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SUMMARY

The hypothalamus is one of the most complex
brain structures involved in homeostatic regulation.
Defining cell composition and identifying cell-type-
specific transcriptional features of the hypothalamus
is essential for understanding its functions and
related disorders. Here, we report single-cell RNA
sequencing results of adult mouse hypothalamus,
which defines 11 non-neuronal and 34 neuronal cell
clusters with distinct transcriptional signatures.
Analyses of cell-type-specific transcriptomes reveal
gene expression dynamics underlying oligodendro-
cyte differentiation and tanycyte subtypes. Addition-
ally, data analysis provides a comprehensive view
of neuropeptide expression across hypothalamic
neuronal subtypes and uncover Crabp1+ and Pax6+

neuronal populations in specific hypothalamic sub-
regions. Furthermore, we found food deprivation ex-
hibited differential transcriptional effects among the
different neuronal subtypes, suggesting functional
specification of various neuronal subtypes. Thus,
the work provides a comprehensive transcriptional
perspective of adult hypothalamus, which serves as
a valuable resource for dissecting cell-type-specific
functions of this complex brain region.
INTRODUCTION

The hypothalamus is one of the most complex brain regions,

essential for regulating physiological and behavioral homeosta-

sis. Numerous studies have revealed its role in orchestrating a

wide range of animal behaviors (Denton et al., 1996; Elmquist

et al., 1999; Navarro and Tena-Sempere, 2011). Commensurate

with its functional diversity, is its highly complex anatomical and

cellular composition (Puelles and Rubenstein, 2015; Shimogori

et al., 2010). Works in the last few decades have identified
Cell R
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various cell types in hypothalamus based on different properties

(Brown et al., 2013; Lee et al., 2015; Mathew, 2008; Wu et al.,

2014). However, a comprehensive cell-type classification of hy-

pothalamus has not been achieved.

Although different methodologies have been used for classi-

fying cell types in the nervous system (Greig et al., 2013; Jiang

et al., 2015), the most direct and unambiguous method to define

a cell type is its transcriptional feature, as it underlies other cell

features such as morphology, connectivity, and function (Greig

et al., 2013; Toledo-Rodriguez et al., 2004). In addition, gene

expression-based cell classification can be reliably and conve-

niently adapted by the entire research community (Gong et al.,

2003),makingdata comparisonamongdifferent groupspossible.

Indeed, a systematic in situ hybridization (ISH) database has re-

vealed extensive cell-type heterogeneity in brain (Lein et al.,

2007). However, the limitation of ISH on assessing co-expression

of multiple genes prevents a definitive cell-type classification.

Recent advances in single-cell RNA sequencing (scRNA-

seq) have facilitated the transcriptional cataloguing of cell

types in many tissues, including those in the nervous system

(Gokce et al., 2016; Macosko et al., 2015; Tasic et al., 2016; Zei-

sel et al., 2015). While cell diversity in the cerebral cortex (Lake

et al., 2016; Tasic et al., 2016; Zeisel et al., 2015), hippocampus

(Zeisel et al., 2015), and striatum (Gokce et al., 2016) has been

cataloged to an unprecedented level, the cost and effort of

profiling large numbers of single cells by conventional scRNA-

seq methods prevent its broader application to highly complex

brain regions, such as the hypothalamus. To overcome this chal-

lenge, cost-efficient scRNA-seq methods have been developed

to achieve high-throughput parallel analysis (Klein et al., 2015;

Macosko et al., 2015), making scRNA-seq analysis of complex

brain regions possible.

