequitable geographic distribution of
9 10 11	2	physicians in Japan: a specialty-specific longitudinal study
12 13 14	3	
15 16 17	4	Authors:
18 19 20	5	Koji Hara MA, Susumu Kunisawa, PhD, Noriko Sasaki, PhD, and Yuichi
21 22 23	6	Imanaka, PhD
24 25 26	7	Department of Healthcare Economics and Quality Management, Graduate
27 28 29	8	School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto
30 31 32	9	City, Kyoto, Japan 606-8501
33 34 35	10	
36 37	11	Corresponding author:
38 39 40	12	Yuichi Imanaka, Professor
41 42 43	13	Mailing address: Department of Healthcare Economics and Quality
44 45 46	14	Management, Graduate School of Medicine, Kyoto University; Yoshida
47 48 49	15	Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501
50 51 52	16	Tel: +81 75 753 4454
52 53 54	17	Fax: +81 75 753 4455
55 56 57	18	Email: imanaka-y@umin.net
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28 20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
כן בי	
52 52	
55 54	
55	
56	
57	
58	

59

60

Word count: 20

213 414 words

22

tor ocer teries only

23	Failure to improve the inequitable geographic distribution of
24	physicians in Japan: a specialty-specific longitudinal study
25	
26	Abstract
27	Objectives
28	In this longitudinal study, we examine changes in the geographic distribution of physicians by
29	clinical specialty in Japan with adjustments for healthcare demand based on population structure.
30	Methods
31	The Japanese population was adjusted for healthcare demand using health expenditure per capita
32	stratified by age and sex. The numbers of physicians per 100 000 demand-adjusted population in
33	2000 and 2014 were calculated for sub-prefectural regions known as secondary medical areas.
34	Disparities in the geographic distribution of physicians for each specialty were assessed using the
35	Gini coefficient. A subgroup analysis was conducted by dividing the regions into four groups
36	according to urban-rural classification and initial physician supply.
37	Results
38	Over the study period, the number of physicians per 100 000 demand-adjusted population decreased
39	in all clinical specialties (e.g., surgery: 26.0% decrease) excluding pediatrics (33.3% increase) and
40	anesthesiology (21.1% increase). No improvements in geographic disparity were observed in any of
	3
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	41	the clinical specialties. In particular, geographic disparity worsened in internal medicine, surgery,
4	42	and obstetrics and gynecology. Rural areas with lower initial physician supply had the lowest
2	43	increase (or highest decrease) in physicians per 100 000 demand-adjusted population in all clinical
4	44	specialties except pediatrics and anesthesiology. In contrast, urban areas with lower initial physician
4	45	supply had the highest increase (or lowest decrease) in all clinical specialties.
4	46	Conclusion
4	47	The geographic distribution of physicians has failed to improve in any of the clinical specialties.
4	48	There is also a growing disparity in physician supply between the urban and rural regions. Urgent
4	49	measures are needed to reduce the geographic disparities in physician supply and regulate the
Ę	50	uneven distribution among clinical specialties.
Ę	51	

52	Article Summary
53	Strengths and limitations of this study
54	• This study aimed to longitudinally examine changes in the geographic distribution of physicians
55	by clinical specialty in Japan with adjustments for healthcare demand according to population
56	structure.
57	• The adjustment method used in this study had been previously verified, and enables adjustment
58	for healthcare demand according to the age strata using health expenditure per capita.
59	• This study included not only the age strata but also sex in the calculation of the adjustment
60	coefficients in order to increase the accuracy of adjustments.
61	• There was a lack of information on the physicians' working conditions, such as
62	whether a physician worked full-time or part-time.
63	• It may be difficult to generalize our adjustment coefficients to other countries as they were
64	calculated using Japanese health expenditure, but the adjustment method itself may have
65	applications in other countries.
66	
67	
68	
	5
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

69 Introduction

70	The presence of inequities in the geographic distribution of physicians is a major social problem in
71	many countries. ¹⁻⁴ In Japan, the geographic disparity in physician supply has long been recognized
72	as a serious flaw in the healthcare provision system. ⁵⁶ The lack of regulations that dictate where
73	individual physicians work in Japan has led to the concentration of physicians in urban regions and a
74	shortfall in rural areas, thereby resulting in uneven access to health care throughout the country. ⁵⁶
75	On the other hand, Japan has entered a period of population decline, ⁷ and an oversupply of
76	physicians is imminent if their numbers continue to increase at current levels. Attempts to control the
77	total number of physicians have been met with resistance from various interest groups. ⁸
78	In addition to the geographic disparity in physician supply, an uneven distribution of
79	physicians among the clinical specialties has also been reported in Japan. ⁹ Previous studies from the
80	US have also shown that geographic distribution patterns vary according to clinical specialty. ¹⁰¹¹ In
81	Japan, geographic disparities in the number of physicians in pediatrics, obstetrics and gynecology
82	(OB/GYN), and anesthesiology have been documented. ¹² However, few studies have longitudinally
83	examined the geographic distribution of physicians according to clinical specialty.
84	Although the number of physicians per 100 000 population is generally used as an
85	indicator when examining geographic disparities in physician supply, this measure involves a simple
86	head count that does not account for the inherent variations in healthcare demand among the
	6

	87	different age strata and sex. ⁴ Furthermore, Japan's population is aging at an unprecedented rate and
	88	has transformed into the world's first "super-aged" society (where more than 21% of a country's
	89	population is aged 65 years and older). As a consequence, the population structure in Japan is
	90	undergoing dramatic changes, which has invariably resulted in changes to healthcare demand. We
	91	have previously reported that Japan's healthcare demand increased by 22% from 2000 to 2014 amid
	92	worsening geographic disparity in physician supply. ¹³ However, studies have yet to be conducted on
	93	the disparity in Japan's physician supply according to the different clinical specialties while
	94	accounting for the differences in healthcare demand.
	95	This study aimed to longitudinally examine changes in the geographic distribution of
	96	physicians by clinical specialty in Japan with adjustments for healthcare demand according to
	97	population structure.
	98	
	99	Methods
1	100	Data source
]	101	Data on the number of physicians were obtained from Surveys of Physicians, Dentists, and
]	102	Pharmacists conducted every two years by the Ministry of Health, Labour and Welfare (MHLW).
1	103	Population data (age, sex, and location of residence) were extracted from the Annual Report of the
]	104	National Basic Resident Registration System published by the Ministry of Internal Affairs and
		7

105	Communications, and the number of births were obtained from the Annual Report of Vital Statistics
106	published by the MHLW. We also acquired data on national health expenditure per capita according
107	to patient age in 2013 from the MHLW. The total area of habitable land was ascertained from
108	statistical reports on land areas of prefectures and municipalities by the Geospatial Information
109	Authority of Japan.
110	
111	Physicians and population
112	We targeted physicians working in medical facilities (hospitals and clinics), and excluded physicians
113	working in non-clinical facilities (e.g., research centers and government offices). The following
114	clinical specialties were included in analysis: internal medicine, surgery, orthopedics, OB/GYN,
115	pediatrics, and anesthesiology.
116	In addition to the total population, we also analyzed population subgroups including the
117	female population, pediatric population (<15 years of age), and the number of births. With the
118	exception of the number of births, all study populations were adjusted for healthcare demand. We
119	calculated the number of OB/GYN specialists per 100 000 female population and per 100 000 births,
120	the number of pediatricians per 100 000 pediatric population, and the number of physicians per 100
121	000 population for each of the other clinical specialties.
122	
	8
	For peer review only - http://bmjopen.bmj.com/site/about/quidelines.xhtml

BMJ Open

123	Geographic unit
124	The geographic unit of analysis was the secondary medical area (SMA). There are three regional
125	levels of healthcare provision designated in Japan. Primary medical areas are geographic units where
126	primary care is provided, and are demarcated by municipal borders. Tertiary medical areas are
127	geographic units that provide advanced medical care, and are demarcated by prefectural borders.
128	SMAs are set between primary and tertiary medical areas, and are regions where general medical
129	care (such as inpatient care) is provided; these areas are composed of multiple municipalities. Each
130	prefectural government stipulates the geographic and demographic range of the SMAs within their
131	prefecture. As a result, the boundaries of each SMA can be altered in response to changes in
132	healthcare demand. SMAs have been previously used to examine the inequity in physician supply in
133	Japan. ^{6 14} Because the number of SMAs varies slightly over time, our analyses were conducted using
134	the 349 SMAs designated in 2012.
135	
136	Analytical methods
137	This retrospective study longitudinally examined the changes in the geographic distribution of the
138	number of physicians by clinical specialty among Japan's SMAs from 2000 to 2014. The population
139	was first adjusted using adjustment coefficients of healthcare demand, which were calculated based
140	on the health expenditure per capita stratified by age and sex through a previously described
	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
-T 5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
-19 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
50	

141	method. ¹³ Health expenditure per capita is indicative of the general workload of healthcare
142	providers. ¹⁵ These expenditures include those for both inpatient and outpatient services, and account
143	for variations in patient health status. ¹³ The demand-adjusted population was generated by
144	multiplying the raw population with the adjustment coefficients.
145	Next, geographic disparity was assessed using the Gini coefficient, which is an indicator
146	widely used to examine disparity in the field of economics and has also been applied to analyze
147	geographic disparity in physician supply. ^{1 5 16-18} The coefficients, which take a value from 0
148	(indicating complete equality) to 1 (indicating complete inequality), measure departure from a
149	uniform distribution by drawing Lorenz curves. ¹⁷ If the curves of two time points intersect,
150	conclusions cannot be made as to whether or not the inequity of distribution is increasing. ¹⁸ Thus, we
151	plotted two Lorenz curves (one each for 2000 and 2014) for each clinical specialty.
152	Finally, a subgroup analysis was conducted by dividing SMAs into groups according to
153	two regional characteristics. Using the method described in Sasaki et al., ¹⁹ we classified each SMA
154	into one of four groups based on whether the SMA was an urban or rural area, and whether the SMA
155	had a higher or lower initial physician supply in 2000. An SMA was designated an urban area (or a
156	rural area) if its population density was higher (or lower) than the median value in all SMAs. The
157	population density of each SMA was calculated using the total area of habitable land and the
158	population in 2000. Next, an SMA was designated as having a higher (or lower) initial physician
	10

159	supply if the number of physicians per 100 000 population was higher (or lower) than the median
160	number of physicians per 100 000 population in all SMAs. The following four groups were
161	analyzed: Group 1, comprising urban areas with higher initial physician supply; Group 2, comprising
162	rural areas with higher initial physician supply; Group 3, comprising rural areas with lower initial
163	physician supply; and Group 4, comprising urban areas with lower initial physician supply. Data
164	from 2000 were used for both the population and physicians. In this subanalysis, we compared the
165	inter-group changes in the number of physicians per 100 000 population between 2000 and 2014.
166	All analyses were performed using R statistical software (V.3.2.2).
167	
168	Results
169	Figure 1 shows the adjustment coefficients of healthcare demand for the different age strata and sex.
170	These coefficients varied widely among the different categories. In male residents, healthcare
171	demand was lowest (0.2) in those aged in their early twenties and highest (3.83) in those aged 80
172	years and older; this was more than a 19-fold difference between the two groups. In female residents,
173	healthcare demand was lowest (0.2) in those aged in their late teens and highest (3.23) in those aged
174	80 years and older; this was more than a 16-fold difference between the two groups. The adjustment
175	coefficients were applied to the raw population to produce the demand-adjusted population.
176	Table 1 shows the population sizes of the total population, female population, and pediatric
	11
	For peer review only - http://bmjopen.bmj.com/site/about/auidelines.xhtml

177	population before and after applying the adjustment coefficients in 2000 and 2014. Before
178	adjustment, the population did not substantially change throughout the study period. In contrast, the
179	demand-adjusted total population increased by 23.7% between 2000 and 2014. The number of births,
180	which was not adjusted for healthcare demand, decreased by 15.7% . The pediatric population
181	declined by 11.1% over the study period before and after adjusting for healthcare demand.
182	Table 2 shows the overall numbers of physicians and the numbers of physicians per 100
183	000 population in 2000 and 2014. The overall number of all physicians increased by 22.1% over the
184	study period. Similarly, the number of all physicians per 100 000 population increased by 21.7%.
185	However, the number of all physicians per 100 000 demand-adjusted population decreased by 1.3% .
186	Furthermore, the overall numbers of internists, orthopedists and OB/GYN specialists also increased,
187	but the numbers of these specialists per 100 000 demand-adjusted population declined. The number
188	of OB/GYN specialists per 100 000 births increased by 23.1%. The overall number of surgeons
189	decreased by 8.7% , and the number of surgeons per 100 000 demand-adjusted population decreased
190	by 26.6%. The overall number of anesthesiologists showed a large increase of 50.0% , and the
191	number of anesthesiologists per 100 000 demand-adjusted population increased by 21.1%. The
192	overall number of pediatricians increased by 18.4% , and the number of pediatricians per 100 000
193	demand-adjusted pediatric population increased by 33.3%.
194	Table 3 shows the trends in Gini coefficients for the number of physicians per 100 000
	12
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

195	population in the SMAs by clinical specialty. There were no substantial changes in the Gini
196	coefficients for the numbers of orthopedists, pediatricians, and anesthesiologists per 100 000
197	demand-adjusted population. However, inequity had worsened in the geographic distribution of
198	internists, surgeons, and OB/GYN specialists (for both the female population and the number of
199	births). In these three specialties, the Lorenz curves in 2014 also demonstrated a tendency to
200	deteriorate more than the curves in 2000 without intersection between the two curves (figures not
201	shown). When comparing the Gini coefficients before and after adjusting for healthcare demand, the
202	trends in the coefficients were similar for each clinical specialty. However, the post-adjustment Gini
203	coefficients of all clinical specialties (except for pediatrics) were higher than their pre-adjustment
204	values.
205	Table 4 summarizes the numbers of physicians per 100 000 population in the four groups
206	of SMAs in the subanalysis. Detailed descriptive statistics of the four groups are provided in the
207	Appendix. Figure 2 shows the temporal increases (2000 to 2014) in the number of physicians by
208	clinical specialty in each group. The temporal increases in the number of internists and orthopedists
209	were similar to those for all physicians. The overall number of surgeons decreased in all groups
210	except for Group 4, and the number of surgeons per 100 000 demand-adjusted population decreased
211	by 20% to 30% in all groups. As shown in Table 4, the number of surgeons per 100 000
212	demand-adjusted population in Group 3 (11.9) was approximately half of the number in Group 1
	13

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
Э
6
7
8
0
10
10
11
12
13
14
17
15
16
17
18
19
20
20
21
22
23
24
2-1
20
26
27
28
29
20
30
31
32
33
34
35
22
30
37
38
39
40
11
41
42
43
44
45
16
40
4/
48
49
50
51
51
52
53
54
55
56
50
5/
58
59
60

213	(23·2) in 2014. In all groups, the number of OB/GYN specialists per 100 000 demand-adjusted
214	female population decreased, but the number of OB/GYN specialists per 100 000 births increased.
215	The number of pediatricians per 100 000 demand-adjusted pediatric population increased more in
216	the rural SMAs than in the urban SMAs. The number of anesthesiologists per 100 000
217	demand-adjusted population increased in all groups; in particular, the number in Group 4 increased
218	by more than twice that of the other groups. In all clinical specialties except pediatrics, Group 3 had
219	the lowest increase (or the highest decrease) in the number of physicians per 100 000
220	demand-adjusted population. The 2014-2000 difference and ratio of the number of physicians per
221	100 000 demand-adjusted population between Groups 3 and 4 increased in all clinical specialties
222	except pediatrics.
223	
224	Discussion
225	The four major findings of this study are as follows: First, the demand-adjusted total population had
226	increased by 23.7% between 2000 and 2014, whereas the demand-adjusted pediatric population had
227	decreased by 11.1%. Second, the number of physicians per 100 000 demand-adjusted population
228	decreased in all clinical specialties except pediatrics and anesthesiology. The largest increase
229	$(33\cdot3\%)$ was observed in pediatrics. Third, the geographic disparity in the number of physicians per
230	100 000 demand-adjusted population had not improved in all clinical specialties, and had in fact
	14

Page 15 of 36		BMJ Open
1		
2		
3 4		
5 6	231	deteriorated in internal medicine, surgery, and OB/GYN. Fourth, the rural areas with lower initial
7 8	222	
9 10	232	physician supply had the lowest increase (or highest decrease) in the number of physicians per 100
11 12	233	000 demand-adjusted population compared with other areas in all clinical specialties except
13		
15	234	pediatrics and anesthesiology. In contrast, the urban areas with lower initial physician supply had the
17	235	highest increase (or lowest decrease) in all clinical specialties.
18 19		
20 21	236	The population used in this study was adjusted for healthcare demand among the different
22 23	237	age strata and sex using a previously described method. ¹³ As seen in Figure 1, there were
24 25		
26	238	considerable variations in healthcare demand among the different age strata and sex. Although
28	239	several papers have examined the demand-adjusted geographic disparity in physician supply, ^{15 20}
30		
31 32	240	there is currently no gold standard for the adjustment method. ²⁰ The method used in this study had
33 34	241	been previously verified, ¹³ and enables adjustment for healthcare demand according to the age strata.
35 36		
37 38	242	In addition, the inclusion of sex in the calculation of the coefficients may increase the accuracy of
39 40	243	adjustments.
40		
42 43	244	The number of physicians per 100 000 demand-adjusted population had decreased in
44 45	245	internal medicine, surgery, orthopedics, and OB/GYN (per female population). The decline in
46 47		
48 49	246	physician supply was especially notable in surgery and OB/GYN, which corroborates previously
50 51	247	reported downward trends in the numbers of physicians in these specialties ¹² The distribution
52		reported do whithard donab in the numbers of physicians in these spectrations. The distribution
55 54	248	among these specialties is affected by physician preference, experience, and environment. For
55 56		
57 58		15
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
0
/
8
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
23
24
2- 1 25
∠J 26
26
2/
28
29
30
31
32
33
34
35
36
50 27
27
38
39
40
41
42
43
44
45
46
47
18
10
49
50
51
52
53
54
55
56
57
58
59
60
55

249	example, the shortage of surgeons may be influenced by the long working hours, high risk of
250	medical litigation, and low reward for surgical skill. ²¹ Previous research has also shown that an
251	increase in female physicians has changed the distribution of specialties because they are more likely
252	to choose OB/GYN and pediatrics instead of surgery. ^{22 23} In order to retain a high number of both
253	female and male physicians, improvements must be made to the working environment, such as a
254	reduction of physician working hours by assigning more duties and responsibilities to other
255	non-physician health professionals. ²¹
256	Our findings detected a decrease in the numbers of internists and orthopedists despite an
257	increase in healthcare demand. On the other hand, the number of pediatricians per 100 000
258	demand-adjusted pediatric population and OB/GYN specialists per 100 000 births had greatly
259	increased due to a decrease in the pediatrics population and the number of births. The rate of
260	pediatric population decline is expected to eventually exceed the rate of total population decline. ²⁴ It
261	may therefore be more useful to properly allocate physicians instead of simply increasing their
262	overall numbers.
263	Based on the temporal trends in Gini coefficients, there were no improvements to the
264	geographic disparity in the number of physicians per 100 000 demand-adjusted population in all
265	clinical specialties between 2000 and 2014. In particular, the inequity in physician supply had
266	worsened in internal medicine, surgery, and OB/GYN. The inequity in surgery and OB/GYN may
	16