Here,we applied high-throughputDrop-seqmethod (Macosko

et al., 2015) to profile single cells dissociated from the adult

mouse hypothalamus. Through clustering analysis, we identified

11 non-neuronal and 34 neuronal cell types. Data analysis

revealed the transcriptional dynamics underlying the oligoden-

drocyte differentiation, as well as the transcriptional heteroge-

neity of tanycytes, a hypothalamus-specific non-neuronal cell

type whose function remains poorly characterized. Additionally,
eports 18, 3227–3241, March 28, 2017 ª 2017 The Author(s). 3227
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Figure 1. Identification of 45 Cell Types in Adult Mouse Hypothalamus by scRNA-Seq

(A) Workflow of single-cell RNA-seq of mouse hypothalamus. Hypothalamic tissues were dissected from adult mouse brain and dissociated into single-cell

suspension. Single cells and barcoded beads were captured into droplets followed by cDNA synthesis, amplification, and library preparation. After next gen-

eration sequencing, cells were classified based on their transcriptomes.

(B) tSNE plot showing the overall gene expression relationship among the 3,319 single cells with more than 2,000 genes detected in each cell. Different cell

clusters are color-coded.

(legend continued on next page)
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single-cell transcriptome analysis revealed not only highly diver-

gent expression patterns of neuropeptides and receptors across

neuron subtypes, but also Crabp1+ and Pax6+ neuronal popula-

tions at specific hypothalamic regions. Furthermore, cell-type-

specific transcription responses to food deprivation among

various cell types were also revealed. Thus, our study provides

a comprehensive gene expression map across divergent cell

types in the hypothalamus, whichwill facilitate broader functional

understanding of this complex brain region.

RESULTS

Overview of the Cell Types in Hypothalamus Identified
by Single-Cell RNA-Seq
To characterize cellular heterogeneity in the hypothalamus, we

performed scRNA-seq using cells dissociated from adult mouse

hypothalamus (Figures 1A and S1A). In five independent exper-

iments, we sequenced more than 14,000 single cells derived

fromdissociated hypothalamus tissues of sevenmice. To assess

the cell-type-specific transcriptional response to food-depriva-

tion, four normal fed mice and three food-deprived (24 hr) mice

were used. To increase cell number, and considering that 24 hr

food-deprivation is a relatively mild treatment that unlikely to

cause changes in cell identify, we combined the cells from

both control and food-deprived mice for clustering analysis.

From the 14,000 cells analyzed, 3,319 cells have more than

2,000 genes detectable in a single cell (Figure S1B). Semi-super-

vised clustering analysis (unsupervised clustering analysis

[Macosko et al., 2015] followed by manually filtering [see the

Experimental Procedures]) of the 3,319 cells (Figures S1C and

S1D) identified 45 cell clusters with distinct gene expression sig-

natures (Figures 1B and 1C). We applied the SC3 method to re-

classify the same 3,319 cells (Kiselev et al., 2016) and found that

the results were largely consistent (Figure S1E), demonstrating

the reliability of our clustering results.

Based on the expression of the pan neuronal makers Snap25

and Syt1, the 45 cell clusters were divided into 34 neuronal

(Snap25/Syt1-high) and 11 non-neuronal clusters (Snap25/Syt1-

negative or low) (Figures 1C and 1D). The 34 neuronal clusters

could be further divided into 15 glutamatergic (Glu1–Glu15) and

18 GABAergic (GABA1–GABA18) subtypes based on their differ-

ential expression of Slc17a6 and Slc32a1 (Figures 1C and 1D).

However, the ‘‘Hista’’ cluster did not belong to either of the two

categories as neither Slc17a6 nor Slc32a1 was expressed in

this cluster (Figure 1C). Among the non-neuronal clusters (NN1–

NN11), Oligo1, Sox9, Cldn5, and C1qa were highly expressed in

NN1–NN4, NN5–NN7, NN8–NN9, and NN10–NN11, respectively

(Figures 1C and 1D).

Based on the above clustering results, we re-assigned each of

the 14,437 single cells (R800 transcripts detected) to the 45 cell

clusters. We found that the cell number increased for each clus-
(C) Violin plot showing the expression of pan marker genes across the 45 cell clus

adjusted for different genes. Themaximum TPM value of each panmarker gene is

glutamatergic marker; Slc32a1, pan-GABAergic marker; Olig1, Sox9, Cldn5, and

neuron cluster 1–15; GABA1–GABA18, GABAergic neuron cluster 1–18; Hista, h

(D) tSNE plots showing expression of pan marker genes in distinct cell clusters.

See also Figure S1.
ter (Table S1). Notably, more cells were categorized into non-

neuronal clusters than neuronal clusters (Table S1), consistent

with the fact that neurons express more genes than non-

neuronal cells (Zeisel et al., 2015). Importantly, most of the

3,319 informative cells (R2,000 genes detected) were correctly

assigned to the original clusters, and the pooled transcriptome

of each cluster before and after adding the cells with <2,000

genes detected had a high Pearson’s correlation coefficiency

(Table S1), indicating that our clustering results based on the

3,319 cells could be reliably extended to the �14,000 cells

sequenced. Although some animals did not contribute to all of

the 45 clusters, this is likely due to variations in tissue dissection,

because each cluster includes cells from multiple animals and

different treatments (Figure S1F), indicating that neither food

deprivation nor different animals affects cell clustering.

Classification of Non-neuronal Cell Types in
Hypothalamus
We generated gene expression heatmaps and identified marker

genes for each of the non-neuronal clusters (Figures 2A and

S2). The four Oligo1+ oligodendrocyte clusters could be further

distinguished from each other by the expression of Top2a

(proliferating oligodendrocyte precursor cell [POPC]), Pdgfra

(oligodendrocyte precursor cell [OPC]), Fyn (newly formed oligo-

dendrocyte [NFO]), and Mobp (myelinating oligodendrocyte

[MO]) (Figures 2A and 2B). These subtypes reflect distinct stages

of oligodendrocyte differentiation (Emery and Lu, 2015). The

three Sox9+ cell clusters could also be distinguished from one

another by subtype markers Agt (astrocytes [Astro]), Ccdc153

(ependymocyte [Ependy]), and Rax (tanycyte [Tany]) (Figures

2A and 2B). The two Cldn5+ endothelial cell subtypes (Endo 1

and Endo 2) were marked by Slc38a5 and Myh11, respectively

(Figures 2A and 2B). The two C1qa+ groups expressed either

Cx3cr1 or Mrc1 (Figures 2A and 2B), representing microglia

(Micro) and macrophages (Macro). The expression of some

non-neuronal subtype markers in mouse hypothalamus is

confirmed by ISH data from the Allen Brain Atlas (Figure 2C).

Although the non-neuronal cell types identified here are similar

to those found in other brain regions (Tasic et al., 2016; Zeisel

et al., 2015), tanycytes, localizing in the ventral walls of the third

ventricle (3V), were only identified in our dataset, demonstrating

the power of our method in capturing region-specific cell types.

Oligodendrocyte Differentiation Is Associated with
Dynamic Transcriptional Changes
Identifying OPC, NFO, and MO cell clusters in our dataset indi-

cated that oligodendrocyte differentiation and axon myelination

are still taking place in adult hypothalamus. Additionally, the sin-

gle-cell transcriptomes of oligodendrocytes at different matura-

tion stages provide an opportunity for understanding the tran-

scriptional program of oligodendrocyte differentiation in vivo.
ters. Each cluster is color-coded. The mRNA level is shown on linear scale and

presented on the right. Snap25 and Syt1, pan-neuronal markers; Slc17a6, pan-

C1qa each marks multiple non-neuronal clusters. Glu1–Glu15, glutamatergic

istaminergic neuron; NN1–NN11, non-neuron cluster 1–11.

The gene expression level is color-coded.