BMJ Open

267	have been influenced by the decrease or lack of increase in the overall number of physicians in these
268	specialties. These findings suggest that the uneven distribution of physicians among the clinical
269	specialties may exacerbate geographic disparities in physician supply. On the other hand, the number
270	of internists had increased at a rate that was comparable to the overall growth rate. The deterioration
271	in geographic disparity may therefore be related to an increasing tendency toward physician
272	specialization in Japan. ²⁵ In fact, although the overall number of general internists had decreased
273	from 74 539 to 61 317 over the study period, there was actually an increase from 21 006 to 48 780
274	physicians in internal subspecialties such as pulmonary, cardiovascular, and gastrointestinal
275	medicine (data not shown). The geographic disparity in physician supply in these subspecialties is
276	greater than the disparity in general internists. ⁹
277	The rate of increase in the number of physicians per 100 000 demand-adjusted population
278	in the urban areas was generally higher (or the rate of decrease was lower) than in the rural areas. In
279	all clinical specialties except pediatrics, both the difference and ratio in the number of physicians per
280	100 000 demand-adjusted population between Group 3 and Group 4 in 2014 were larger than the
281	corresponding values in 2000. This indicates that the disparity in physician supply between urban
282	and rural areas had widened over the study period. Group 3 had the lowest initial physician supply,
283	and these regions may be facing a serious physician shortage. This issue should be explored further,
284	and there may be a need for major reforms to ensure adequate physician supply to rural areas. It may
	17

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3		
4		
5 6 7	285	also be important to take the initiative in rural areas to improve physician productivity, reduce
8 9	286	non-essential workload, and implement technology-based measures such as telemedicine.
10 11 12	287	Prior to 2004, the vast majority of medical graduates joined a medical specialty department
13 14 15	288	(known as an Ikyoku) at their university that secures employment for the new graduates. Ikyoku
16 17	289	generally dispatch physicians to other affiliated hospitals that are often located in rural areas. In this
18 19 20	290	way the <i>Ikvaku</i> were partly responsible for preventing a shortage of physicians in rural areas. After
21 22	200	way, the <i>hybota</i> were party responsible for preventing a shortage of physicians in rata areas. After
23 24 25	291	the implementation of a new post-graduate medical education program in 2004, fewer physicians
26 27	292	joined an <i>Ikyoku</i> . As a consequence, the graduates, now able to choose their training hospital after
28 29 30	293	graduation, were less likely to select a university hospital for training. Due to the decreasing number
31 32	294	of member physicians, it became more difficult for the <i>Ikyoku</i> to dispatch physicians to affiliate
34 35	295	hospitals. ¹⁴ Previous studies have also reported that the new program may have exacerbated the
36 37 38	296	inequity in the geographic distribution of physicians. ¹⁴²⁶ Similarly, this new program may also have
39 40	297	contributed to the lack of improvement in geographic disparity observed in this study.
41 42 43	298	The Japanese government has implemented several measures at the prefectural level aimed
44 45 46	299	at improving the geographic disparities in physician supply. In 2006, a "Council for Regional
47 48 49	300	Medicine" was established in each prefecture, and these councils include representatives of the
50 51 52	301	prefectural and local governments, hospitals, medical associations, universities, and residents. The
53 54 55	302	councils discuss detailed measures for securing medical staff with a variety of hospitals, including
55 56 57 58 59		18

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

303	university hospitals and public hospitals. Furthermore, a "Support Center for Community Medicine"
304	was established in each prefecture in 2011 to secure and retain physicians. These centers adopt the
305	role of "control towers" to address the uneven distribution of physicians within each prefecture.
306	Specifically, the centers are responsible for supporting career advancement for physicians working in
307	rural areas, acting as general liaisons for engaging new physicians, and providing general work
308	information. In addition, the government has raised the regional quota of medical school admissions
309	from 64 students in 2005 to 1 617 students in 2016. The students are obligated to work in a rural area
310	or a designated specialty (such as OB/GYN) for nine years after graduating in return for financial
311	assistance for their studies. ²⁷ As the program is relatively new, it remains unclear as to whether the
312	increase in quotas will lead to improvements in the geographic disparity of physicians.
313	There are several limitations in this research. Firstly, the adjustment coefficients may
314	continue to change in the future. However, the coefficients did not change considerably during the
315	study period. In addition, it may be difficult to generalize our adjustment coefficients to other
316	countries as they were calculated using Japanese health expenditure. On the other hand, the
317	adjustment method itself may have applications in other countries. Secondly, there was a lack of
318	information on the physicians' working conditions, such as whether a physician worked full-time or
319	part-time. It may be beneficial for future studies to incorporate mean physician working hours.
320	Finally, there may be other ways to divide the SMAs for the subgroup analysis. However, our
	19
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

321	subgroup analysis was based on the categorization used in a previous study, ¹⁹ and provided an
322	intuitive understanding of the differences in group characteristics.
323	
324	Conclusion
325	The geographic distribution of physicians in Japan has failed to improve in any of the clinical
326	specialties. There is also a growing disparity in physician supply between the urban and rural areas.
327	In consideration of the rapidly aging population and the resulting changes in population structure,
328	urgent measures are needed to reduce the geographic disparities in physician supply and regulate the
329	uneven distribution among clinical specialties.
330	
331	List of abbreviations
332	OB/GYN, obstetrics and gynecology
333	MHLW, Ministry of Health, Labour and Welfare
334	SMA, secondary medical area
335	
336	Footnotes
337	Acknowledgements
338	Not applicable.

Page 21 of 36		BMJ Open
1 2		
3 4		
5	220	
6 7	339	
8 9	340	Competing interests
10		
11 12	341	The authors declare that they have no competing interests.
13 14		
15	342	
16 17	242	Funding
18	040	r unung
19 20	344	This work was supported in part by a Health Sciences Research Grant from the
21 22		
23	345	Ministry of Health, Labour and Welfare of Japan (Grant number: H27-iryo-ippan-001) ,
24 25		
26	346	a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of
27 28	347	Science (Grant number: [A]16H02634) and RISTEY Japan Science and Technology
29 30	347	Science (Grant number: [A] 101102034), and AISTEA, Japan Science and Technology
31	348	agency.
32 33		
34	349	
36		
37 38	350	Contributors
39 40	351	KH contributed to the study conception and design data collection analysis
40 41	001	ini contributed to the Study conception and design, data concertion, analysis,
42 43	352	interpretation, and drafting the manuscript. SK and NS contributed to the data
44		
45 46	353	collection and data management. YI contributed to the study design, data acquisition,
47 48	954	
49	394	and interpretation. All authors critically revised the manuscript, and approved the final
50 51	355	version.
52 53		
54	356	
55 56		
57		21
50 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

357 Ethics approval

358	Ethics committee approval was waived for this study because all of the data are publicly
359	available online and comprise only aggregate values without any personally identifiable
360	information.
361	
362	Role of the funding source
363	The funder of the study had no role in study design; collection, analysis, and interpretation of the
364	data; writing of the report; or the decision to submit the paper for publication. The corresponding
365	author had full access to all the data in the study and had final responsibility for the decision to
366	submit for publication.
367	
368	Data Sharing Statement
369	No additional data available.
370	
371	Consent for publication
372	Not applicable.
373	
374	1. Isabel C, Paula V. Geographic distribution of physicians in Portugal. European Journal of
	22
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

375	Health Economics 2010;11(4):383-93. doi: 10.1007/s10198-009-0208-8
376	2. Kanchanachitra C, Lindelow M, Johnston T, et al. Human resources for health in
377	southeast Asia: shortages, distributional challenges, and international trade in
378	health services. <i>Lancet</i> 2011;377(9767):769-81. doi: 10.1016/s0140-6736(10)62035-1
379	[published Online First: 2011/01/29]
380	3. Ricketts TC. The migration of physicians and the local supply of practitioners: a five-year
381	comparison. Acad Med 2013;88(12):1913-8. doi: 10.1097/acm.000000000000012
382	[published Online First: 2013/10/17]
383	4. Pitblado JR, and Raymond W. Pong. Geographic distribution of physicians in Canada.
384	Sudbury, Ontario, Canada: Centre for Rural and Northern Health Research,
385	Laurentian University 1999.
386	5. Kobayashi Y, Takaki H. Geographic distribution of physicians in Japan. Lancet
387	1992;340(8832):1391-3. [published Online First: 1992/12/05]
388	6. Tanihara S, Kobayashi Y, Une H, et al. Urbanization and physician maldistribution: a
389	longitudinal study in Japan. BMC Health Serv Res 2011;11:260. doi:
390	10.1186/1472-6963-11-260 [published Online First: 2011/10/11]
391	7. National Institute of Population and Social Security Research. population projection for
392	Japan:2011-2060 2012 [Available from:
	23
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13 14	
14	
15 16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49 50	
50 E 1	
כו בי	
J∠ 52	
57	
54	
56	
57	
58	
59	
60	
00	

393	http://www.ipss.go.jp/syoushika/tohkei/newest04/gh2401.pdf accessed 29 Feb 2016.
394	8. Asano N, Kobayashi Y, Kano K. Issues of intervention aimed at preventing prospective
395	surplus of physicians in Japan. Med Educ 2001;35(5):488-94. [published Online
396	First: 2001/05/01]
397	9. Matsumoto M, Inoue K, Bowman R, et al. Self-employment, specialty choice, and
398	geographical distribution of physicians in Japan: A comparison with the United
399	States. <i>Health Policy</i> 2010;96(3):239-44. doi: 10.1016/j.healthpol.2010.02.008
400	[published Online First: 2010/03/13]
401	10. Rosenthal MB, Zaslavsky A, Newhouse JP. The geographic distribution of physicians
402	revisited. <i>Health Serv Res</i> 2005;40(6 Pt 1):1931-52. doi:
403	10.1111/j.1475-6773.2005.00440.x [published Online First: 2005/12/13]
404	11. Schwartz WB, Newhouse JP, Bennett BW, et al. The changing geographic distribution of
405	board-certified physicians. <i>N Engl J Med</i> 1980;303(18):1032-8. doi:
406	10.1056/nejm198010303031803 [published Online First: 1980/10/30]
407	12. Study group on the supply and demand of physicians of the Ministry of Health LaW. The
408	study group report on the supply and demand of physicians 2006 [Available from:
409	http://www.mhlw.go.jp/shingi/2006/07/dl/s0728-9c.pdf accessed 16 Apr 2017.
410	13. Hara K, Otsubo T, Kunisawa S, et al. Examining sufficiency and equity in the geographic
	94

2 3		
4		
5 6 7	411	distribution of physicians in Japan: a longitudinal study. BMJ Open
8 9	412	2017;7(3):e013922. doi: 10.1136/bmjopen-2016-013922 [published Online First:
10 11 12	413	2017/03/16]
13 14 15	414	14. Sakai R, Tamura H, Goto R, et al. Evaluating the effect of Japan's 2004 postgraduate
16 17	415	training programme on the spatial distribution of physicians. Hum Resour Health
18 19	110	
20 21	416	2015;13:5. doi: 10.1186/1478-4491-13-5 [published Online First: 2015/01/27]
22 23 24	417	15. Gravelle H, Sutton M. Inequality in the geographical distribution of general
25 26 27	418	practitioners in England and Wales 1974-1995. J Health Serv Res Policy
28 29 20	419	2001;6(1):6-13. [published Online First: 2001/02/24]
31 32	420	16. Anand S, Fan VY, Zhang J, et al. China's human resources for health: quantity, quality,
33 34 35	421	and distribution. <i>Lancet</i> 2008;372(9651):1774-81. doi:
36 37 38	422	10.1016/s0140-6736(08)61363-x [published Online First: 2008/10/22]
39 40 41	423	17. Mauguen A, Begg CB. Using the Lorenz Curve to Characterize Risk Predictiveness and
42 43	424	Etiologic Heterogeneity. <i>Epidemiology</i> 2016;27(4):531-7. doi:
44 45 46	425	10.1097/ede.000000000000499 [published Online First: 2016/04/21]
47 48 49	426	18. Theodorakis PN, Mantzavinis GD, Rrumbullaku L, et al. Measuring health inequalities
50 51 52	427	in Albania: a focus on the distribution of general practitioners. <i>Hum Resour Health</i>
53 54 55	428	2006;4:5. doi: 10.1186/1478-4491-4-5 [published Online First: 2006/03/01]
56 57		25
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

429	19. Sasaki H, Otsubo T, Imanaka Y. Widening disparity in the geographic distribution of
430	pediatricians in Japan. <i>Hum Resour Health</i> 2013;11:59. doi:
431	10.1186/1478-4491-11-59 [published Online First: 2013/11/26]
432	20. Kephart G, Asada Y. Need-based resource allocation: different need indicators, different
433	results? BMC Health Serv Res 2009;9:122. doi: 10.1186/1472-6963-9-122 [published
434	Online First: 2009/07/23]
435	21. Hanazaki K, Tominaga R, Nio M, et al. Report from the Committee for Improving the
436	Work Environment of Japanese Surgeons: survey on effects of the fee revision for
437	medical services provided by surgeons. <i>Surg Today</i> 2013;43(11):1209-18. doi:
438	10.1007/s00595-013-0691-5 [published Online First: 2013/09/06]
439	22. Fukuda Y, Harada T. Gender differences in specialty preference and mismatch with real
440	needs in Japanese medical students. <i>BMC Med Educ</i> 2010;10:15. doi:
441	10.1186/1472-6920-10-15 [published Online First: 2010/02/13]
442	23. Jefferson L, Bloor K, Maynard A. Women in medicine: historical perspectives and recent
443	trends. Br Med Bull 2015;114(1):5-15. doi: 10.1093/bmb/ldv007 [published Online
444	First: 2015/03/11]
445	24. National Institute of Population and Social Security Research in Japan. Population
446	Projections for Japan (April 2017) 2017 [cited 2017 Apr 14].
	26
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4		
5	4.477	
6	447	25. Kolke S, Matsumoto S, Kodama T, et al. Specialty choice and physicians' career paths in
/		
9	448	Japan: an analysis of National Physician Survey data from 1996 to 2006. <i>Health</i>
10		
11		
12	449	Policy 2010;98(2-3):236-44. doi: 10.1016/j.healthpol.2010.06.021 [published Online
13		
14	450	First: 2010/07/29]
15	100	
16		
17	451	26. Toyabe S. Trend in geographic distribution of physicians in Japan. Int J Equity Health
18		
19	459	2000:8:5 doi: 10 1186/1475-0276-8-5 [mublished Online First: 2000/02/05]
20	402	2009;8·5. doi: 10.1186/1475-9276-8-5 [published Online First: 2009/05/05]
27		
23	453	27. Matsumoto M, Takeuchi K, Tanaka J, et al. Follow-up study of the regional quota system
24		
25		
26	454	of Japanese medical schools and prefecture scholarship programmes: a study
27		
28	455	protocol. BMJ Open 2016;6(4):e011165. doi: 10.1136/bmjopen-2016-011165
29		
30		
3 I 2 7	456	[published Online First: 2016/04/17]
32		
34	457	
35	407	
36		
37		
38		
39		
40		
41 42		
+∠ 43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
55 54		
55		
56		
57		97
58		21
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1 Adjustment coefficients of healthcare demand by age strata and sex 4.0 3.5 3.0 3.0 2.5 2.0 2.0 1.5 1.0 1.0 0.5 0.0 Ref. 30.34 35.²⁰ 0th 5.9 10th 15-19 20-24 25-29 Ъ, Age group ■ Male ■ Female Ref.: reference value, which is the mean health expenditure per capita of all patients.

Figure 2 Temporal increases in physician numbers from 2000 to 2014 for the four groups of secondary medical areas

Physicians Physicians / raw population Physicians / demand-adjusted population

b) Internists

c) Surgeons

Physicians Physicians / raw population Physicians / demand-adjusted population 10.0

e) OB/GYN specialists (per female population)

g) Pediatricians (per pediatric population)

d) Orthopedists

Physicians Physicians / raw population Physicians / demand-adjusted population 40.0

f) OB/GYN specialists (per no. of births)

h) Anesthesiologists

Physicians Physicians / raw population Physicians / demand-adjusted population

Group 1 (G1): urban areas with higher initial physician supply; Group 2 (G2): rural areas with higher initial physician supply; Group 3 (G3): rural areas with lower initial physician supply; Group 4 (G4): urban areas with lower initial physician supply. * As the number of births was not adjusted for healthcare demand, the numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown. OB/GYN: obstetrics/gynecology For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1 Population sizes in 2000 and 2014 before and after adjustment for healthcare demand

		Before a	adjustment			After adjustment	
Year	Total population	Female population	Pediatric population *1	Number of births *2	Total population	Female population	Pediatric population ^{*1}
2000	126 071 305	55 196 259	18 553 275	1 190 164	101 697 295	48 349 047	8 546 612
2014	126 434 634	56 670 449	16 489 385	1 003 474	125 837 379	60 902 189	7 594 643
Increase in number (%)	363 329 (0.3%)	1 474 190 (2.7%)	-2 063 890 (-11.1%)	-186 690(-15.7%)	24 140 085 (23.7%)	12 553 142 (26.0%)	-951 969 (-11.1%)

Healthcare demand was adjusted by multiplying the raw population with adjustment coefficients that were calculated using health expenditure per capita stratified by age and sex. It is a second s

^{*1} Pediatric population: all residents aged below 15 years.

^{*2} The number of births was not adjusted for healthcare demand.

BMJ Open

				Specia	ılty			
Year	All physicians	Internists	Surgeons	Orthopedists	OB/GY	N specialists	Pediatricians	Anesthesiologists
Overall number of physic	cians							
2000	243 201	95 545	25 424	19 225	1	2 420	14 156	5 751
2014	296 845	110 097	23 223	23 297	1	2 888	16 758	8 625
Increase in number (%)	53 644 (22.1%)	14 552 (15·2%)	-2 201 (-8.7%)	4 072 (21.2%)	468	3 (3.8%)	2 602 (18·4%)	2 874 (50.0%)
Number of physicians pe	er 100 000 population	n Ope						
Population type	Total	Total	Total	Total	Female	Number of births *1	Pediatric *2	Total
2000	192.9	75-8	20.2	15.2	22.5	1 043.6	76.3	4.6
2014	234.8	87.1	18.4	18.4	22.7	1 284.3	101.6	6.8
Increase in number (%)	41.9 (21.7%)	11.3 (14.9%)	-1.8 (-8.9%)	3.2 (21.1%)	0.2 (0.9%)	240.7 (23.1%)	25.3 (33.2%)	2.2 (47.8%)
Number of physicians pe	er 100 000 demand-a	djusted population		Q				
Population type	Total	Total	Total	Total	Female	Number of births *1	Pediatric *2	Total
2000	239.1	94.0	25.0	18.9	25.7	N/A	165.6	5-7
2014	235.9	87.5	18.5	18.5	21.2	N/A	220.7	6.9
Increase in number (%)	-3·2 (-1·3%)	-6.5 (-6.9%)	-6.5 (-26.0%)	-0.4 (-2.1%)	-4.5 (-17.5%)	N/A	55.1 (33.3%)	1.2 (21.1%)

*1 As the number of births was not adjusted for healthcare demand, the numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown.