Cell Reports 18, 3227–3241, March 28, 2017 3229



Figure 2. Overview of the 11 Non-neuronal Cell Clusters in Hypothalamus

(A) Violin plot showing the expression profile of representative marker genes in the 11 non-neuronal cell clusters. Different clusters are color-coded. The mRNA

level is shown on a linear scale and adjusted for different genes. The maximum TPM value of each gene is presented on the right. POPC, proliferating

(legend continued on next page)
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To this end, we performed an unsupervised pseudotime analysis

with Monocle (Trapnell et al., 2014), in which OPCs, NFOs, and

MOs were linked according to their gene expression profile (Fig-

ure 3A). Based on the established differentiation direction of

oligodendrocyte (Emery and Lu, 2015), we chose the direction

of OPCs to NFOs and then to MOs (Figure 3A). Sequential

expression of Pdgfra, Fyn, and Mog matches this direction

(Figure 3B), indicating that the pseudotime axis mimics the oligo-

dendrocyte maturation process. To further characterize the tran-

scriptional program underlying oligodendrocyte differentiation,

we identified six groups of genes with distinct expression pat-

terns along the differentiation process (Figures 3C and 3D; Table

S2). Gene ontology (GO) analysis revealed that different biolog-

ical processes were enriched in different gene groups (Table

S3). For example, the genes in groups 1 and 2, which are highly

expressed in OPCs but repressed during oligodendrocyte matu-

ration, are enriched for regulation of development and differenti-

ation, while genes in groups 5 and 6 with a low-to-high trend are

enriched for axon ensheathment and myelination. Notably,

genes in group 3 are high in NFOs, suggesting that these genes

might be important for OPCs to MOs transition. Consistently,

several genes of this group have been found to play a role in

oligodendrocyte differentiation, such as Bmp4 (Samanta and

Kessler, 2004) andGpr17 (Chen et al., 2009) (Figure 3E). Interest-

ingly, some epigenetic factors, such as Sirt2 and Dnmt3a, are

also highly transcribed in NFO (Figure 3E), indicating that chro-

matin remodeling and epigenetic regulation may play an impor-

tant role during oligodendrocyte maturation.

A very recent study also analyzed mouse oligodendrocyte

subtypes and differentiation using scRNA-seq (Marques et al.,

2016). Using Drop-seq, a different scRNA-seq technique, we

successfully captured the OPC to MO differentiation process in

adult mouse hypothalamus through pseudotime analysis. Impor-

tantly, the transcriptional dynamics of stage-specific genes

along the developmental axis revealed in our study is highly

similar to the other study (Marques et al., 2016) (Figure S3),

thus validating our approach.

ScRNA-Seq Reveals Transcriptional Features of
Tanycyte and Tanycyte Subtypes
Tanycyte is a hypothalamus-specific non-neuronal cell type. The

cell bodiesof tanycytesoccupy thefloor andventrolateralwalls of

the 3V and project laterally into adjacent hypothalamic regions,

including dorsomedial hypothalamic nucleus (DMH), ventrome-

dial hypothalamic nucleus (VMH), arcuate hypothalamic nucleus

(ARH), and median eminence (ME) (Bolborea and Dale, 2013).

This morphological feature distinguishes tanycytes from neigh-

boring ependymocytes that occupy dorsal walls of the 3V

(Goodman and Hajihosseini, 2015) (Figure 4A). Previous studies

have revealed important functions of tanycytes in regulating en-
oligodendrocyte progenitor cell; OPC, oligodendrocyte progenitor cell; NFO, newl

Ependy, ependymocyte; Tany, tanycyte; Endo, endothelial cell; Micro, microglia

(B) tSNE plots showing the expression of representative marker genes are restrict

is color-coded.

(C) In situ hybridization (ISH) data from Allen Brain Atlas showing the expression

pothalamus. Left: the coronal sections of the entire hypothalamic region. Right:

See also Figure S2.
ergy homeostasis through diverse mechanisms (Goodman and

Hajihosseini, 2015), but the underlying molecular mechanism re-

mains largely unknown.

Our clustering analysis identified a Rax+ tanycyte cell cluster

(Miranda-Angulo et al., 2014), which is distinct from the

Ccdc153+ ependymocyte cluster (Figures 2A and 2B), indicating

that tanycytes are transcriptionally distinct from ependymocytes

and other cell types (Figure S4A). Consistent with previous

studies (Lee et al., 2012; Robins et al., 2013), we found that the

radial glia makers Nestin (Nes) and Vimentin (Vim) are highly tran-

scribed in tanycytes (FigureS4B), suggesting that thesecellsmay

originate from embryonic radial glia and function as neural stem

cells in adult hypothalamus (Lee et al., 2012). However, both

Nes and Vim are also highly expressed in ependymal cells (Fig-

ure S4B) and as such cannot serve as tanycyte-specificmarkers.

To characterize the molecular features of tanycytes and their

neighboring ependymal cells, we compared the transcription

profiles of these two cell clusters (Figure 4B), which revealed

many genes that are differentially expressed in tanycytes and

ependymocytes (Table S4). GO analysis of the tanycyte-specific

genes identified terms that include signal transduction, GPCR

signaling pathway, andmodulation of synaptic transmission (Fig-

ure S4C), consistent with the known function of tanycytes in

transmission of metabolic signals to neurons in regulating ho-

meostasis (Goodman and Hajihosseini, 2015). The tanycyte-en-

riched genes include Col23a1, Slc16a2, Lhx2, and Ptn (Figures

4C and S4D), some of which have been linked to tanycyte devel-

opment and function, such as Lhx2 (Salvatierra et al., 2014) and

Slc16a2 (Mayerl et al., 2014). To test the potential of these differ-

entially expressed genes to serve as tanycyte- and ependymo-

cyte-specific markers, we examined their expression pattern in

mouse brainwith the ISH data fromAllen Brain Atlas. Data shown

in Figures 4C and S4D confirmed that these genes marked

different cell populations along the dorsal-ventral axis of the 3V

walls, which is consistent with the known location of tanycytes

and ependymal cells (Figure 4A).

In addition to identifying tanycyte-specific markers, we further

analyzed transcriptional heterogeneity among the tanycyte sub-

types. Currently, tanycytes are separated into different subpop-

ulations based on their physical location: dorsal tanycytes pro-

jecting to DMH and VMH are named a tanycytes, which are

further divided into more dorsal a1 subtype and more ventral

a2 subtype, the cells distributed at the ventral 3V walls that are

in contact with ARH are termed b1 tanycytes, and the cells

located at the bottom of the 3V walls that are in contact with

ME are regarded as b2 tanycytes (Mathew, 2008). The lack of

reliablemolecular markers of tanycyte subtypes is amajor hurdle

preventing understanding tanycyte subtype-specific function.

To overcome this hurdle, we attempted to identify tanycyte sub-

type markers by analyzing the scRNA-seq data of the tanycytes.
y formed oligodendrocytes; MO,myelinating oligodendrocyte; Astro, astrocyte;

; Macro, macrophage.

ed to specific non-neuronal clusters among all of the cells. The expression level

of non-neuronal subtype markers Pdgfra, Fyn, Mobp, Agt, and Cx3cr1 in hy-

enlarged images of the regions in red squares. Scale bar, 100 mm.
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Figure 3. Transcriptional Dynamics during Oligodendrocyte Maturation
(A) Unsupervised ordering of OPCs (blue), NFOs (green), and MOs (red) based on their gene expression profiles. Minimal spanning tree is shown in black. Arrows

indicate the direction of differentiation.

(B) Scatterplots showing the transcriptional dynamics of Pdgfra, Fyn, andMog along the pseudotime. X axis represents the pseudotime axis, y axis shows gene

expression level on log scale. Blue, green, and red dots represent OPCs, NFOs, and MOs, respectively.

(C) Heatmap showing six groups of genes with distinct expression dynamics during oligodendrocytematuration. Columns are individual cells organized along the

pseudotime and rows represent individual genes. Twenty of the most representative genes from each group are plotted. Expression level is color-coded.