^{*2} Pediatric population: all residents aged below 15 years.

OB/GYN: obstetrics/gynecology

Voor	2000	2002	2004	2006	2008	2010	2012	2014	2000-2014
1 Cai	2000	2002	2004	2000	2008	2010	2012	2014	changes
Number of physicians per 100	000 popula	tion							
All physicians	0.195	0.193	0.194	0.194	0.199	0.202	0.205	0.206	0.011
Internists	0.183	0.179	0.177	0.175	0.177	0.179	0.183	0.181	-0.002
Surgeons	0.204	0.202	0.197	0.190	0.194	0.206	0.210	0.209	0.002
Orthopedists	0.202	0.201	0.196	0.191	0.195	0.193	0.192	0.196	-0.006
OB/GYN specialists (per	0.226	0.218	0.226	0.240	0.260	0.263	0.266	0.270	0.043
female population)									
OB/GYN specialists (per	0.231	0.220	0.227	0.225	0.243	0.243	0.248	0.250	0.019
number of births) *	0 201	00	• == ;		0 - 10	0 - 10	0 - 10	0 200	0 019
Pediatricians (per	0.248	0.244	0.239	0.243	0.246	0.244	0.247	0.246	-0.003
pediatric population)	0 240	0 244	0 257	0 245	0 240	0 244	0 247	0 240	-0 005
Anesthesiologists	0.445	0.435	0.438	0.433	0.434	0.428	0.432	0.429	- 0·016
Number of physicians per 100	000 deman	d-adjusted p	opulation						
All physicians	0.212	0.210	0.214	0.219	0.227	0.231	0.234	0.237	0.025
Internists	0.186	0.182	0.185	0.184	0.191	0.194	0.199	0.199	0.013
Surgeons	0.204	0.202	0.198	0.189	0.199	0.213	0.218	0.219	0.015
Orthopedists	0.215	0.212	0.208	0.204	0.211	0.211	0.210	0.213	-0.002
OB/GYN specialists (per	0 254	0.247	0.255	0 272	0.202	0.206	0.200	0.202	0.040
female population)	0.234	0.741	0.233	0.772	0.292	0.296	0.299	0.303	0.049
Pediatricians (per	0.244	0.240	0.225	0.240	0.242	0.240	0.242	0.242	0.007
pediatric population)	0.744	0.740	0.233	0.740	0.742	0.740	0.742	0.747	-0.002
Anesthesiologists	0.456	0.447	0.451	0.448	0.449	0.445	0.450	0.447	-0.009

* As the number of births was not adjusted for healthcare demand, the numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

OB/GYN: obstetrics/gynecology

BMJ Open									
Table 4 Descri	ptive statistics of the	number of phys	icians per 100 000	population in					
of secondary m	edical areas in 2000	and 2014	I						
	Before adjus	stment	After adjus	stment					
	2000	2014	2000	2014					
Total number o	f physicians per 100	000 population							
Group 1	247.0	297.9	311.6	305.7					
Group 2	194.8	226.6	213.9	203.3					
Group 3	124.6	142.1	138.9	127.0					
Group 4	126.3	163-1	166-9	171.9					
Number of inte	rnists per 100 000 pc	opulation							
Group 1	95.2	108.0	120.1	110.8					
Group 2	79.8	87.5	87.6	78.5					
Group 3	54.0	59·1	60.2	52.8					
Group 4	49.6	61.4	65.5	64.7					
Number of surg	geons per 100 000 po	pulation							
Group 1	25.2	22.6	31.8	23.2					
Group 2	21.8	19.3	24.0	17.3					
Group 3	15.3	13.3	17.1	11.9					
Group 4	12.9	12.7	17.0	13.3					
Number of orth	opedists per 100 000) population							
Group 1	18.6	22.4	23.5	23.0					
Group 2	16.6	19.2	18.2	17.2					
Group 3	10.8	12.6	12.0	11.2					
Group 4	10.7	13.4	14.2	14.2					
Number of OB	GYN specialists per	100 000 female j	population						
Group 1	28.4	28.9	33.2	27.5					
Group 2	20.2	19.3	20.3	15.8					
Group 3	13.9	12.4	14.1	10.2					
Group 4	16.3	17.0	20.0	16.7					
Number of OB	GYN specialists per	100 000 births *							
Group 1	1316.5	1578.9	N/A	N/A					
Group 2	1051.3	1240.3	N/A	N/A					
Group 3	714.9	849.8	N/A	N/A					
Group 4	702.1	914.7	N/A	N/A					

Group 1	49.0	63.1	211.5	272.3
Group 2	35.5	50.2	158.0	221.0
Group 3	22.6	32.7	100.7	144.8
Group 4	27.3	36.7	117.6	159.4
Number of anesthesiologists per 100 000 population				
Group 1	6.6	9.4	8.3	9.7
Group 2	4.4	6.1	4.8	5.5
Group 3	1.9	2.8	2.1	2.5
Group 4	2.2	4.1	2.9	4.3

Group 1: urban areas with higher initial physician supply; Group 2: rural areas with higher initial physician supply; Group 3: rural areas with lower initial physician supply; Group 4: urban areas with lower initial physician supply.

* As the number of births was not adjusted for healthcare demand, the numbers of OB/GYN specialists per

100 000 demand-adjusted births are not shown.

N/A: not applicable; OB/GYN: obstetries/gynecology
BMJ Open

Urban / Rural	Urba	n	Rur	al	
Group	Group 1	Group 4	Group 2	Group 3	
	Mean(SD)	Mean(SD)	Mean(SD)	Mean(SD)	
Number of physicians					
Total physicians	1 536.0(1 409.7)	619.2(433.5)	352.0(295.3)	175.5(127.2	
Internists	592.0(566.4)	242.9(165.3)	144.3(105.2)	76.1(52.0	
Surgeons	156.5(142.1)	63.1(42.2)	39.5(28.4)	21.6(14.2	
Orthopedists	115.8(94.4)	52.6(36.4)	30.0(25.9)	15.2(12.2	
OB/GYN specialists	78.1(71.8)	34.1(26.3)	16.4(15.6)	8.6(6.5	
Pediatricians	88.0(71.9)	40.3(31)	19.1(19.8)	9.6(7.8	
Anesthesiologists	40.9(40.1)	10.9(9.8)	7.9(9.8)	2.7(3.2	
Raw population					
Total population	621 865 • 5(458 098 • 5)	490 244 • 5(341 301 • 8)	180 718 • 5(125 140 • 5)	140 925 7(100 156 8	
Female population	274 615·3(203 154·4)	209 062.4(144 107.6)	81 044 • 7(54 965 • 4)	62 047.6(43 331.9	
Pediatric population	89 778.6(62 866.3)	73 620.8(48 171.0)	26 837 • 6(19 441 • 3)	21 202 • 8(15 429 • 6	
Number of births *	41 599.4(29 459.0)	34 246 1(22 935 5)	12 070.9(8 837.2)	9 497 2(6 971 3	
Demand-adjusted population					
Total population	492 971.0(349 667.3)	370 991 • 2(242 817 • 0)	164 585.9(103 001.3)	126 410 8 (84 059 2	
Female population	235 594.4(166 553.3)	170 624.5(109 441.9)	80 861 9(49 177 2)	61 184.3(39 965.6	
Pediatric population	41 599.4(29 459.0)	34 246 1(22 935 5)	12 070.9(8 837.2)	9 497 2 (6 971 3	

Area (km ²)	311.5(221.5)	242.8(141.4)	360.9(238.5)	458.6(485.8)
Population density (per km ²)	3 023.7(3 403.4)	2 591.6(2 510.6)	514.5(140.9)	393.5(186.9)
Group 1 and Group 2: Higher initial phys	sician supply, Group 3 and Group	4: Lower initial physician supp	oly.	
* The number of births was not adjusted	for healthcare demand.			
OB/GYN: obstetrics/gynecology; SD: sta	andard deviation			

BMJ Open

Examining changes in the equity of physician distribution in Japan: a specialty-specific longitudinal study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-018538.R1
Article Type:	Research
Date Submitted by the Author:	19-Sep-2017
Complete List of Authors:	Hara, Koji; Kyoto University, Department of Healthcare Economics and Quality Management Kunisawa, Susumu; Kyoto University, Department of Healthcare Economics and Quality Management Sasaki, Noriko; Kyoto University, Department of Healthcare Economics and Quality Management Imanaka, Yuichi; Kyoto University, Department of Healthcare Economics and Quality Management
Primary Subject Heading :	Health policy
Secondary Subject Heading:	Public health
Keywords:	Inequity, Aging, Physician, Japan

Page 1 of 40

BMJ Open

Z		
3		
4		
5		
6		
7	1	Examining changes in the equity of physician distribution in
8		
9	0	Japany a speciality specific longitudinal study
10	2	Japan. a specially-specific longitudinal study
11		
12		
13	3	
14		
15	4	Anthony
16	4	Autnors:
17		
18	5	Kaji Hara MA Susumu Kunisawa PhD Narika Sasaki PhD and Yujchi Imanaka PhD
19	0	Koji Hara WA, Susuniu Kunisawa, Fild, Worko Sasaki, Fild, and Fuleni Inianaka, Fild
20		
21	6	Department of Healthcare Economics and Quality Management, Graduate School of
22		
23		
24	$\overline{7}$	Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan
25		
26		
27	8	606-8501
28		
29	0	
30	9	
31		
32	10	Corresponding author:
33	10	Corresponding author.
34		
35	11	Yuichi Imanaka, Professor
36		
37		
37 38 20	12	Mailing address: Department of Healthcare Economics and Quality Management,
37 38 39	12	Mailing address: Department of Healthcare Economics and Quality Management,
37 38 39 40	12	Mailing address: Department of Healthcare Economics and Quality Management,
37 38 39 40 41	12 13	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto
37 38 39 40 41 42 43	12 13	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto
37 38 39 40 41 42 43 44	12 13	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto
37 38 39 40 41 42 43 44	12 13 14	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501
37 38 39 40 41 42 43 44 45 46	12 13 14	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501
37 38 39 40 41 42 43 44 45 46 47	12 13 14 15	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454
37 38 39 40 41 42 43 44 45 46 47 48	12 13 14 15	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454
37 38 39 40 41 42 43 44 45 46 47 48 49	12 13 14 15	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454
37 38 39 40 41 42 43 44 45 46 47 48 49 50	12 13 14 15 16	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	12 13 14 15 16	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	12 13 14 15 16	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	12 13 14 15 16 17	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	12 13 14 15 16 17	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	12 13 14 15 16 17	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	12 13 14 15 16 17 18	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	12 13 14 15 16 17 18	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	12 13 14 15 16 17 18	 Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	12 13 14 15 16 17 18	Mailing address: Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net

19 Word count:

20 3 584 words

to beet teries only

e 3 of 40		BMJ Open
	22	Examining changes in the equity of physician distribution in
	23	Japan: a specialty-specific longitudinal study
	24	
	25	Abstract
	26	Objectives
	27	In this longitudinal study, we examined changes in the geographic distribution of physicians in Japan
	28	from 2000 to 2014 by clinical specialty with adjustments for healthcare demand based on population
	29	structure.
	30	Methods
	31	The Japanese population was adjusted for healthcare demand using health expenditure per capita
	32	stratified by age and sex. The numbers of physicians per 100 000 demand-adjusted population in
	33	2000 and 2014 were calculated for sub-prefectural regions known as secondary medical areas.
	34	Disparities in the geographic distribution of physicians for each specialty were assessed using Gini
	35	coefficients. A subgroup analysis was conducted by dividing the regions into four groups according
	36	to urban-rural classification and initial physician supply.
	37	Results
	38	Over the study period, the number of physicians per 100 000 demand-adjusted population decreased
	39	in all clinical specialties (e.g., surgery: 26.0% decrease) except pediatrics (33.3% increase) and 3
		For near review only - http://bmionen.hmi.com/cito/about/auidalinas.yhtml
		for peer eview only - http://billjopen.billj.com/site/about/guidelines.xittill

	BMJ Open
40	anesthesiology (21.1% increase). No reductions in geographic disparity were observed in any of the
41	clinical specialties. Geographic disparity increased substantially in internal medicine, surgery, and
42	obstetrics and gynecology. Rural areas with lower initial physician supply experienced the highest
43	decreases in physicians per 100 000 demand-adjusted population for all clinical specialties except
44	pediatrics and anesthesiology. In contrast, urban areas with lower initial physician supply
45	experienced the lowest decreases in physicians per 100 000 demand-adjusted population in internal
46	medicine, surgery, orthopedics, and obstetrics and gynecology, but the highest increase in
47	anesthesiology.
48	Conclusion
49	Between 2000 and 2014, the number of physicians per 100 000 demand-adjusted population in Japan
50	decreased in all specialties except pediatrics and anesthesiology. There is also a growing urban-rural
51	disparity in physician supply in all specialties except pediatrics. Additional measures may be needed
52	to resolve these issues and improve physician distribution in Japan.
53	
	4
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

54	Article Summary
55	Strengths and limitations of this study
56	• This study longitudinally examined specialty-specific changes in the geographic distrib
57	Japanese physicians with adjustments for healthcare demand according to population structure
58	• The adjustment method used in this study was previously verified, and enables adjustn
59	healthcare demand according to age strata using health expenditure per capita.
60	• Both age and sex were included in the calculation of the adjustment coefficients to increase
61	accuracy of adjustments.
62	• There was a lack of information on the physicians' working conditions, such as wh
63	physician worked full-time or part-time.
64	• It may be difficult to generalize our adjustment coefficients to other countries as the
65	calculated using Japanese health expenditure, but the adjustment method itself ma
66	applications in other countries.
67	
68	
69	
	_

70 Introduction

71	The presence of inequities in the geographic distribution of physicians is a major social problem in
72	many countries. ¹⁻⁴ In Japan, the geographic disparity in physician supply has long been recognized
73	as a serious flaw in the healthcare provision system. ⁵⁶ The lack of regulations that dictate where
74	individual physicians work in Japan has led to the concentration of physicians in urban regions and a
75	shortfall in rural areas, thereby resulting in uneven access to health care throughout the country. ⁵⁶
76	On the other hand, Japan has entered a period of population decline, ⁷ and an oversupply of
77	physicians is imminent if their numbers continue to rise at current rates. Attempts to control the total
78	number of physicians have been met with resistance from various interest groups. ⁸
79	In addition to the geographic disparity in physician supply, Japan also faces issues
80	stemming from an uneven distribution of physicians among the clinical specialties. ⁹ Previous studies
81	from the US have reported that the geographic distribution of physicians varies according to clinical
82	specialty. ¹⁰¹¹ Similarly, geographic disparities in the number of physicians in pediatrics, obstetrics
83	and gynecology (OB/GYN), and anesthesiology have been documented in Japan. ¹² However, few
84	studies have longitudinally examined the geographic distribution of physicians according to clinical
85	specialty.
86	Although the number of physicians per 100 000 population is generally used as an
87	indicator when examining geographic disparities in physician supply, this measure involves a simple
	6
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

88	head count that does not account for the inherent variations in healthcare demand among the
89	different age strata and sex. ⁴ Furthermore, Japan's population is aging at an unprecedented rate,
90	which has resulted in its transformation into the world's first "super-aged" society (where more than
91	21% of a country's population is aged 65 years and older). As a consequence, the population
92	structure in Japan is undergoing dramatic changes, which has invariably led to changes to healthcare
93	demand. We previously reported that Japan's healthcare demand increased by 22% from 2000 to
94	2014 amid worsening geographic disparity in physician supply. ¹³ However, studies have yet to be
95	conducted on the disparity in Japan's physician supply for different clinical specialties while
96	accounting for the differences in healthcare demand.
97	This study aimed to longitudinally examine specialty-specific changes in the geographic
98	distribution of physicians in Japan from 2000 to 2014 with adjustments for healthcare demand based
99	on population structure.
100	
101	Methods
102	Data source
103	Data on the number of physicians were obtained from the Survey of Physicians, Dentists, and
104	Pharmacists conducted every two years by the Ministry of Health, Labour and Welfare (MHLW).
105	Physicians in Japan are required to participate in this survey, which includes information on each
	7

106	physician's specialty and the type and location (municipality) of their workplace. Population data
107	(age, sex, and location of residence) were extracted from the Annual Report of the National Basic
108	Resident Registration System published by the Ministry of Internal Affairs and Communications,
109	and data on the number of births were obtained from the Annual Report of Vital Statistics published
110	by the MHLW. We also acquired data on national health expenditure per capita according to patient
111	age in 2013 from the MHLW. The total area of habitable land was ascertained from statistical reports
112	on land areas of prefectures and municipalities by the Geospatial Information Authority of Japan.
113	
114	Physicians and population
115	We targeted physicians working in clinical facilities (hospitals and clinics), and excluded physicians
116	working in non-clinical facilities (e.g., research centers and government offices). The following
117	clinical specialties were included in analysis: internal medicine, surgery, orthopedics, OB/GYN,
118	pediatrics, and anesthesiology. Internal medicine, surgery, and orthopedics were selected because
119	these departments generally have more physicians than other departments. The remaining three
120	specialties were selected because of their previously reported geographic disparities in physician
121	supply throughout Japan. ¹²
122	In addition to the total population, we also analyzed the female population, pediatric
123	population (<15 years of age), and the number of births. With the exception of the number of births,
	8
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

124	all study populations were adjusted for healthcare demand. We calculated the number of OB/GYN
125	specialists per 100 000 female population and per 100 000 births, the number of pediatricians per
126	100 000 pediatric population, and the number of physicians per 100 000 population for each of the
127	other clinical specialties.
128	
129	Geographic unit
130	The geographic unit of analysis was the secondary medical area (SMA). The Japanese government
131	has designated three regional levels of healthcare provision. Primary medical areas are geographic
132	units where primary care is provided, and are demarcated by municipal borders. Tertiary medical
133	areas are geographic units that provide advanced medical care, and are demarcated by prefectural
134	borders. SMAs are set between primary and tertiary medical areas, and are regions where general
135	medical care (such as inpatient care) is provided; these areas are composed of multiple
136	municipalities. Each prefectural government stipulates the geographic and demographic range of the
137	SMAs within their prefecture. As a result, the boundaries of each SMA can be altered in response to
138	changes in healthcare demand. SMAs have been previously used to examine the inequities in
139	physician supply in Japan. ⁶¹⁴ Because the number of SMAs varies slightly over time, this study was
140	conducted using the 349 SMAs designated in 2012.
141	
	9

142 Analytical methods

143	This retrospective study longitudinally examined the changes in the geographic distribution of the
144	number of physicians by clinical specialty among Japan's SMAs from 2000 to 2014. The primary
145	outcomes were the overall number of physicians per 100,000 population and the trends in Gini
146	coefficients (indicating geographic disparity) for each specialty during the study period. The
147	secondary outcomes were the changes in physician numbers during the same period for subgroups
148	that were categorized according to regional characteristics (urban-rural classification and initial
149	physician supply).
150	The population was first adjusted using adjustment coefficients of healthcare demand,
151	which were calculated based on the health expenditure per capita stratified by age and sex through a
152	previously described method. ¹³ Health expenditure per capita is likely indicative of the general
153	workload of healthcare providers. ¹⁵ These expenditures include those for both inpatient and
154	outpatient services, and account for variations in patient health status. ¹³ The demand-adjusted
155	population was generated by multiplying the raw population with the adjustment coefficients.
156	Next, geographic disparity was assessed using the Gini coefficient. This indicator, which is
157	widely used to examine disparity in the field of economics, has been applied to analyze geographic
158	disparity in physician supply. ¹⁵¹⁶⁻¹⁸ We calculated the Gini coefficients for each specialty every two
159	years from 2000 to 2014. The coefficients, which take a value from 0 (indicating complete equality)
	10