(D) Scatterplots showing the transcriptional dynamics of representative genes belong to groups 1 to 6 in Figure 2C along the maturation of oligodendrocyte.

(E) Scatterplots showing the expression of NFO-specific genes Bmp4, Grp17, Sirt2, and Dnmt3a along the pseudo-timeline.

See also Figure S3.
We first identified highly variable genes within tanycyte cluster

through principle components analysis (PCA). By plotting these

genes on the tSNE map and comparing these with the public

ISH dataset, we found a good correlation between the distribu-

tion pattern of the candidate marker genes on tSNE map and

their in situ expression pattern along the ventral-dorsal axis (Fig-

ure 4D). For example, the Slc17a8 and Col25a1 located in the

two most distal parts of the tSNE map are consistent with the

ISH data showing that they are expressed in the most dorsal-
3232 Cell Reports 18, 3227–3241, March 28, 2017
and ventral-tanycyte cell populations, respectively (Figure 4D).

Based on the tSNE map and ISH data, and considering the

spatial distribution of tanycyte subtypes (Mathew, 2008), we

believe that Slc17a8 andCol25a1 can serve as potential markers

for a1 and b subtypes, respectively. Similarly, the expression

patterns of other tanycyte subtype-specific genes can be pre-

dicted based on tSNE map (Figures 4D and S4E) and some of

these are supported by ISH data (Figure 4D). Notably, although

specific marker genes (or combinations of marker genes) can



Figure 4. Gene Expression Features of Tanycyte and Tanycyte

Subtypes

(A) Schematic diagram showing the spatial distribution and morphology of

tanycytes, which can be further divided into a and b subtypes. ARH, arcuate

hypothalamic nucleus; VHM, ventromedial hypothalamic nucleus; DMH, dor-

somedial hypothalamic nucleus; ME, median eminence.

(B) Scatterplot comparing the expression profiles of tanycytes and ependy-

mocytes. X axis and y axis represent the average expression level of certain
be used to roughly separate tanycyte subtypes, many genes

exhibited a gradient, rather than a clear-cut distribution across

tanycyte subpopulations (Figures 4D and S4E), consistent with

the notion that tanycytes may be composed of continuous cell

trajectory with transition zones between different subtypes

(Mathew, 2008).

The Hypothalamus Harbors Multiple Transcriptionally
Distinct Neuron Subtypes
Our clustering analyses identified 15 glutamatergic neuron sub-

types (Glu1–GLu15), 18 GABAergic neuron subtypes (GABA1–

GABA18), and 1 histaminergic neuron cluster (Hista) expressing

high levels of Hdc but negligible Slc17a6 or Slc32a1 (Figure 1C).

We generated single-cell transcriptome heatmaps (Figure S5A)

and visualized the glutamatergic and GABAergic neuron sub-

types by tSNE (Figures 5A and 5B). In addition, potential sub-

type-specific marker genes for each of the 34 neuronal clusters

were identified (Table S5). The majority of the 34 neuronal clus-

ters contain subtype-specific genes that are unique to that clus-

ter, and in some cases, a neuron cluster could be defined by the

combinatorial expression of marker genes (Figures 5C and 5D).

As expected, a number of neuron subtypes are distinguished

by the expression of specific neuropeptides. For example,

Kiss1 and Pomc could represent Glu11 and Glu13 cell clusters,

respectively (Figure 5C), while Vip and Agrp could represent

GABA9 andGABA15 cell clusters, respectively (Figure 5D). Addi-

tionally, many transcription factors (e.g., Foxb1 for Glu5, Npas1

for GABA2, Lhx8 for GABA5) exhibited neuron subtype-specific

expression pattern (Figures 5C and 5D) consistent with their role

in controlling neuron differentiation and identity.