BMJ Open

160	to 1 (indicating complete inequality), measure departure from a uniform distribution by drawing
161	Lorenz curves. ¹⁷ If the curves of two time points intersect, conclusions cannot be made as to whether
162	or not the inequity of distribution is increasing. ¹⁸ Thus, we plotted two Lorenz curves (one each for
163	2000 and 2014) for each clinical specialty.
164	Finally, a subgroup analysis was conducted by dividing SMAs into groups according to
165	two regional characteristics. Using the method described in Sasaki et al., ¹⁹ we classified each SMA
166	into one of four groups based on whether the SMA was an urban or rural area, and whether the SMA
167	had a higher or lower initial physician supply in 2000. An SMA was designated an urban area (or a
168	rural area) if its population density was higher (or lower) than the median value in all SMAs. The
169	population density of each SMA was calculated using the total area of habitable land and the
170	population in 2000. Next, an SMA was designated as having a higher (or lower) initial physician
171	supply if the number of physicians per 100 000 population was higher (or lower) than the median
172	number of physicians per 100 000 population in all SMAs. The following four groups were
173	analyzed: Group 1, which comprised urban areas with higher initial physician supply; Group 2,
174	which comprised rural areas with higher initial physician supply; Group 3, which comprised rural
175	areas with lower initial physician supply; and Group 4, which comprised urban areas with lower
176	initial physician supply. Data from 2000 were used for both the population and physicians. In this
177	subgroup analysis, we compared the inter-group changes in the number of physicians per 100 000
	11
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

178	population between 2000 and 2014.
179	All analyses were performed using R statistical software (V.3.2.2).
180	
181	Results
182	Table 1 shows the population sizes of the total population, female population, and pediatric
183	population before and after applying the adjustment coefficients in 2000 and 2014. The adjustment
184	coefficients for the different age strata and sex are provided Appendix Figure. Before adjustment, the
185	total population did not substantially change throughout the study period. In contrast, the
186	demand-adjusted total population increased by 23.7% between 2000 and 2014. The number of births,
187	which was not adjusted for healthcare demand, decreased by 15.7%. The pediatric population
188	declined by 11.1% over the study period both before and after adjusting for healthcare demand.
189	Table 2 shows the overall number of physicians and the number of physicians per 100 000
190	population in 2000 and 2014. The overall number of all physicians increased by $22 \cdot 1\%$ over the
191	study period. Similarly, the number of all physicians per 100 000 population increased by 21.7%.
192	However, the number of all physicians per 100 000 demand-adjusted population decreased by 1.3% .
193	The number of physicians per 100,000 demand-adjusted population in surgery and OB/GYN
194	declined by 26.0% and 17.5% , respectively. In contrast, the number of OB/GYN specialists per
195	100,000 births increased by 23.1% due to the declining number of births. The number of physicians
	12

Page 13 of 40		BMJ Open
1 2 3		
4 5 6 7	196	per 100,000 demand-adjusted population in pediatrics and anesthesiology increased by 33.3% and
8 9	197	21.1%, respectively.
10 11 12 13	198	Table 3 shows the trends in Gini coefficients for the number of physicians per 100 000
14 15	199	population in the SMAs by clinical specialty. There were no substantial changes in the Gini
16 17 18	200	coefficients for the numbers of orthopedists, pediatricians, and anesthesiologists per 100 000
20 21	201	demand-adjusted population. However, inequity increased in the geographic distribution of internists,
22 23 24	202	surgeons, and OB/GYN specialists (for both the female population and the number of births). In
25 26 27	203	each of these three specialties, the Lorenz curve in 2014 tended to deteriorate more than the curve in
27 28 29	204	2000 without intersection between the two curves (figures not shown). When comparing the Gini
30 31 32	205	coefficients before and after adjusting for healthcare demand, the trends in the coefficients were
33 34 35	206	similar for each clinical specialty. However, the post-adjustment Gini coefficients for all clinical
36 37 38	207	specialties (except for pediatrics) were higher than their pre-adjustment values.
39 40 41	208	Table 4 summarizes the changes in the numbers of physicians per 100 000 population in
42 43	209	the four groups of SMAs. Detailed descriptive statistics of the four groups are provided in the
44 45 46	210	Appendix table. Figure 1 shows the temporal increases (2000 to 2014) in the number of physicians
47 48 49	211	by clinical specialty in each group of SMAs. The temporal increases in the number of internists and
50 51 52	212	orthopedists were similar to those for all physicians. The overall number of surgeons decreased in all
53 54 55	213	groups except for Group 4, and the number of surgeons per 100 000 demand-adjusted population
56 57		13
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	214	decreased by 20% to 30% in all groups. As shown in Table 4, the number of surgeons per 100 000
2	215	demand-adjusted population in Group 3 (11.9) was approximately half of the corresponding number
2	216	in Group 1 (23.2) in 2014. In all groups, the number of OB/GYN specialists per 100 000
2	217	demand-adjusted female population decreased, but the number of OB/GYN specialists per 100 000
2	218	births increased. The number of pediatricians per 100 000 demand-adjusted pediatric population
2	219	increased more in the rural SMAs than in the urban SMAs. The number of anesthesiologists per 100
2	220	000 demand-adjusted population increased in all groups; in particular, the number in Group 4
2	221	increased by more than twice that of the other groups. In all clinical specialties except pediatrics and
2	222	anesthesiology, Group 3 had the highest decrease in the number of physicians per 100 000
2	223	demand-adjusted population. The 2014-2000 difference and ratio of the number of physicians per
2	224	100 000 demand-adjusted population between Groups 3 and 4 increased in all clinical specialties
2	225	except pediatrics.
2	226	
2	227	Discussion
2	228	The four major findings of this study are as follows: First, the demand-adjusted population increased
2	229	by 23.7% between 2000 and 2014, whereas the demand-adjusted pediatric population decreased by
2	230	11.1%. Second, the number of physicians per 100 000 demand-adjusted population decreased in all
2	231	clinical specialties except pediatrics and anesthesiology. The largest increase (33.3%) was observed
		14

BMJ Open

232	in pediatrics. Third, the geographic disparity in the number of physicians per 100 000
233	demand-adjusted population did not decline in all clinical specialties, and had in fact increased in
234	internal medicine, surgery, and OB/GYN. Fourth, rural areas with lower initial physician supply had
235	the highest decrease in the number of physicians per 100 000 demand-adjusted population compared
236	with other areas in all clinical specialties except pediatrics and anesthesiology. In contrast, urban
237	areas with lower initial physician supply had the lowest decrease in internal medicine, surgery,
238	orthopedics and OBG/GYN, but the highest increase in anesthesiology.
239	The population used in this study was adjusted for healthcare demand among the different
240	age strata and sex using a previously described method. ¹³ Although several studies have examined
241	the demand-adjusted geographic disparity in physician supply, ^{15 20} there is currently no gold standard
242	method for adjustment. ²⁰ The method used in this study was previously verified, ¹³ and enables
243	adjustment for healthcare demand according to age strata. In addition, the inclusion of sex in the
244	calculation of the coefficients may increase the accuracy of adjustments.
245	The number of physicians per 100 000 demand-adjusted population decreased in internal
246	medicine, surgery, orthopedics, and OB/GYN (per female population). The decline in physician
247	supply was particularly large in surgery and OB/GYN, which corroborates previously reported
248	downward trends in the numbers of physicians in these specialties. ¹² The distribution among
249	specialties is affected by physician preference, experience, and environment. For example, the
	15

3
1
4
5
6
7
8
a
10
10
11
12
13
14
15
16
17
17
18
19
20
21
22
22
2J 24
24 2-
25
26
27
28
29
20
20
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
11
44
45
46
47
48
49
50
50
21
52
53
54
55
56
50
5/
58
59
60

1 2

250	shortage of surgeons may be influenced by the long working hours, high risk of medical litigation,
251	and low reward for surgical skill. ²¹ Previous research has also shown that an increase in female
252	physicians has affected the distribution of specialties because they are more likely to choose
253	OB/GYN and pediatrics instead of surgery. ^{22 23} In order to ensure a high number of both female and
254	male physicians, we believe that improvements should be made to the working environment, such as
255	a reduction in physician working hours by assigning more duties and responsibilities to
256	non-physician health professionals. ²¹ On the other hand, there was a large increase in the number of
257	anesthesiologists during the study period. Japan is experiencing an increasing need for
258	anesthesiologists due to the rising number of surgeries conducted, the increasing complexity of
259	surgery owing to advances in surgical techniques and the overall aging of patients, as well as the
260	growing social expectations for safety in anesthesia. ²⁴ Due to the initial shortage of anesthesiologists,
261	the offering of higher salaries may have contributed to attracting more specialists. In addition, the
262	increase in anesthesiologists may have been influenced by the growing number of female physicians.
263	Because anesthesiologists generally do not have their own patients or on-call duties, this specialty
264	may be more compatible with raising families. The increase in female anesthesiologists from 26.7%
265	to 37.6% during the study period is consistent with this possibility.
266	Our findings detected a decrease in the numbers of internists and orthopedists despite an
267	increase in healthcare demand. On the other hand, the number of pediatricians per 100 000
	16

BMJ Open

268	demand-adjusted pediatric population and OB/GYN specialists per 100 000 births greatly increased
269	due to a decline in the pediatrics population and the number of births. The rate of pediatric
270	population decline is expected to eventually exceed the rate of total population decline. ²⁵ It may
271	therefore be more useful to ensure the optimal allocation of physicians instead of simply increasing
272	their overall numbers.
273	Based on the analysis of Gini coefficients, there were no reductions in geographic disparity
274	in the number of physicians per 100 000 demand-adjusted population in all clinical specialties
275	between 2000 and 2014. In particular, the inequity in physician supply increased in internal medicine,
276	surgery, and OB/GYN. The inequity in surgery and OB/GYN may have been influenced by the
277	decrease or lack of increase in the overall number of physicians in these specialties. These findings
278	suggest that the uneven distribution of physicians among the clinical specialties may exacerbate
279	geographic disparities in physician supply. On the other hand, the number of internists increased at a
280	rate that was comparable to the overall growth rate. The increase in geographic disparity may
281	therefore be related to an increasing tendency toward physician specialization in Japan. ²⁶ Although
282	the overall number of general internists decreased from 74 539 to 61 317 over the study period, there
283	was actually an increase from 21 006 to 48 780 physicians in internal subspecialties such as
284	pulmonary, cardiovascular, and gastrointestinal medicine (data not shown). The geographic disparity
285	in physician supply in these subspecialties is greater than the disparity in general internists. ⁹
	17

3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
25
22
30
37
38
39
40
41
42
43
44
 Λ5
45 46
40
4/
48
49
50
51
52
53
54
54
22
56
57
58
59
60

286	The rate of increase in the number of physicians per 100 000 demand-adjusted population
287	in the urban areas was generally higher than in the rural areas. In all clinical specialties except
288	pediatrics, both the difference and ratio in the number of physicians per 100 000 demand-adjusted
289	population between Group 3 and Group 4 in 2014 were larger than the corresponding values in 2000.
290	This indicates that the urban-rural disparity in physician supply widened over the study period.
291	Group 3 had the lowest initial physician supply, and these regions may be facing a serious physician
292	shortage. This issue should be explored further, and there may be a need for major reforms to ensure
293	adequate physician supply to rural areas. It may also be important to implement measures in rural
294	areas to improve physician productivity, reduce non-essential workload, and implement
295	technology-based systems such as telemedicine.
296	Prior to 2004, the vast majority of medical graduates joined a clinical specialty department
297	(known as an Ikyoku) at their university that secures employment for the new graduates. Ikyoku
298	generally dispatch physicians to other affiliated hospitals that are often located in rural areas. In this
299	way, the <i>Ikyoku</i> were partly responsible for preventing a shortage of physicians in rural areas. On the
300	other hand, medical graduates did not receive mandatory clinical training under this system. As a
301	result, few graduates were able to acquire a wide range of medical skills through comprehensive and
302	systematic training. ²⁷ In addition, training assessments were not adequately performed under the
303	<i>Ikyoku</i> system. ²⁷ In order to improve the overall quality of clinical training throughout Japan, the
	18

BMJ Open

304	MHLW mandated a standardized 2-year training program in 2004. Furthermore, there was a large
305	increase in the number of non-university hospitals that medical graduates could attend as part of this
306	training program after 2004. As a consequence, the graduates, now able to choose their training
307	hospital after graduation, were less likely to select a university hospital for training. Due to the
308	decreasing number of member physicians, it became more difficult for the Ikyoku to dispatch
309	physicians to affiliate hospitals. ¹⁴ Previous studies have also reported that the new program may
310	have increased the inequity in the geographic distribution of physicians ^{14 28} . Similarly, this new
311	program may also have contributed to the lack of reduction in geographic disparity in this study.
312	The Japanese government has implemented several measures at the prefectural level aimed
313	at reducing the geographic disparity in physician supply. In 2006, a "Council for Regional Medicine"
314	was established in each prefecture, and these councils include representatives of the prefectural and
315	local governments, hospitals, medical associations, universities, and residents. The councils discuss
316	detailed measures for securing medical staff with a variety of hospitals, including university
317	hospitals and public hospitals. Furthermore, a "Support Center for Community Medicine" was
318	established in each prefecture in 2011 to secure and retain physicians. These centers adopt the role of
319	"control towers" to address the uneven distribution of physicians within each prefecture. Specifically,
320	the centers are responsible for supporting career advancement for physicians working in rural areas,
321	acting as general liaisons for engaging new physicians, and providing general work information. In
	19
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	
4	
5	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
20	
24 25	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
55	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

322	addition, the government has raised the regional quota of medical school admissions from 64			
323	students in 2005 to 1 617 students in 2016. The students are obligated to work in a rural area or a			
324	designated specialty (such as OB/GYN) for nine years after graduating in return for financial			
325	assistance for their studies. ²⁹ As the program is relatively new, it remains unclear as to whether the			
326	increase in quotas will lead to reductions in the geographic disparity of physicians.			
327	There are several limitations in this research. First, the adjustment coefficients may			
328	continue to change in the future. However, the coefficients did not fluctuate considerably during the			
329	study period. In addition, it may be difficult to generalize our adjustment coefficients to other			
330	countries as they were calculated using Japanese health expenditure. Nevertheless, the adjustment			
331	method itself may have applications in other countries. Second, there was a lack of information on			
332	the physicians' working conditions, such as whether a physician worked full-time or part-time. It			
333	may be beneficial for future studies to incorporate mean physician working hours. Finally, there may			
334	be other ways to divide the SMAs for the subgroup analysis. However, our subgroup analysis was			
335	based on the categorization used in a previous study, ¹⁹ and provided an intuitive understanding of the			
336	differences in group characteristics.			
337				
338	Conclusion			
339	Between 2000 and 2014, the number of physicians per 100 000 demand-adjusted population in Japan			
	20			

340	decreased in all specialties except pediatrics and anesthesiology. There is also a growing urban-rural
341	disparity in physician supply in all specialties except pediatrics. In consideration of the rapidly aging
342	population and the resulting changes in population structure, additional measures may be needed to
343	resolve these issues and improve physician distribution in Japan.
344	
345	List of abbreviations
346	OB/GYN, obstetrics and gynecology
347	MHLW, Ministry of Health, Labour and Welfare
348	SMA, secondary medical area
349	
350	Footnotes
351	Acknowledgements
352	Not applicable.
353	
354	Competing interests
355	The authors declare that they have no competing interests.
356	
357	Funding
	21
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

358	This work was supported in part by a Health Sciences Research Grant from the Ministry of Health,
359	Labour and Welfare of Japan (Grant number: H27-iryo-ippan-001), a Grant-in-Aid for Scientific
360	Research from the Japan Society for the Promotion of Science (Grant number: [A]16H02634), and
361	RISTEX, Japan Science and Technology Agency.
362	
363	Contributors
364	KH contributed to the study conception and design, data collection, analysis, interpretation, and
365	drafting of the manuscript. SK and NS contributed to the data collection and data management. YI
366	contributed to the study design, data acquisition, and interpretation. All authors critically revised the
367	manuscript, and approved the final version.
368	
369	Ethics approval
370	Ethics committee approval was waived for this study because all of the data are publicly available
371	online and comprise only aggregate values without any personally identifiable information.
372	
373	Role of the funding source
374	The funder of the study had no role in study design; collection, analysis, and interpretation of the
375	data; writing of the report; or the decision to submit the paper for publication. The corresponding
	22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

376	author had full access to all the data in the study and had final responsibility for the decision to
377	submit for publication.
378	
379	Data sharing statement
380	No additional data available.
381	
382	Consent for publication
383	Not applicable.
384	
385	1. Isabel C, Paula V. Geographic distribution of physicians in Portugal. European Journal of Health
386	Economics 2010;11(4):383-93. doi: 10.1007/s10198-009-0208-8
387	2. Kanchanachitra C, Lindelow M, Johnston T, et al. Human resources for health in southeast Asia:
388	shortages, distributional challenges, and international trade in health services. Lancet
389	2011;377(9767):769-81. doi: 10.1016/s0140-6736(10)62035-1 [published Online First:
390	2011/01/29]
391	3. Ricketts TC. The migration of physicians and the local supply of practitioners: a five-year comparison.
392	Acad Med 2013;88(12):1913-8. doi: 10.1097/acm.00000000000012 [published Online First:
393	2013/10/17]
	23
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

394	4. Pitblado JR, and Raymond W. Pong. Geographic distribution of physicians in Canada. Sudbury,						
395	Ontario, Canada: Centre for Rural and Northern Health Research, Laurentian University 1999.						
396	5. Kobayashi Y, Takaki H. Geographic distribution of physicians in Japan. Lancet 1992;340(8832):1391-3.						
397	[published Online First: 1992/12/05]						
398	398 6. Tanihara S, Kobayashi Y, Une H, et al. Urbanization and physician maldistribution: a longitudinal study						
399	399 in Japan. BMC Health Serv Res 2011;11:260. doi: 10.1186/1472-6963-11-260 [published Online						
400	First: 2011/10/11]						
401	7. National Institute of Population and Social Security Research. population projection for						
402	Japan:2011-2060 2012 [Available from:						
403	http://www.ipss.go.jp/syoushika/tohkei/newest04/gh2401.pdf accessed 29 Feb 2016.						
404	8. Asano N, Kobayashi Y, Kano K. Issues of intervention aimed at preventing prospective surplus of						
405	physicians in Japan. <i>Med Educ</i> 2001;35(5):488-94. [published Online First: 2001/05/01]						
406	406 9. Matsumoto M, Inoue K, Bowman R, et al. Self-employment, specialty choice, and geographical						
407	407 distribution of physicians in Japan: A comparison with the United States. <i>Health Policy</i>						
408	408 2010;96(3):239-44. doi: 10.1016/j.healthpol.2010.02.008 [published Online First: 2010/03/13]						
409	10. Rosenthal MB, Zaslavsky A, Newhouse JP. The geographic distribution of physicians revisited.						
410	Health Serv Res 2005;40(6 Pt 1):1931-52. doi: 10.1111/j.1475-6773.2005.00440.x [published						
411	411 Online First: 2005/12/13]						
	24						
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

BMJ Open

412	11. Schwartz WB, Newhouse JP, Bennett BW, et al. The changing geographic distribution of					
413	board-certified physicians. N Engl J Med 1980;303(18):1032-8. doi:					
414	10.1056/nejm198010303031803 [published Online First: 1980/10/30]					
415 12. Study group on the supply and demand of physicians of the Ministry of Health LaW. The study group						
416	report on the supply and demand of physicians 2006 [Available from:					
417	417 http://www.mhlw.go.jp/shingi/2006/07/dl/s0728-9c.pdf accessed 16 Apr 2017.					
418	13. Hara K, Otsubo T, Kunisawa S, et al. Examining sufficiency and equity in the geographic distribution					
419	419 of physicians in Japan: a longitudinal study. BMJ Open 2017;7(3):e013922. doi:					
420	420 10.1136/bmjopen-2016-013922 [published Online First: 2017/03/16]					
421	421 14. Sakai R, Tamura H, Goto R, et al. Evaluating the effect of Japan's 2004 postgraduate training					
422	422 programme on the spatial distribution of physicians. <i>Hum Resour Health</i> 2015;13:5. doi					
423	10.1186/1478-4491-13-5 [published Online First: 2015/01/27]					
424	424 15. Gravelle H, Sutton M. Inequality in the geographical distribution of general practitioners in England					
425	425 and Wales 1974-1995. J Health Serv Res Policy 2001;6(1):6-13. [published Online First					
426	426 2001/02/24]					
427	427 16. Anand S, Fan VY, Zhang J, et al. China's human resources for health: quantity, quality, ar					
428	distribution. Lancet 2008;372(9651):1774-81. doi: 10.1016/s0140-6736(08)61363-x [published					
429	Online First: 2008/10/22]					
	25					
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

3
4
5
6
7
8
9
10
11
12
13
14
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
3/
38 20
29 40
40 //1
+ı ⊿ว
42 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2

430	17. Mauguen A, Begg CB. Using the Lorenz Curve to Characterize Risk Predictiveness and Etiologic
431	Heterogeneity. Epidemiology 2016;27(4):531-7. doi: 10.1097/ede.000000000000499 [published
432	Online First: 2016/04/21]
433	18. Theodorakis PN, Mantzavinis GD, Rrumbullaku L, et al. Measuring health inequalities in Albania: a
434	focus on the distribution of general practitioners. Hum Resour Health 2006;4:5. doi:
435	10.1186/1478-4491-4-5 [published Online First: 2006/03/01]
436	19. Sasaki H, Otsubo T, Imanaka Y. Widening disparity in the geographic distribution of pediatricians in
437	Japan. Hum Resour Health 2013;11:59. doi: 10.1186/1478-4491-11-59 [published Online First:
438	2013/11/26]
439	20. Kephart G, Asada Y. Need-based resource allocation: different need indicators, different results? BMC
440	Health Serv Res 2009;9:122. doi: 10.1186/1472-6963-9-122 [published Online First:
441	2009/07/23]
442	21. Hanazaki K, Tominaga R, Nio M, et al. Report from the Committee for Improving the Work
443	Environment of Japanese Surgeons: survey on effects of the fee revision for medical services
444	provided by surgeons. Surg Today 2013;43(11):1209-18. doi: 10.1007/s00595-013-0691-5
445	[published Online First: 2013/09/06]
446	22. Fukuda Y, Harada T. Gender differences in specialty preference and mismatch with real needs in
447	Japanese medical students. BMC Med Educ 2010;10:15. doi: 10.1186/1472-6920-10-15
	26

BMJ Open

4.49	[mublished Online First: 2010/02/12]
440	[published Online First. 2010/02/15]
449	23. Jefferson L, Bloor K, Maynard A. Women in medicine: historical perspectives and recent trends. Br
450	Med Bull 2015;114(1):5-15. doi: 10.1093/bmb/ldv007 [published Online First: 2015/03/11]
451	24. Tabayashi K, Sai S, Iguchi A, et al. Responding to lack of anesthesiologists thinking about the current
452	situation of anesthesiologists shortage from the standpoint of surgeons [in Japanese]. Journal of
453	Japanese Association for Operating Room Technology 2006;27(4):288-91.
454	25. National Institute of Population and Social Security Research in Japan. Population Projections for
455	Japan (April 2017) 2017 [cited 2017 Apr 14].
456	26. Koike S, Matsumoto S, Kodama T, et al. Specialty choice and physicians' career paths in Japan: an
457	analysis of National Physician Survey data from 1996 to 2006. Health Policy
458	2010;98(2-3):236-44. doi: 10.1016/j.healthpol.2010.06.021 [published Online First: 2010/07/29]
459	27. Ministry of Health, Labour and Welfare. A history of post-graduate clinical training system [in
460	Japanese] [Available from: http://www.mhlw.go.jp/topics/bukyoku/isei/rinsyo/hensen/ accessed
461	1 Sep. 2017].
462	28. Toyabe S. Trend in geographic distribution of physicians in Japan. Int J Equity Health 2009;8:5. doi:
463	10.1186/1475-9276-8-5 [published Online First: 2009/03/05]
464	29. Matsumoto M, Takeuchi K, Tanaka J, et al. Follow-up study of the regional quota system of Japanese
465	medical schools and prefecture scholarship programmes: a study protocol. BMJ Open
	27
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 28 of 40

BMJ Open

1
2
2
3
4
5
6
7
/
8
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
22
23
23
24
25
26
27
28
20
29
30
31
32
33
34
25
22
36
37
38
39
40
д1
41
42
43
44
45
46
17
47
48
49
50
51
52
52
22
54
55
56
57
58
50
29
60

466	2016;6(4):e011165. doi: 10.1136/bmjopen-2016-011165 [published Online First: 2016/04/17]
467	
468	Figure titles
469	Figure 1 Temporal increases in physician numbers from 2000 to 2014 for the four
470	groups of secondary medical areas
471	Appendix Figure Adjustment coefficients of healthcare demand by age strata and sex
472	
473	Figure legend
474	Figure1
475	Group 1 (G1): urban areas with higher initial physician supply; Group 2 (G2): rural
476	areas with higher initial physician supply; Group 3 (G3): rural areas with lower initial
477	physician supply; Group 4 (G4): urban areas with lower initial physician supply. * As
478	the number of births was not adjusted for healthcare demand, the numbers of OB/GYN
479	specialists per 100 000 demand-adjusted births are not shown. OB/GYN:
480	obstetrics/gynecology
481	Appendix Figure
482	Ref.: reference value, which is the mean health expenditure per capita of all patients.

Table 1 Population	sizes in 2000 and	l 2014 before and	after adjustment	for healthcare demand
---------------------------	-------------------	-------------------	------------------	-----------------------

	Before	After adjustment						
Year	Total population Female population Pediatri		Pediatric population *1	Number of births *2	Total population	Female population	Pediatric population *1	
2000	126 071 305	55 196 259	18 553 275	1 190 164	101 697 295	48 349 047	8 546 612	
2014	126 434 634	56 670 449	16 489 385	1 003 474	125 837 379	60 902 189	7 594 643	
Increase in number (%)	363 329 (0.3%)	1 474 190 (2.7%)	-2 063 890 (-11.1%)	-186 690(-15.7%)	24 140 085 (23.7%)	12 553 142 (26.0%)	-951 969 (-11.1%)	

Healthcare demand was adjusted by multiplying the raw population with adjustment coefficients that were calculated using health expenditure per capita stratified by age and sex.

^{*1} Pediatric population: all residents aged below 15 years.

*² The number of births was not adjusted for healthcare demand.

	Specialty										
Year	All physicians	Internists	Surgeons	Orthopedists	OB/GY	N specialists	Pediatricians	Anesthesiologists			
Overall number of physic	cians										
2000	243 201	95 545	25 424	19 225	1	2 420	14 156	5 751			
2014	296 845	110 097	23 223	23 297	1	2 888	16 758	8 625			
Increase in number (%)	53 644 (22.1%)	14 552 (15.2%)	-2 201 (-8.7%)	b) 4 072 (21·2%) 468 (3·8%)		2 602 (18.4%)	2 874 (50.0%)				
Number of physicians pe	er 100 000 population	n Op									
Population type	Total	Total	Total	Total	Female	Number of births *1	Pediatric *2	Total			
2000	192.9	75.8	20.2	15.2	22.5	1 043.6	76.3	4.6			
2014	234.8	87.1	18.4	18.4	22.7	1 284.3	101.6	6.8			
Increase in number (%)	41.9 (21.7%)	11.3 (14.9%)	-1.8 (-8.9%)	3.2 (21.1%)	0.2 (0.9%)	240.7 (23.1%)	25.3 (33.2%)	2.2 (47.8%)			
Number of physicians pe	er 100 000 demand-a	djusted population									
Population type	Total	Total	Total	Total	Female	Number of births *1	Pediatric *2	Total			
2000	239.1	94.0	25.0	18.9	25.7	N/A	165.6	5.7			
2014	235.9	87.5	18.5	18.5	21.2	N/A	220.7	6.9			
Increase in number (%)	-3.2 (-1.3%)	-6.5 (-6.9%)	-6.5 (-26.0%)	-0.4 (-2.1%)	-4.5 (-17.5%)	N/A	55.1 (33.3%)	1.2 (21.1%)			

^{*2} Pediatric population: all residents aged below 15 years.

OB/GYN: obstetrics/gynecology

BMJ Open

Year	2000	2002	2004	2006	2008	2010	2012	2014	2000-2014
Number of physicians per 100	000 popula	tion							endiges
All physicians	0.195	0.193	0.194	0.194	0.199	0.202	0.205	0.206	0.01
Internists	0.183	0.179	0.177	0.175	0.177	0.179	0.183	0.181	-0.00
Surgeons	0.204	0.202	0.197	0.190	0.194	0.206	0.210	0.209	0.00
Orthopedists	0.202	0.201	0.196	0.191	0.195	0.193	0.192	0.196	-0.00
OB/GYN specialists (per female population)	0.226	0.218	0.226	0.240	0.260	0.263	0.266	0.270	0.04
OB/GYN specialists (per number of births) *	0.231	0.220	0.227	0.225	0.243	0.243	0.248	0.250	0.01
Pediatricians (per pediatric population)	0.248	0.244	0.239	0.243	0.246	0.244	0.247	0.246	-0.00
Anesthesiologists	0.445	0.435	0.438	0.433	0.434	0.428	0.432	0.429	-0.01
Number of physicians per 100	000 deman	d-adjusted p	opulation						
All physicians	0.212	0.210	0.214	0.219	0.227	0.231	0.234	0.237	0.02
Internists	0.186	0.182	0.185	0.184	0.191	0.194	0.199	0.199	0.01
Surgeons	0.204	0.202	0.198	0.189	0.199	0.213	0.218	0.219	0.01
Orthopedists	0.215	0.212	0.208	0.204	0.211	0.211	0.210	0.213	-0.00
OB/GYN specialists (per	0.254	0.247	0.255	0.272	0.202	0.206	0.200	0.202	0.04
female population)	0.254	0.741	0.233	0.212	0.292	0.290	0.299	0.303	0.045
Pediatricians (per	0.244	0.240	0 225	0.240	0.243	0.240	0.243	0.242	0.00
pediatric population)	0.744	0.740	0.233	0.740	0.243	0.740	0.243	0.747	-0-00
Anesthesiologists	0.456	0.447	0.451	0.448	0.449	0.445	0.450	0.447	-0.00

As the number of births was not adjusted for healthcare demand, the numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only OB/GYN: obstetrics/gynecology

	Before ac	ljustment	After adjustment			
	2000	2014	2000	2014		
Total number of p	ohysicians per 100	0 000 population				
Group 1	247.0	297.9 (20.6%)	311.6	305.7 (-1.9%)		
Group 2	194.8	226.6 (16.3%)	213.9	203.3 (-5.0%)		
Group 3	124.6	142.1 (14.0%)	138.9	127.0 (-8.6%)		
Group 4	126.3	163.1 (29.1%)	166-9	171.9 (3.0%)		
Number of intern	ists per 100 000 p	opulation				
Group 1	95.2	108.0 (13.4%)	120.1	110.8 (-7.7%)		
Group 2	79.8	87.5 (9.6%)	87.6	78.5 (-10.4%)		
Group 3	54.0	59.1 (9.4%)	60.2	52.8 (-12.3%)		
Group 4	49.6	61.4 (23.8%)	65.5	64.7 (-1.2%)		
Number of surgeo	ons per 100 000 p	opulation				
Group 1	25.2	22.6 (-10.3%)	31.8	23.2 (-27.0%)		
Group 2	21.8	19.3 (-11.5%)	24.0	17.3 (-27.9%)		
Group 3	15.3	13.3 (-13.1%)	17.1	11.9 (-30.4%)		
Group 4	12.9	12.7 (-1.6%)	17.0	13.3 (-21.8%)		
Number of orthop	bedists per 100 00	0 population				
Group 1	18.6	22.4 (20.4%)	23.5	23.0 (-2.1%)		
Group 2	16.6	19.2 (15.7%)	18.2	17.2 (-5.5%)		
Group 3	10.8	12.6 (16.7%)	12.0	11.2 (-6.7%)		
Group 4	10.7	13.4 (25.2%)	14.2	14.2 (0.0%)		
Number of OB/G	YN specialists pe	r 100 000 female popul	lation			
Group 1	28.4	28.9 (1.8%)	33.2	27.5 (-17.2%)		
Group 2	20.2	19.3 (-4.5%)	20.3	15.8 (-22.2%)		
Group 3	13.9	12.4 (-10.8%)	14.1	10.2 (-27.7%)		
Group 4	16.3	17.0 (4.3%)	20.0	16.7 (-16.5%)		
Number of OB/G	YN specialists pe	r 100 000 births *				
Group 1	1316.5	1578.9 (19.9%)	N/A	N/A		
Group 2	1051.3	1240.3 (18.0%)	N/A	N/A		
Group 3	714.9	849.8 (18.9%)	N/A	N/A		
Group 4	702.1	914.7(30.3%)	N/A	N/A		

Table 4 Descriptive statistics of the number of physicians per 100 000 population in the fourgroups of secondary medical areas in 2000 and 2014
Group 1	49.0	63.1 (28.8%)	211.5	272.3 (28.7%)
Group 2	35.5	50.2 (41.4%)	158.0	221.0 (39.9%)
Group 3	22.6	32.7 (44.7%)	100.7	144.8 (43.8%)
Group 4	27.3	36.7 (34.4%)	117.6	159-4 (35-5%)
Number of an	esthesiologists per	100 000 population		
Group 1	6.6	9.4 (42.4%)	8.3	9.7 (16.9%)
Group 2	4.4	6.1 (38.6%)	4.8	5.5 (14.6%)
Group 3	1.9	2.8 (47.4%)	$2 \cdot 1$	2.5 (19.0%)
Group 4	2.2	4.1 (86.4%)	2.9	4.3 (48.3%)

Group 1: urban areas with higher initial physician supply; Group 2: rural areas with higher initial physician supply; Group 3: rural areas with lower initial physician supply; Group 4: urban areas with lower initial physician supply.

* As the number of births was not adjusted for healthcare demand, the numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown.

N/A: not applicable; OB/GYN: obstetrics/gynecology

The parenthesis represents the percentage of increase/decrease between 2000 and 2014.

■Physi 40.0

30.0

20.0

10.0

0.0

-10.0

-20.0

■Phy: 40.0

30.0

20.0

10.0

0.0

-10.0

40.0

30.0

20.0

10.0

0.0

-10.0

-20.0

≡Phy:

100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

(%)

rate

Group 1 (G1): urban areas with higher initial physician supply; Group 2 (G2): rural areas with higher initial

physician supply; Group 3 (G3): rural areas with lower initial physician supply; Group 4 (G4): urban areas

with lower initial physician supply. * As the number of births was not adjusted for healthcare demand, the

numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown. OB/GYN: obstetrics/gynecology

297x420mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(%)

G 1

G 1

G 1

G 1

(%)

b) Internists

G 2

G 2

G 2

G 2

h) Anesthesiologists

f) OB/GYN specialists (per no. of births)

d) Orthopedists

G 3

G 3

G 3

G 3

ed population

G 4

G 4

G 4

G 4

2 3

1

- 4
- 5
- 6
- 7
- 8 9
- 10
- 11
- 12
- 13
- 14 15
- 16
- 18

- 22
- 24 25
- 27
- 30 31 32

33

> 46

47

48

49 50

60

Figure 1

■ Phy

40,0

30.0 ate (%)

20.0

0.0

-10.0

■Physic 10.0

0.0

-20.0

-30.0

-40.0

■Physic 20.0

10.0 (%)

0.0 ate

ncrease

-20.0

-30.0

≡Phy:

50.0

40.0 (%) 40.0 30.0

0.02 Gase

Incr 10.0

rate (%) 10.0 G 1

G 1

G 1

G 1

case 10.0 a) All physicians

G 2

G 2

G 2

G 2

g) Pediatricians (per pediatric population)

e) OB/GYN specialists (per female population)

c) Surgeons

G 3

G 3

G 3

G 3

G 4

G 4

G 4

G 4

d population

- 17
- 19
- 20
- 21
- 23

- 28 29

Urban / Rural	Urba	n	Rural		
Group	Group 1	Group 4	Group 2	Group 3	
	Mean(SD)	Mean(SD)	Mean(SD)	Mean(SD)	
Number of physicians	$\mathbf{\wedge}$				
Total physicians	1 536.0(1 409.7)	619.2(433.5)	352.0(295.3)	175.5(127.2)	
Internists	592.0(566.4)	242.9(165.3)	144.3(105.2)	76.1(52.0)	
Surgeons	156.5(142.1)	63.1(42.2)	39.5(28.4)	21.6(14.2)	
Orthopedists	115.8(94.4)	52.6(36.4)	30.0(25.9)	15.2(12.2)	
OB/GYN specialists	78.1(71.8)	34.1(26.3)	16.4(15.6)	8.6(6.5)	
Pediatricians	88.0(71.9)	40.3(31)	19.1(19.8)	9.6(7.8)	
Anesthesiologists	40.9(40.1)	10.9(9.8)	7.9(9.8)	2.7(3.2)	
Raw population					
Total population	621 865 • 5(458 098 • 5)	490 244.5(341 301.8)	180 718 • 5(125 140 • 5)	140 925.7(100 156.8)	
Female population	274 615 3(203 154 4)	209 062.4(144 107.6)	81 044.7(54 965.4)	62 047.6(43 331.9)	
Pediatric population	89 778.6(62 866.3)	73 620.8(48 171.0)	26 837.6(19 441.3)	21 202.8(15 429.6)	
Number of births *	41 599.4(29 459.0)	34 246 1(22 935 5)	12 070.9(8 837.2)	9 497 • 2(6 971 • 3)	
Demand-adjusted population					
Total population	492 971.0(349 667.3)	370 991 • 2(242 817 • 0)	164 585.9(103 001.3)	126 410 8(84 059 2)	
Female population	235 594.4(166 553.3)	170 624.5(109 441.9)	80 861.9(49 177.2)	61 184.3(39 965.6)	
Pediatric population	41 599.4(29 459.0)	34 246 1(22 935 5)	12 070.9(8 837.2)	9 497 • 2(6 971 • 3)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Area (km ²)	311.5(221.5)	242.8(141.4)	360.9(238.5)	458.6(485.8)
Population density (per km ²)	3 023.7(3 403.4)	2 591.6(2 510.6)	514.5(140.9)	393.5(186.9)
Group 1 and Group 2: Higher initial phys	ician supply, Group 3 and Group 4	: Lower initial physician supply	у.	
* The number of births was not adjusted f	or healthcare demand.			
OB/GYN: obstetrics/gynecology; SD: sta	ndard deviation			

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		-p3
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found – p3-4
Introduction		*
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
5		-p6-7
Objectives	3	State specific objectives, including any prespecified hypotheses – p7
Methods		
Study design	4	Present key elements of study design early in the paper – p10-12
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection -p8-9
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up
		Case-control study—Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of
		selection of participants – p8-9
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effec
		modifiers. Give diagnostic criteria, if applicable – p10
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group –p7-8
Bias	9	Describe any efforts to address potential sources of bias -p7-8
Study size	10	Explain how the study size was arrived at – p7-9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why - p11
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		-p10-12
		(b) Describe any methods used to examine subgroups and interactions –p11-12
		(c) Explain how missing data were addressed –p7-8
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
		addressed
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of
		sampling strategy – not applicable
		sampling strategy – not applicable (e) Describe any sensitivity analyses – p20

Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed – Table 1, Table 2, and Table 4
		(b) Give reasons for non-participation at each stage -7-8
		(c) Consider use of a flow diagram – no use
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders -p8-9
		(b) Indicate number of participants with missing data for each variable of interest -p7-8
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure
		Cross-sectional study-Report numbers of outcome events or summary measures -p12-14
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included –not applicable
		(b) Report category boundaries when continuous variables were categorized -p11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful
		time period – not applicable
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses –p13-14
Discussion		
Key results	18	Summarise key results with reference to study objectives - p14-15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias -p20
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
		of analyses, results from similar studies, and other relevant evidence -p15-20
Generalisability	21	Discuss the generalisability (external validity) of the study results -p20
Other informati	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based $-p22-23$

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Examining changes in the equity of physician distribution in Japan: a specialty-specific longitudinal study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-018538.R2
Article Type:	Research
Date Submitted by the Author:	06-Nov-2017
Complete List of Authors:	Hara, Koji; Kyoto University, Department of Healthcare Economics and Quality Management Kunisawa, Susumu; Kyoto University, Department of Healthcare Economics and Quality Management Sasaki, Noriko; Kyoto University, Department of Healthcare Economics and Quality Management Imanaka, Yuichi; Kyoto University, Department of Healthcare Economics and Quality Management
Primary Subject Heading :	Health policy
Secondary Subject Heading:	Public health
Keywords:	Inequity, Aging, Physician, Japan

Page 1 of 40

2		
3		
4		
5		
6		
7	1	Examining changes in the equity of physician distribution in
8		
9		T 1. 1. 1. 1. 1. 1
10	2	Japan: a specialty-specific longitudinal study
11		
12		
13	3	
14		
15		
16	4	Authors:
17		
18		
19	5	Koji Hara MA, Susumu Kunisawa, PhD, Noriko Sasaki, PhD, and Yuichi Imanaka, PhD
20		
21		
22	6	Department of Healthcare Economics and Quality Management, Graduate School of
22		
23	-	
25	7	Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan
25		
20	0	606 8501
27	8	000-8301
20		
29	0	
5U 21	9	
ו כ כר		
52 55	10	Corresponding author:
22	10	
34 25		
35	11	Yuichi Imanaka, Professor
30		
37		
38	12	Mailing address: Department of Healthcare Economics and Quality Management,
39		
40		
41		
42	13	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto
42	13	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto
43	13	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto
43 44	13 14	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501
43 44 45	13 14	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501
43 44 45 46	13 14	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454
43 44 45 46 47	13 14 15	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454
43 44 45 46 47 48	13 14 15	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454
43 44 45 46 47 48 49	13 14 15	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455
43 44 45 46 47 48 49 50	13 14 15 16	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455
43 44 45 46 47 48 49 50 51	13 14 15 16	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455
43 44 45 46 47 48 49 50 51 52	13 14 15 16 17	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
43 44 45 46 47 48 49 50 51 52 53	13 14 15 16 17	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
43 44 45 46 47 48 49 50 51 51 52 53 54	13 14 15 16 17	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
43 44 45 46 47 48 49 50 51 52 53 53 54 55	 13 14 15 16 17 18 	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
43 44 45 46 47 48 49 50 51 52 53 53 54 55 56	13 14 15 16 17 18	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
43 44 45 46 47 48 49 50 51 52 53 53 54 55 56 57	 13 14 15 16 17 18 	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
43 44 45 46 47 48 49 50 51 52 53 53 54 55 56 56 57 58	13 14 15 16 17 18	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net
43 44 45 46 47 48 49 50 51 52 53 53 54 55 56 57 58 59	13 14 15 16 17 18	Graduate School of Medicine, Kyoto University; Yoshida Konoe-cho, Sakyo-ku, Kyoto City, Kyoto, Japan 606-8501 Tel: +81 75 753 4454 Fax: +81 75 753 4455 Email: imanaka-y@umin.net

19 Word count:

20 3 625 words

to perteries only

ge 3 of 40		BMJ Open
	22	Examining changes in the equity of physician distribution in
	23	Japan: a specialty-specific longitudinal study
	24	
	25	Abstract
	26	Objectives
	27	In this longitudinal study, we examined changes in the geographic distribution of physicians in Japan
	28	from 2000 to 2014 by clinical specialty with adjustments for healthcare demand based on population
	29	structure.
	30	Methods
	31	The Japanese population was adjusted for healthcare demand using health expenditure per capita
	32	stratified by age and sex. The numbers of physicians per 100 000 demand-adjusted population
	33	(DAP) in 2000 and 2014 were calculated for sub-prefectural regions known as secondary medical
	34	areas. Disparities in the geographic distribution of physicians for each specialty were assessed using
	35	Gini coefficients. A subgroup analysis was conducted by dividing the regions into four groups
	36	according to urban-rural classification and initial physician supply.
	37	Results
	38	Over the study period, the number of physicians per 100 000 DAP decreased in all specialties
	39	assessed (internal medicine: -6.9%, surgery: -26.0%, orthopedics: -2.1%, obstetrics/gynecology [per
		3
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open
40	female population]: -17.5%) except pediatrics (+33.3%) and anesthesiology (+21.1%). No
41	reductions in geographic disparity were observed in any of the specialties assessed. Geographic
42	disparity increased substantially in internal medicine, surgery, and obstetrics and gynecology. Rural
43	areas with lower initial physician supply experienced the highest decreases in physicians per 100 000
44	DAP for all specialties assessed except pediatrics and anesthesiology. In contrast, urban areas with
45	lower initial physician supply experienced the lowest decreases in physicians per 100 000 DAP in
46	internal medicine, surgery, orthopedics, and obstetrics and gynecology, but the highest increase in
47	anesthesiology.
48	Conclusion
49	Between 2000 and 2014, the number of physicians per 100 000 DAP in Japan decreased in all
50	specialties assessed except pediatrics and anesthesiology. There is also a growing urban-rural
51	disparity in physician supply in all specialties assessed except pediatrics. Additional measures may
52	be needed to resolve these issues and improve physician distribution in Japan.
53	
	4
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

54	Article Summary
55	Strengths and limitations of this study
56	• This study longitudinally examined specialty-specific changes in the geographic distribution of
57	Japanese physicians with adjustments for healthcare demand according to population structure.
58	• The adjustment method used in this study was previously verified, and enables adjustment for
59	healthcare demand according to age strata using health expenditure per capita.
60	• Both age and sex were included in the calculation of the adjustment coefficients to increase the
61	accuracy of adjustments.
62	• There was a lack of information on the physicians' working conditions, such as whether a
63	physician worked full-time or part-time.
64	• It is difficult to generalize our adjustment coefficients to other countries as they were calculated
65	using Japanese health expenditure, but the adjustment method itself may have applications in
66	other countries.
67	
	5

68 Introduction

69	The presence of inequities in the geographic distribution of physicians is a major social problem in
70) many countries. ¹⁻⁴ In Japan, the geographic disparity in physician supply has long been recognized
7	as a serious flaw in the healthcare provision system. ⁵⁶ The lack of regulations that dictate where
72	2 individual physicians work in Japan has led to the concentration of physicians in urban regions and a
73	3 shortfall in rural areas, thereby resulting in uneven access to health care throughout the country. ⁵⁶
74	4 On the other hand, Japan has entered a period of population decline, 7 and an oversupply of
7:	5 physicians is imminent if their numbers continue to rise at current rates. Attempts to control the total
70	number of physicians have been met with resistance from various interest groups. ⁸
7	In addition to the geographic disparity in physician supply, Japan also faces issues
78	stemming from an uneven distribution of physicians among the clinical specialties. ⁹ Previous studies
79	9 from the US have reported that the geographic distribution of physicians varies according to clinical
80	specialty. ¹⁰¹¹ Similarly, geographic disparities in the number of physicians in pediatrics, obstetrics
8	and gynecology (OB/GYN), and anesthesiology have been documented in Japan. ¹² However, few
82	2 studies have longitudinally examined the geographic distribution of physicians according to clinical
83	3 specialty.
84	Although the number of physicians per 100 000 population is generally used as an
8:	indicator when examining geographic disparities in physician supply, this measure involves a simple
	6
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

86	head count that does not account for the inherent variations in healthcare demand among the
87	different age strata and sex. ⁴ Furthermore, Japan's population is aging at an unprecedented rate,
88	which has resulted in its transformation into the world's first "super-aged" society (where more than
89	21% of a country's population is aged 65 years and older). As a consequence, the population
90	structure in Japan is undergoing dramatic changes, which has invariably led to changes to healthcare
91	demand. We previously reported that Japan's healthcare demand increased by 22% from 2000 to
92	2014 amid worsening geographic disparity in physician supply. ¹³ However, studies have yet to be
93	conducted on the disparity in Japan's physician supply for different clinical specialties while
94	accounting for the differences in healthcare demand.
95	This study aimed to longitudinally examine specialty-specific changes in the geographic
96	distribution of physicians in Japan from 2000 to 2014 with adjustments for healthcare demand based
97	on population structure.
98	
99	Methods
100	Data source
101	Data on the number of physicians were obtained from the Survey of Physicians, Dentists, and
102	Pharmacists conducted every two years by the Ministry of Health, Labour and Welfare (MHLW).
103	Physicians in Japan are required to participate in this survey, which includes information on each
	7

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

104	physician's specialty and the type and location (municipality) of their workplace. Population data
105	(age, sex, and location of residence) were extracted from the Annual Report of the National Basic
106	Resident Registration System published by the Ministry of Internal Affairs and Communications,
107	and data on the number of births were obtained from the Annual Report of Vital Statistics published
108	by the MHLW. We also acquired data on national health expenditure per capita according to patient
109	age in 2013 from the MHLW. The total area of habitable land was ascertained from statistical reports
110	on land areas of prefectures and municipalities by the Geospatial Information Authority of Japan.
111	
112	Physicians and population
113	We targeted physicians working in clinical facilities (hospitals and clinics), and excluded physicians
114	working in non-clinical facilities (e.g., research centers and government offices). The following
115	clinical specialties were included in analysis: internal medicine, surgery, orthopedics, OB/GYN,
116	pediatrics, and anesthesiology. Internal medicine, surgery, and orthopedics were selected because
117	these departments generally have more physicians than other departments. The remaining three
118	specialties were selected because of their previously reported geographic disparities in physician
119	supply throughout Japan. ¹²
120	In addition to the total population, we also analyzed the female population, pediatric
121	population (<15 years of age), and the number of births. With the exception of the number of births,
	8
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

12	all study populations were adjusted for healthcare demand. We calculated the number of OB/GYN
12	specialists per 100 000 female population and per 100 000 births, the number of pediatricians per
12	100 000 pediatric population, and the number of physicians per 100 000 population for each of the
12	other clinical specialties.
12	26
12	7 Geographic unit
12	The geographic unit of analysis was the secondary medical area (SMA). The Japanese government
12	has designated three regional levels of healthcare provision. Primary medical areas are geographic
13	units where primary care is provided, and are demarcated by municipal borders. Tertiary medical
13	areas are geographic units that provide advanced medical care, and are demarcated by prefectural
13	borders. SMAs are set between primary and tertiary medical areas, and are regions where general
13	medical care (such as inpatient care) is provided; these areas are composed of multiple
13	municipalities. Each prefectural government stipulates the geographic and demographic range of the
13	SMAs within their prefecture. As a result, the boundaries of each SMA can be altered in response to
13	changes in healthcare demand. SMAs have been previously used to examine the inequities in
13	physician supply in Japan. ^{6 14} Because the number of SMAs varies slightly over time, this study was
13	conducted using the 349 SMAs designated in 2012.
13	9
	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

140 Analytical methods

141	This retrospective study longitudinally examined the changes in the geographic distribution of the
142	number of physicians by clinical specialty among Japan's SMAs from 2000 to 2014. The primary
143	outcomes were the overall number of physicians per 100,000 population and the trends in Gini
144	coefficients (indicating geographic disparity) for each specialty during the study period. The
145	secondary outcomes were the changes in physician numbers during the same period for subgroups
146	that were categorized according to regional characteristics (urban-rural classification and initial
147	physician supply).
148	The population was first adjusted using adjustment coefficients of healthcare demand,
149	which were calculated based on the health expenditure per capita stratified by age and sex through a
150	previously described method. ¹³ Health expenditure per capita is likely indicative of the general
151	workload of healthcare providers. ¹⁵ These expenditures include those for both inpatient and
152	outpatient services, and account for variations in patient health status. ¹³ The demand-adjusted
153	population was generated by multiplying the raw population with the adjustment coefficients.
154	Next, geographic disparity was assessed using the Gini coefficient. This indicator, which is
155	widely used to examine disparity in the field of economics, has been applied to analyze geographic
156	disparity in physician supply. ^{1 5 16-18} We calculated the Gini coefficients for each specialty every two
157	years from 2000 to 2014. The coefficients, which take a value from 0 (indicating complete equality)
	10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

158	to 1 (indicating complete inequality), measure departure from a uniform distribution by drawing
159	Lorenz curves. ¹⁷ If the curves of two time points intersect, conclusions cannot be made as to whether
160	or not the inequity of distribution is increasing. ¹⁸ Thus, we plotted two Lorenz curves (one each for
161	2000 and 2014) for each clinical specialty.
162	Finally, a subgroup analysis was conducted by dividing SMAs into groups according to
163	two regional characteristics. Using the method described in Sasaki et al., ¹⁹ we classified each SMA
164	into one of four groups based on whether the SMA was an urban or rural area, and whether the SMA
165	had a higher or lower initial physician supply in 2000. An SMA was designated an urban area (or a
166	rural area) if its population density was higher (or lower) than the median value in all SMAs. The
167	population density of each SMA was calculated using the total area of habitable land and the
168	population in 2000. Next, an SMA was designated as having a higher (or lower) initial physician
169	supply if the number of physicians per 100 000 population was higher (or lower) than the median
170	number of physicians per 100 000 population in all SMAs. The following four groups were
171	analyzed: Group 1, which comprised urban areas with higher initial physician supply; Group 2,
172	which comprised rural areas with higher initial physician supply; Group 3, which comprised rural
173	areas with lower initial physician supply; and Group 4, which comprised urban areas with lower
174	initial physician supply. Data from 2000 were used for both the population and physicians. In this
175	subgroup analysis, we compared the inter-group changes in the number of physicians per 100 000
	11

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

176	population between 2000 and 2014.
177	All analyses were performed using R statistical software (V.3.2.2).
178	
179	Results
180	Table 1 shows the population sizes of the total population, female population, and pediatric
181	population before and after applying the adjustment coefficients in 2000 and 2014. The adjustment
182	coefficients for the different age strata and sex are provided Appendix Figure. Before adjustment, the
183	total population did not substantially change throughout the study period. In contrast, the
184	demand-adjusted total population increased by 23.7% between 2000 and 2014. The number of births,
185	which was not adjusted for healthcare demand, decreased by 15.7%. The pediatric population
186	declined by 11.1% over the study period both before and after adjusting for healthcare demand.
187	Table 2 shows the overall number of physicians and the number of physicians per 100 000
188	population in 2000 and 2014. The overall number of all physicians increased by 22.1% over the
189	study period. Similarly, the number of all physicians per 100 000 population increased by 21.7%.
190	However, the number of all physicians per 100 000 demand-adjusted population decreased by 1.3% .
191	The number of physicians per 100,000 demand-adjusted population in surgery and OB/GYN
192	declined by 26.0% and 17.5%, respectively. In contrast, the number of OB/GYN specialists per
193	100,000 births increased by $23 \cdot 1\%$ due to the declining number of births. The number of physicians
	12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

194	per 100,000 demand-adjusted population in pediatrics and anesthesiology increased by 33.3% and
195	21.1%, respectively.
196	Table 3 shows the trends in Gini coefficients for the number of physicians per 100 000
197	population in the SMAs by clinical specialty. There were no substantial changes in the Gini
198	coefficients for the numbers of orthopedists, pediatricians, and anesthesiologists per 100 000
199	demand-adjusted population. However, inequity increased in the geographic distribution of internists,
200	surgeons, and OB/GYN specialists (for both the female population and the number of births). In
201	each of these three specialties, the Lorenz curve in 2014 tended to deteriorate more than the curve in
202	2000 without intersection between the two curves (figures not shown). When comparing the Gini
203	coefficients before and after adjusting for healthcare demand, the trends in the coefficients were
204	similar for each clinical specialty. However, the post-adjustment Gini coefficients for all clinical
205	specialties (except for pediatrics) were higher than their pre-adjustment values.
206	Table 4 summarizes the changes in the numbers of physicians per 100 000 population in
207	the four groups of SMAs. Detailed descriptive statistics of the four groups are provided in the
208	Appendix table. Figure 1 shows the temporal increases (2000 to 2014) in the number of physicians
209	by clinical specialty in each group of SMAs. The temporal increases in the number of internists and
210	orthopedists were similar to those for all physicians. The overall number of surgeons decreased in all
211	groups except for Group 4, and the number of surgeons per 100 000 demand-adjusted population
	T of peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

212	decreased by 20% to 30% in all groups. As shown in Table 4, the number of surgeons per 100 000
213	demand-adjusted population in Group 3 (11.9) was approximately half of the corresponding number
214	in Group 1 (23.2) in 2014. In all groups, the number of OB/GYN specialists per 100 000
215	demand-adjusted female population decreased, but the number of OB/GYN specialists per 100 000
216	births increased. The number of pediatricians per 100 000 demand-adjusted pediatric population
217	increased more in the rural SMAs than in the urban SMAs. The number of anesthesiologists per 100
218	000 demand-adjusted population increased in all groups; in particular, the number in Group 4
219	increased by more than twice that of the other groups. In all clinical specialties except pediatrics and
220	anesthesiology, Group 3 had the highest decrease in the number of physicians per 100 000
221	demand-adjusted population. The 2014-2000 difference and ratio of the number of physicians per
222	100 000 demand-adjusted population between Groups 3 and 4 increased in all clinical specialties
223	except pediatrics.
224	
225	Discussion
226	The four major findings of this study are as follows: First, the demand-adjusted population increased
227	by 23.7% between 2000 and 2014, whereas the demand-adjusted pediatric population decreased by
228	11.1%. Second, the number of physicians per 100 000 demand-adjusted population decreased in all
229	clinical specialties except pediatrics and anesthesiology. The largest increase (33.3%) was observed
	14

BMJ Open

230	in pediatrics. Third, the geographic disparity in the number of physicians per 100 000
231	demand-adjusted population did not decline in all clinical specialties, and had in fact increased in
232	internal medicine, surgery, and OB/GYN. Fourth, rural areas with lower initial physician supply had
233	the highest decrease in the number of physicians per 100 000 demand-adjusted population compared
234	with other areas in all clinical specialties except pediatrics and anesthesiology. In contrast, urban
235	areas with lower initial physician supply had the lowest decrease in internal medicine, surgery,
236	orthopedics and OBG/GYN, but the highest increase in anesthesiology.
237	The population used in this study was adjusted for healthcare demand among the different
238	age strata and sex using a previously described method. ¹³ Although several studies have examined
239	the demand-adjusted geographic disparity in physician supply, ^{15 20} there is currently no gold standard
240	method for adjustment. ²⁰ The method used in this study was previously verified, ¹³ and enables
241	adjustment for healthcare demand according to age strata. In addition, the inclusion of sex in the
242	calculation of the coefficients may increase the accuracy of adjustments.
243	The number of physicians per 100 000 demand-adjusted population decreased in internal
244	medicine, surgery, orthopedics, and OB/GYN (per female population). The decline in physician
245	supply was particularly large in surgery and OB/GYN, which corroborates previously reported
246	downward trends in the numbers of physicians in these specialties. ¹² The distribution among
247	specialties is affected by physician preference, experience, and environment. For example, the
	15

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
יד 20
∠U ⊃1
21
22
23
24
25
26
27
28
29
30
31
37
22
27
34 25
35
36
37
38
39
40
41
42
43
44
45
46
<u>⊿</u> 7
77 10
40 40
49 50
50
51
52
53
54
55
56
57
58
59
60
00

1 2

248	shortage of surgeons may be influenced by the long working hours, high risk of medical litigation,
249	and low reward for surgical skill. ²¹ Previous research has also shown that an increase in female
250	physicians has affected the distribution of specialties because they are more likely to choose
251	OB/GYN and pediatrics instead of surgery. ^{22 23} In order to ensure a high number of both female and
252	male physicians, we believe that improvements should be made to the working environment, such as
253	a reduction in physician working hours by assigning more duties and responsibilities to
254	non-physician health professionals. ²¹ On the other hand, there was a large increase in the number of
255	anesthesiologists during the study period. Japan is experiencing an increasing need for
256	anesthesiologists due to the rising number of surgeries conducted, the increasing complexity of
257	surgery owing to advances in surgical techniques and the overall aging of patients, as well as the
258	growing social expectations for safety in anesthesia. ²⁴ The increase in anesthesiologists may have
259	been influenced by the growing number of female physicians. The increase in female
260	anesthesiologists from 26.7% to 37.6% during the study period is consistent with this possibility.
261	On the other hand, the number of pediatricians per 100 000 demand-adjusted pediatric
262	population and OB/GYN specialists per 100 000 births increased substantially due to a decline in the
263	pediatrics population and the number of births. The rate of pediatric population decline is expected
264	to eventually exceed the rate of total population decline. ²⁵ It may therefore be more useful to ensure
265	the optimal allocation of physicians instead of simply increasing their overall numbers.
	10
	10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

266	Based on the analysis of Gini coefficients, there were no reductions in geographic disparity
267	in the number of physicians per 100 000 demand-adjusted population in all clinical specialties
268	between 2000 and 2014. In particular, the inequity in physician supply increased in internal medicine,
269	surgery, and OB/GYN. The inequity in surgery and OB/GYN may have been influenced by the
270	decrease or lack of increase in the overall number of physicians in these specialties. These findings
271	suggest that the uneven distribution of physicians among the clinical specialties may exacerbate
272	geographic disparities in physician supply. On the other hand, the number of internists increased at a
273	rate that was comparable to the overall growth rate. The increase in geographic disparity may
274	therefore be related to an increasing tendency toward physician specialization in Japan. ²⁶ Although
275	the overall number of general internists decreased from 74 539 to 61 317 over the study period, there
276	was actually an increase from 21 006 to 48 780 physicians in internal medicine subspecialties such
277	as pulmonary, cardiovascular, and gastrointestinal medicine (data not shown). The geographic
278	disparity in physician supply in these subspecialties is greater than the disparity in general
279	internists.9 As a supplementary analysis, we calculated the Gini coefficients for general internal
280	medicine and its subspecialties from 2000 to 2014. The results confirmed that the coefficient in the
281	internal medicine subspecialties was consistently more than twice that of general internal medicine
282	(General internal medicine: 0.173 in 2000 to 0.149 in 2014, Internal subspecialties: 0.386 in 2000 to
283	0390 in 2014).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4 5		
6 7	284	The rate of increase in the number of physicians per 100 000 demand-adjusted population
8 9	285	in the urban areas was generally higher than in the rural areas. In all clinical specialties except
10 11		
12	286	pediatrics, both the difference and ratio in the number of physicians per 100 000 demand-adjusted
13 14	287	nonulation between Group 3 and Group 4 in 2014 were larger than the corresponding values in 2000
15 16	207	population between Group 5 and Group 4 in 2014 were larger than the corresponding values in 2000
17	288	This indicates that the urban-rural disparity in physician supply widened over the study period.
18 19		
20	289	Group 3 had the lowest initial physician supply, and these regions may be facing a serious physician
21		
23 24	290	shortage. This issue should be explored further, and there may be a need for major reforms to ensure
25	291	adequate physician supply to rural areas. It may also be important to implement measures in rural
26 27	_, .	
28 29	292	areas to improve physician productivity, reduce non-essential workload, and implement
30		
31 32	293	technology-based systems such as telemedicine.
33 34	204	Direct 2004 the set or is it of the line between the direct of the design of the set of
35	294	Prior to 2004, the vast majority of medical graduates joined a clinical specialty departmen
36 37	295	(known as an <i>Ikyoku</i>) at their university that secures employment for the new graduates. <i>Ikyoku</i>
38		
39 40	296	generally dispatch physicians to other affiliated hospitals that are often located in rural areas. In this
41 42		
43	297	way, the <i>Ikyoku</i> were partly responsible for preventing a shortage of physicians in rural areas. On the
44 45	298	other hand, medical graduates did not receive mandatory clinical training under this system. As a
46 47	270	onici nana, necical graduates dia not receive mandatory ennical training under this system. As a
48	299	result, few graduates were able to acquire a wide range of medical skills through comprehensive and
49 50		
51 52	300	systematic training. ²⁷ In addition, training assessments were not adequately performed under the
53	201	
54 55	301	<i>Ikyoku</i> system. ²⁷ In order to improve the overall quality of clinical training throughout Japan, the
56 57		
58		18
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~~		

1 2

anon between of oup 5 and of oup 4 in 2014 were larger than the corresponding values in 2000.
indicates that the urban-rural disparity in physician supply widened over the study period.
p 3 had the lowest initial physician supply, and these regions may be facing a serious physician
age. This issue should be explored further, and there may be a need for major reforms to ensure
ate physician supply to rural areas. It may also be important to implement measures in rural
to improve physician productivity, reduce non-essential workload, and implement
ology-based systems such as telemedicine.
Prior to 2004, the vast majority of medical graduates joined a clinical specialty department
vn as an Ikyoku) at their university that secures employment for the new graduates. Ikyoku
ally dispatch physicians to other affiliated hospitals that are often located in rural areas. In this
the <i>Ikyoku</i> were partly responsible for preventing a shortage of physicians in rural areas. On the
the <i>Ikyoku</i> were partly responsible for preventing a shortage of physicians in rural areas. On the hand, medical graduates did not receive mandatory clinical training under this system. As a
the <i>Ikyoku</i> were partly responsible for preventing a shortage of physicians in rural areas. On the hand, medical graduates did not receive mandatory clinical training under this system. As a , few graduates were able to acquire a wide range of medical skills through comprehensive and
the <i>Ikyoku</i> were partly responsible for preventing a shortage of physicians in rural areas. On the hand, medical graduates did not receive mandatory clinical training under this system. As a , few graduates were able to acquire a wide range of medical skills through comprehensive and matic training. ²⁷ In addition, training assessments were not adequately performed under the
the <i>Ikyoku</i> were partly responsible for preventing a shortage of physicians in rural areas. On the hand, medical graduates did not receive mandatory clinical training under this system. As a , few graduates were able to acquire a wide range of medical skills through comprehensive and matic training. ²⁷ In addition, training assessments were not adequately performed under the u system. ²⁷ In order to improve the overall quality of clinical training throughout Japan, the
the <i>Ikyoku</i> were partly responsible for preventing a shortage of physicians in rural areas. On the hand, medical graduates did not receive mandatory clinical training under this system. As a , few graduates were able to acquire a wide range of medical skills through comprehensive and matic training. ²⁷ In addition, training assessments were not adequately performed under the u system. ²⁷ In order to improve the overall quality of clinical training throughout Japan, the

Page 19 of 40		BMJ Open
1		
2		
3 4		
5 6 7	302	MHLW mandated a standardized 2-year training program in 2004. Furthermore, there was a large
7 8 9	303	increase in the number of non-university hospitals that medical graduates could attend as part of this
10 11	304	training program after 2004. As a consequence, the graduates, now able to choose their training
12 13		
14 15 16	305	hospital after graduation, were less likely to select a university hospital for training. Due to the
16 17 18	306	decreasing number of member physicians, it became more difficult for the Ikyoku to dispatch
19 20	307	physicians to affiliate hospitals. ¹⁴ Previous studies have also reported that the new program may
21 22		
23 24	308	have increased the inequity in the geographic distribution of physicians ^{14 28} . Similarly, this new
25 26	309	program may also have contributed to the lack of reduction in geographic disparity in this study.
27		
28	310	The Japanese government has implemented several measures at the prefectural level aimed
30 31 32	311	at reducing the geographic disparity in physician supply. In 2006, a "Council for Regional Medicine"
33	210	
35	312	was established in each prefecture, and these councils include representatives of the prefectural and
36 37 38	313	local governments, hospitals, medical associations, universities, and residents. The councils discuss
39 40	314	detailed measures for securing medical staff with a variety of hospitals, including university
41 42	315	hospitals and public hospitals. Furthermore, a "Support Center for Community Medicine" was
43 44	515	nospitals and public nospitals. Fulliferniole, a "support center for community medicine" was
45 46	316	established in each prefecture in 2011 to secure and retain physicians. These centers adopt the role of
47 48 49	317	"control towers" to address the uneven distribution of physicians within each prefecture. Specifically,
50 51	318	the centers are responsible for supporting career advancement for physicians working in rural areas,
52 53		
54 55	319	acting as general liaisons for engaging new physicians, and providing general work information. In
56 57		
58		19
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	
1	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
15	
43	
46	
47	
48	
49	
50	
51	
57	
52	
53	
54	
55	
56	
57	
58	
50	
29	
60	

320	addition, the government has raised the regional quota of medical school admissions from 64
321	students in 2005 to 1 617 students in 2016. The students are obligated to work in a rural area or a
322	designated specialty (such as OB/GYN) for nine years after graduating in return for financial
323	assistance for their studies. ²⁹ As the program is relatively new, it remains unclear as to whether the
324	increase in quotas will lead to reductions in the geographic disparity of physicians.
325	There are several limitations in this research. First, the adjustment coefficients may
326	continue to change in the future. However, the coefficients did not fluctuate considerably during the
327	study period. In addition, it may be difficult to generalize our adjustment coefficients to other
328	countries as they were calculated using Japanese health expenditure. Nevertheless, the adjustment
329	method itself may have applications in other countries. Second, there was a lack of information on
330	the physicians' working conditions, such as whether a physician worked full-time or part-time. It
331	may be beneficial for future studies to incorporate mean physician working hours. Third, our
332	analysis had focused on specialties with a large number of physicians and previously reported
333	geographic disparities. This may have introduced selection bias as other specialties may not have
334	experienced the same geographic disparities described in this study. Finally, there may be other ways
335	to divide the SMAs for the subgroup analysis. However, our subgroup analysis was based on the
336	categorization used in a previous study, ¹⁹ and provided an intuitive understanding of the differences
337	in group characteristics.

220	
338	
339	Conclusion
340	Between 2000 and 2014, the number of physicians per 100 000 demand-adjusted population in Japan
341	decreased in all specialties assessed except pediatrics and anesthesiology. There is also a growing
342	urban-rural disparity in physician supply in all specialties assessed except pediatrics. In
343	consideration of the rapidly aging population and the resulting changes in population structure,
344	additional measures may be needed to resolve these issues and improve physician distribution in
345	Japan.
346	
347	List of abbreviations
348	DAP, demand-adjusted population
349	OB/GYN, obstetrics and gynecology
350	MHLW, Ministry of Health, Labour and Welfare
351	SMA, secondary medical area
352	
353	Footnotes
354	Acknowledgements
355	Not applicable.
	21
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3		
4		
5		
6	356	
7		
8		
9	357	Competing interests
10		
11		
17	358	The authors declare that they have no competing interests.
12		
14		
14	359	
15		
16		
17	360	Funding
18		
19		
20	361	This work was supported in part by a Health Sciences Research Grant from the Ministry of Health,
21		
22		
23	362	Labour and Welfare of Japan (Grant number: H27-iryo-ippan-001), a Grant-in-Aid for Scientific
24		
25		
25	363	Research from the Japan Society for the Promotion of Science (Grant number: [A]16H02634), and
20		
27		
28	364	RISTEX, Japan Science and Technology Agency.
29		
30		
31	365	
32		
33		
34	366	Contributors
35		
36		
37	367	KH contributed to the study conception and design, data collection, analysis, interpretation, and
38		
30		
40	368	drafting of the manuscript. SK and NS contributed to the data collection and data management. YI
40		
41		
42	369	contributed to the study design, data acquisition, and interpretation. All authors critically revised the
43		
44		
45	370	manuscript, and approved the final version.
46	270	······································
47		
48	371	
49	571	
50		
51	372	Ethics annroval
52	514	
53		
55	373	Ethics committee approval was waived for this study because all of the data are publicly available
54 55	د ا د	Danes commuted approval was warved for tins study because an of the data are publicly available
55		
56		
57		
58		22
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

374	online and comprise only aggregate values without any personally identifiable information.
375	
376	Role of the funding source
377	The funder of the study had no role in study design; collection, analysis, and interpretation of the
378	data; writing of the report; or the decision to submit the paper for publication. The corresponding
379	author had full access to all the data in the study and had final responsibility for the decision to
380	submit for publication.
381	
382	Data sharing statement
383	No additional data available.
384	
385	Consent for publication
386	Not applicable.
387	
388	1. Isabel C, Paula V. Geographic distribution of physicians in Portugal. European Journal of Health
389	Economics 2010;11(4):383-93. doi: 10.1007/s10198-009-0208-8
390	2. Kanchanachitra C, Lindelow M, Johnston T, et al. Human resources for health in southeast Asia:
391	shortages, distributional challenges, and international trade in health services. Lancet
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntml

392	2011;377(9767):769-81. doi: 10.1016/s0140-6736(10)62035-1 [published Online First:
393	2011/01/29]
394	3. Ricketts TC. The migration of physicians and the local supply of practitioners: a five-year comparison.
395	Acad Med 2013;88(12):1913-8. doi: 10.1097/acm.00000000000012 [published Online First:
396	2013/10/17]
397	4. Pitblado JR, and Raymond W. Pong. Geographic distribution of physicians in Canada. Sudbury,
398	Ontario, Canada: Centre for Rural and Northern Health Research, Laurentian University 1999.
399	5. Kobayashi Y, Takaki H. Geographic distribution of physicians in Japan. Lancet 1992;340(8832):1391-3.
400	[published Online First: 1992/12/05]
401	6. Tanihara S, Kobayashi Y, Une H, et al. Urbanization and physician maldistribution: a longitudinal study
402	in Japan. BMC Health Serv Res 2011;11:260. doi: 10.1186/1472-6963-11-260 [published Online
403	First: 2011/10/11]
404	7. National Institute of Population and Social Security Research. population projection for
405	Japan:2011-2060 2012 [Available from:
406	http://www.ipss.go.jp/syoushika/tohkei/newest04/gh2401.pdf accessed 29 Feb 2016.
407	8. Asano N, Kobayashi Y, Kano K. Issues of intervention aimed at preventing prospective surplus of
408	physicians in Japan. Med Educ 2001;35(5):488-94. [published Online First: 2001/05/01]
409	9. Matsumoto M, Inoue K, Bowman R, et al. Self-employment, specialty choice, and geographical
	24
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

410	distribution of physicians in Japan: A comparison with the United States. Health Policy
411	2010;96(3):239-44. doi: 10.1016/j.healthpol.2010.02.008 [published Online First: 2010/03/13]
412	10. Rosenthal MB, Zaslavsky A, Newhouse JP. The geographic distribution of physicians revisited.
413	Health Serv Res 2005;40(6 Pt 1):1931-52. doi: 10.1111/j.1475-6773.2005.00440.x [published
414	Online First: 2005/12/13]
415	11. Schwartz WB, Newhouse JP, Bennett BW, et al. The changing geographic distribution of
416	board-certified physicians. N Engl J Med 1980;303(18):1032-8. doi:
417	10.1056/nejm198010303031803 [published Online First: 1980/10/30]
418	12. Study group on the supply and demand of physicians of the Ministry of Health, Labour and Welfare.
419	The study group report on the supply and demand of physicians 2006 [Available from:
420	http://www.mhlw.go.jp/shingi/2006/07/dl/s0728-9c.pdf accessed 16 Apr 2017.
421	13. Hara K, Otsubo T, Kunisawa S, et al. Examining sufficiency and equity in the geographic distribution
422	of physicians in Japan: a longitudinal study. BMJ Open 2017;7(3):e013922. doi:
423	10.1136/bmjopen-2016-013922 [published Online First: 2017/03/16]
424	14. Sakai R, Tamura H, Goto R, et al. Evaluating the effect of Japan's 2004 postgraduate training
425	programme on the spatial distribution of physicians. Hum Resour Health 2015;13:5. doi:
426	10.1186/1478-4491-13-5 [published Online First: 2015/01/27]
427	15. Gravelle H, Sutton M. Inequality in the geographical distribution of general practitioners in England
	07
	20
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

428	and Wales 1974-1995. J Health Serv Res Policy 2001;6(1):6-13. [published Online First:
429	2001/02/24]
430	16. Anand S, Fan VY, Zhang J, et al. China's human resources for health: quantity, quality, and
431	distribution. Lancet 2008;372(9651):1774-81. doi: 10.1016/s0140-6736(08)61363-x [published
432	Online First: 2008/10/22]
433	17. Mauguen A, Begg CB. Using the Lorenz Curve to Characterize Risk Predictiveness and Etiologic
434	Heterogeneity. <i>Epidemiology</i> 2016;27(4):531-7. doi: 10.1097/ede.000000000000499 [published
435	Online First: 2016/04/21]
436	18. Theodorakis PN, Mantzavinis GD, Rrumbullaku L, et al. Measuring health inequalities in Albania: a
437	focus on the distribution of general practitioners. Hum Resour Health 2006;4:5. doi:
438	10.1186/1478-4491-4-5 [published Online First: 2006/03/01]
439	19. Sasaki H, Otsubo T, Imanaka Y. Widening disparity in the geographic distribution of pediatricians in
440	Japan. Hum Resour Health 2013;11:59. doi: 10.1186/1478-4491-11-59 [published Online First:
441	2013/11/26]
442	20. Kephart G, Asada Y. Need-based resource allocation: different need indicators, different results? BMC
443	Health Serv Res 2009;9:122. doi: 10.1186/1472-6963-9-122 [published Online First:
444	2009/07/23]
445	21. Hanazaki K, Tominaga R, Nio M, et al. Report from the Committee for Improving the Work
	26
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

446	Environment of Japanese Surgeons: survey on effects of the fee revision for medical services
447	provided by surgeons. Surg Today 2013;43(11):1209-18. doi: 10.1007/s00595-013-0691-5
448	[published Online First: 2013/09/06]
449	22. Fukuda Y, Harada T. Gender differences in specialty preference and mismatch with real needs in
450	Japanese medical students. BMC Med Educ 2010;10:15. doi: 10.1186/1472-6920-10-15
451	[published Online First: 2010/02/13]
452	23. Jefferson L, Bloor K, Maynard A. Women in medicine: historical perspectives and recent trends. Br
453	Med Bull 2015;114(1):5-15. doi: 10.1093/bmb/ldv007 [published Online First: 2015/03/11]
454	24. Tabayashi K, Sai S, Iguchi A, et al. Responding to lack of anesthesiologists thinking about the current
455	situation of anesthesiologists shortage from the standpoint of surgeons [in Japanese]. Journal of
456	Japanese Association for Operating Room Technology 2006;27(4):288-91.
457	25. National Institute of Population and Social Security Research in Japan. Population Projections for
458	Japan (April 2017) 2017 [cited 2017 Apr 14].
459	26. Koike S, Matsumoto S, Kodama T, et al. Specialty choice and physicians' career paths in Japan: an
460	analysis of National Physician Survey data from 1996 to 2006. Health Policy
461	2010;98(2-3):236-44. doi: 10.1016/j.healthpol.2010.06.021 [published Online First: 2010/07/29]
462	27. Ministry of Health, Labour and Welfare. A history of post-graduate clinical training system [in
463	Japanese] [Available from: http://www.mhlw.go.jp/topics/bukyoku/isei/rinsyo/hensen/ accessed
	27
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

464	1 Sep. 2017].
465	28. Toyabe S. Trend in geographic distribution of physicians in Japan. Int J Equity Health 2009;8:5. doi:
466	10.1186/1475-9276-8-5 [published Online First: 2009/03/05]
467	29. Matsumoto M, Takeuchi K, Tanaka J, et al. Follow-up study of the regional quota system of Japanese
468	medical schools and prefecture scholarship programmes: a study protocol. BMJ Open
469	2016;6(4):e011165. doi: 10.1136/bmjopen-2016-011165 [published Online First: 2016/04/17]
470	
471	Figure titles
472	Figure 1 Temporal increases in physician numbers from 2000 to 2014 for the four groups of
473	secondary medical areas
474	Appendix Figure Adjustment coefficients of healthcare demand by age strata and sex
475	
476	Figure legends
477	Figure 1
478	Group 1 (G1): urban areas with higher initial physician supply; Group 2 (G2): rural areas with higher
479	initial physician supply; Group 3 (G3): rural areas with lower initial physician supply; Group 4 (G4):
480	urban areas with lower initial physician supply. * As the number of births was not adjusted for
481	healthcare demand, the numbers of OB/GYN specialists per 100 000 demand-adjusted births are not
	28

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
-		
1		
2		
3		
4		
5		
6	482	shown. OB/GYN: obstetrics/gynecology.
7		
8		
9	483	
10		
10		
17	484	Appendix Figure
12		
15		
14	485	Ref.: reference value, which is the mean health expenditure per capita of all patients.
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
27		
27 20		
30 20		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
50		
20		29
27 60		For peer review only - http://bmionen.bmi.com/site/about/quidelines.vbtml
00		to perference only integrating openion ficon site about guidelines. And

Table 1 Population sizes in 2000 and 2014 before and after adjustment for healthcare demand

		Before	adjustment		After adjustment		
Year	Total population	Female population	Pediatric population *1	Number of births *2	Total population	Female population	Pediatric population *1
2000	126 071 305	55 196 259	18 553 275	1 190 164	101 697 295	48 349 047	8 546 612
2014	126 434 634	56 670 449	16 489 385	1 003 474	125 837 379	60 902 189	7 594 643
Increase in number (%)	363 329 (0.3%)	1 474 190 (2.7%)	-2 063 890 (-11.1%)	-186 690(-15.7%)	24 140 085 (23.7%)	12 553 142 (26.0%)	-951 969 (-11.1%)

Healthcare demand was adjusted by multiplying the raw population with adjustment coefficients that were calculated using health expenditure per capita stratified by age and sex. le tav F.

^{*1} Pediatric population: all residents aged below 15 years.

^{*2} The number of births was not adjusted for healthcare demand.

BMJ Open

				Speci	alty			
Year	All physicians	Internists	Surgeons	Orthopedists	OB/GY	N specialists	Pediatricians	Anesthesiologists
Overall number of physi	cians							
2000	243 201	95 545	25 424	19 225	1	2 420	14 156	5 751
2014	296 845	110 097	23 223	23 297	1	2 888	16 758	8 625
Increase in number (%)	53 644 (22·1%)	14 552 (15·2%)	-2 201 (-8.7%)	4 072 (21.2%)	468	3 (3.8%)	2 602 (18.4%)	2 874 (50.0%)
Number of physicians pe	er 100 000 population	n Opp						
Population type	Total	Total	Total	Total	Female	Number of births *1	Pediatric *2	Total
2000	192.9	75.8	20.2	15.2	22.5	1 043.6	76.3	4.6
2014	234.8	87.1	18.4	18.4	22.7	1 284.3	101.6	6.8
Increase in number (%)	41.9 (21.7%)	11.3 (14.9%)	-1.8 (-8.9%)	3.2 (21.1%)	0.2 (0.9%)	240.7 (23.1%)	25.3 (33.2%)	2.2 (47.8%)
Number of physicians pe	er 100 000 demand-a	djusted population		C .				
Population type	Total	Total	Total	Total	Female	Number of births *1	Pediatric *2	Total
2000	239.1	94.0	25.0	18.9	25.7	N/A	165.6	5.7
2014	235.9	87.5	18.5	18.5	21.2	N/A	220.7	6.9
Increase in number	-3.2 (-1.3%)	-6.5 (-6.9%)	-6.5 (-26.0%)	-0.4 (-2.1%)	-4.5 (-17.5%)	N/A	55.1 (33.3%)	1.2 (21.1%)

As the number of births was not adjusted for healthcare demand, the numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown.

^{*2} Pediatric population: all residents aged below 15 years.

OB/GYN: obstetrics/gynecology

Veen	2000	2002	2004	2006	2008	2010	2012	2014	2000-2014
i cal	2000	2002	2004	2000	2000	2010	2012	2014	changes
Number of physicians per 100	000 popula	tion							
All physicians	0.195	0.193	0.194	0.194	0.199	0.202	0.205	0.206	0.011
Internists	0.183	0.179	0.177	0.175	0.177	0.179	0.183	0.181	-0.002
Surgeons	0.204	0.202	0.197	0.190	0.194	0.206	0.210	0.209	0.002
Orthopedists	0.202	0.201	0.196	0.191	0.195	0.193	0.192	0.196	-0.006
OB/GYN specialists (per female population)	0.226	0.218	0.226	0.240	0.260	0.263	0.266	0.270	0.043
OB/GYN specialists (per number of births) *	0.231	0.220	0.227	0.225	0.243	0.243	0.248	0.250	0.019
Pediatricians (per pediatric population)	0.248	0.244	0.239	0.243	0.246	0.244	0.247	0.246	-0.003
Anesthesiologists	0.445	0.435	0.438	0.433	0.434	0.428	0.432	0.429	- 0·016
Number of physicians per 100	000 deman	d-adjusted p	opulation						
All physicians	0.212	0.210	0.214	0.219	0.227	0.231	0.234	0.237	0.025
Internists	0.186	0.182	0.185	0.184	0.191	0.194	0.199	0.199	0.013
Surgeons	0.204	0.202	0.198	0.189	0.199	0.213	0.218	0.219	0.015
Orthopedists	0.215	0.212	0.208	0.204	0.211	0.211	0.210	0.213	-0.002
OB/GYN specialists (per	0.254	0.247	0.255	0 272	0.202	0.200	0.200	0.202	0.040
female population)	0.234	0.747	0.255	0.772	0.292	0.296	0.299	0.303	0.049
Pediatricians (per	0.244	0.240	0.225	0.240	0.242	0.240	0.242	0.242	0.002
pediatric population)	0.744	0.740	0.233	0.740	0.743	0.740	0.243	0.747	-0.002
Anesthesiologists	0.456	0.447	0.451	0.448	0.449	0.445	0.450	0.447	-0.009

^{*} As the number of births was not adjusted for healthcare demand, the numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

OB/GYN: obstetrics/gynecology

	Before ad	ljustment	After adju	istment
	2000	2014	2000	2014
Fotal number of p	physicians per 10	0 000 population		
Group 1	247.0	297.9 (20.6%)	311.6	305.7 (-1.9%)
Group 2	194.8	226.6 (16.3%)	213.9	203.3 (-5.0%)
Group 3	124.6	142.1 (14.0%)	138.9	127.0 (-8.6%)
Group 4	126.3	163.1 (29.1%)	166-9	171.9 (3.0%)
Number of intern	ists per 100 000 p	oopulation		
Group 1	95-2	108.0 (13.4%)	120.1	110.8 (-7.7%)
Group 2	79.8	87.5 (9.6%)	87.6	78.5 (-10.4%)
Group 3	54.0	59.1 (9.4%)	60.2	52.8 (-12.3%)
Group 4	49.6	61.4 (23.8%)	65.5	64.7 (-1.2%)
Number of surgeo	ons per 100 000 p	opulation		
Group 1	25.2	22.6 (-10.3%)	31.8	23.2 (-27.0%)
Group 2	21.8	19.3 (-11.5%)	24.0	17.3 (-27.9%
Group 3	15.3	13.3 (-13.1%)	17.1	11.9 (-30.4%
Group 4	12.9	12.7 (-1.6%)	17.0	13.3 (-21.8%
Number of orthop	pedists per 100 00	00 population		
Group 1	18.6	22.4 (20.4%)	23.5	23.0 (-2.1%)
Group 2	16.6	19.2 (15.7%)	18.2	17.2 (-5.5%
Group 3	10.8	12.6 (16.7%)	12.0	11.2 (-6.7%
Group 4	10.7	13.4 (25.2%)	14.2	14.2 (0.0%
Number of OB/G	YN specialists pe	er 100 000 female popul	lation	
Group 1	28.4	28.9 (1.8%)	33.2	27.5 (-17.2%
Group 2	20.2	19.3 (-4.5%)	20.3	15.8 (-22.2%)
Group 3	13.9	12.4 (-10.8%)	14.1	10.2 (-27.7%)
Group 4	16.3	17.0 (4.3%)	20.0	16.7 (-16.5%
Number of OB/G	YN specialists pe	er 100 000 births *		
Group 1	1316.5	1578.9 (19.9%)	N/A	N/A
Group 2	1051.3	1240.3 (18.0%)	N/A	N/A
Group 3	714.9	849.8 (18.9%)	N/A	N/A
Group 4	702.1	914.7(30.3%)	N/A	N/A

Table 4 Descriptive statistics of the number of physicians per 100 000 population in the four groups of secondary medical areas in 2000 and 2014

Number of pediatricians per 100 000 pediatric population

BMJ Open

Group 1	49.0	63.1 (28.8%)	211.5	272.3 (28.7%)
Group 2	35.5	50.2 (41.4%)	158.0	221.0 (39.9%)
Group 3	22.6	32.7 (44.7%)	100.7	144.8 (43.8%)
Group 4	27.3	36.7 (34.4%)	117.6	159.4 (35.5%)
Number of anes	thesiologists per 100	000 population		
Group 1	6.6	9.4 (42.4%)	8.3	9.7 (16.9%)
Group 2	4.4	6.1 (38.6%)	4.8	5.5 (14.6%)
Group 3	1.9	2.8 (47.4%)	2.1	2.5 (19.0%)
Group 4	2.2	4.1 (86.4%)	2.9	4.3 (48.3%)

Group 1: urban areas with higher initial physician supply; Group 2: rural areas with higher initial physician supply; Group 3: rural areas with lower initial physician supply; Group 4: urban areas with lower initial physician supply.

* As the number of births was not adjusted for healthcare demand, the numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown.

N/A: not applicable; OB/GYN: obstetrics/gynecology

The parenthesis represents the percentage of increase/decrease between 2000 and 2014.

■Physi 40.0

30.0

20.0

10.0

0.0

-10.0

-20.0

■Phy: 40.0

30.0

20.0

10.0

0.0

-10.0

40.0

30.0

20.0

10.0

0.0

-10.0

-20.0

≡Phy:

100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

(%)

rate

Group 1 (G1): urban areas with higher initial physician supply; Group 2 (G2): rural areas with higher initial

physician supply; Group 3 (G3): rural areas with lower initial physician supply; Group 4 (G4): urban areas

with lower initial physician supply. * As the number of births was not adjusted for healthcare demand, the

numbers of OB/GYN specialists per 100 000 demand-adjusted births are not shown. OB/GYN: obstetrics/gynecology

297x420mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(%)

G 1

G 1

G 1

G 1

(%)

b) Internists

G 2

G 2

G 2

G 2

h) Anesthesiologists

f) OB/GYN specialists (per no. of births)

d) Orthopedists

G 3

G 3

G 3

G 3

ed population

G 4

G 4

G 4

G 4

2 3

1

- 4
- 5
- 6
- 7
- 8 9
- 10
- 11
- 12
- 13
- 14 15
- 16
- 18

- 22
- 24 25
- 27
- 30 31 32

33

> 46

47

48

49 50

60

Figure 1

■ Phy

40,0

30.0 ate (%)

20.0

0.0

-10.0

■Physic 10.0

0.0

-20.0

-30.0

-40.0

■Physic 20.0

10.0 (%)

0.0 ate

ncrease

-20.0

-30.0

≡Phy:

50.0

40.0 (%) 40.0 (%) attr 30.0

0.02 Gase

Incr 10.0

rate (%) 10.0 G 1

G 1

G 1

G 1

case 10.0 a) All physicians

G 2

G 2

G 2

G 2

g) Pediatricians (per pediatric population)

e) OB/GYN specialists (per female population)

c) Surgeons

G 3

G 3

G 3

G 3

G 4

G 4

G 4

G 4

d population

- 17
- 19
- 20
- 21
- 23

- 28 29

Urban / Rural	Urba	n	Rur	al	
Group	Group 1	Group 4	Group 2	Group 3	
	Mean(SD)	Mean(SD)	Mean(SD)	Mean(SD)	
Number of physicians	$\mathbf{\wedge}$				
Total physicians	1 536.0(1 409.7)	619.2(433.5)	352.0(295.3)	175.5(127.2)	
Internists	592.0(566.4)	242.9(165.3)	144.3(105.2)	76.1(52.0)	
Surgeons	156.5(142.1)	63.1(42.2)	39.5(28.4)	21.6(14.2)	
Orthopedists	115.8(94.4)	52.6(36.4)	30.0(25.9)	15.2(12.2)	
OB/GYN specialists	78.1(71.8)	34.1(26.3)	16.4(15.6)	8.6(6.5)	
Pediatricians	88.0(71.9)	40.3(31)	19.1(19.8)	9.6(7.8)	
Anesthesiologists	40.9(40.1)	10.9(9.8)	7.9(9.8)	2.7(3.2)	
Raw population					
Total population	621 865 • 5(458 098 • 5)	490 244.5(341 301.8)	180 718 • 5(125 140 • 5)	140 925.7(100 156.8)	
Female population	274 615 3(203 154 4)	209 062.4(144 107.6)	81 044.7(54 965.4)	62 047.6(43 331.9)	
Pediatric population	89 778.6(62 866.3)	73 620.8(48 171.0)	26 837.6(19 441.3)	21 202.8(15 429.6)	
Number of births *	41 599.4(29 459.0)	34 246 1(22 935 5)	12 070.9(8 837.2)	9 497 • 2(6 971 • 3)	
Demand-adjusted population					
Total population	492 971.0(349 667.3)	370 991 • 2(242 817 • 0)	164 585.9(103 001.3)	126 410 8(84 059 2)	
Female population	235 594.4(166 553.3)	170 624.5(109 441.9)	80 861.9(49 177.2)	61 184.3(39 965.6)	
Pediatric population	41 599.4(29 459.0)	34 246 1 (22 935 5)	12 070.9(8 837.2)	9 497 • 2(6 971 • 3)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Area (km ²)	311.5(221.5)	242.8(141.4)	360.9(238.5)	458.6(485.8)
Population density (per km ²)	3 023.7(3 403.4)	2 591.6(2 510.6)	514.5(140.9)	393.5(186.9)
Group 1 and Group 2: Higher initial phys	ician supply, Group 3 and Group 4	: Lower initial physician supply	у.	
* The number of births was not adjusted f	or healthcare demand.			
OB/GYN: obstetrics/gynecology; SD: sta	ndard deviation			

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		-p3
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found – p3-4
Introduction		*
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
0		-p6-7
Objectives	3	State specific objectives, including any prespecified hypotheses – p7
Methods	<u> </u>	
Study design	4	Present key elements of study design early in the paper – p10-12
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection -p8-9
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of
		selection of participants – p8-9
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable – p10
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group –p7-8
Bias	9	Describe any efforts to address potential sources of bias -p7-8
Study size	10	Explain how the study size was arrived at – p7-9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why – p11
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions -p11-12
		(c) Explain how missing data were addressed –p7-8
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		Case-control study-If applicable, explain how matching of cases and controls was
		addressed
		Cross-sectional study-If applicable, describe analytical methods taking account of
		sampling strategy –not applicable
		(e) Describe any sensitivity analyses $-p20$

Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed – Table 1, Table 2, and Table 4
		(b) Give reasons for non-participation at each stage -7-8
		(c) Consider use of a flow diagram – no use
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders -p8-9
		(b) Indicate number of participants with missing data for each variable of interest -p7-8
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure
		Cross-sectional study—Report numbers of outcome events or summary measures -p12-14
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included –not applicable
		(b) Report category boundaries when continuous variables were categorized -p11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful
		time period – not applicable
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses –p13-14
Discussion		
Key results	18	Summarise key results with reference to study objectives - p14-15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias -p20
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
		of analyses, results from similar studies, and other relevant evidence -p15-20
Generalisability	21	Discuss the generalisability (external validity) of the study results -p20
Other informati	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based $-p22-23$

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.