Based on expression of themarker genes,many neuronal sub-

types identified here could be assigned to neuron subtypes

already described in the hypothalamus. For example, in gluta-

matergic clusters, Glu5 represents neurons in the mammillary

body (MM) that express Foxb1 (Figure S5B), while Glu11 and

Glu13 representKiss1+ and Pomc+ neurons in ARH. On the other

hand, the GABA8 and GABA9 clusters represent Avp+ and Vip+

neurons in the suprachiasmatic nucleus (SCH), while GABA11

and GABA15 clusters represent Ghrh+ and Agrp+ neurons

in ARH. In addition to confirming known hypothalamic neuron
genes among all tanycytes and all ependymal cells, respectively. Each dot

represents a single gene, blue dots represent tanycyte-enriched genes and

red dots represent ependymocyte-enriched genes. The tanycyte-specific

genesCol23a1 and Slc16a2, as well as the ependymocyte-specific genesHdc

and Tm4sf1 are indicated by arrows.

(C) Expression patterns of selected tanycyte- and ependymocyte-specific

genes. tSNE plots (upper andmiddle panels) showing the selective expression

of Col23a1 and Slc16a2 in tanycytes (Tany), Hdc and Tm4sf1 in ependymo-

cytes (Ependy). Gene expression level is color-coded. ISH data (lower panels,

from Allen Brain Atlas) show the distribution of corresponding genes along the

3V walls. Scale bar, 200 mm.

(D) Potential tanycyte subtype markers identified by scRNA-seq. tSNE plots

(upper panels) showing the expression of selected genes enriched in subsets

of tanycytes. The genes are ordered according to their expression level along

the vertical axis of the tSNE map. For each gene, potential tanycyte subtype(s)

that express the marker gene are listed. Gene expression level is color-coded.

ISH data (lower panels, from Allen Brain Atlas) indicate a dorsal-to-ventral

distribution of corresponding genes along the 3V walls. Scale bar, 200 mm.

See also Figure S4.
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Figure 5. Glutamatergic and GABAergic

Neuron Subtypes in Hypothalamus

(A) tSNE plot showing the 15 glutamatergic neuron

subtypes identified in hypothalamus. Differentially

expressed genes among all subtypes are used for

dimension reduction. Different neuron subtypes are

color-coded.

(B) tSNE plot showing the 18 GABAergic neuron

subtypes in hypothalamus.

(C) Violin plots showing the expression of subtype

markers across the 15 glutamatergic neuron sub-

types. Columns represent different neuron clusters

which are color-coded. Marker genes for each

cluster are indicated. The gene expression level is

shown on linear scale and adjusted for different

genes. The maximum TPM value for each marker

gene is presented on right. A230 is A230065H16Rik.

(D) Violin plots showing the expression of subtype

markers across the 18 GABAergic neuron subtypes.

Columns represent different neuron clusters which

are color-coded.

See also Figure S5.
subtypes, our dataset also revealed gene expression features

in specific neuron clusters. For example, Cartpt and Cck are

actively transcribed in the Glu5 cluster (Foxb1+ neuron in MM),

while Prph and Wif1 were co-expressed with Hdc in the Hista

cluster (histaminergic neurons in tuberomammillary nucleus),

both of which were verified by ISH (Figures S5B and S5C).

Additionally, we found that the combined expression of Sst

and Prdm8 defines the Sst+ neuroendocrine cells (Figure 5C,

Glu15) located in PVpo (periventricular hypothalamic nucleus,

preoptic part) with known function in regulating growth hormone

secretion (Murray et al., 2015), but without a definitive molecular

marker. We confirmed the co-expression of Sst and Prdm8 in

PVpo, but not in cortex, by immunostaining (Figure S5D). Collec-

tively, these results demonstrate that our unbiased scRNA-seq

analyses are able to reveal cell types as well as cell-type-specific

transcriptional features in the hypothalamus.

Relationship among Neuron Subtypes Assessed by
Transcriptome
Currently, the developmental relationship among the different

neuron subtypes in the hypothalamus is largely unknown. Taking

advantage of the scRNA-seq dataset, we performed pairwise
3234 Cell Reports 18, 3227–3241, March 28, 2017
comparison and hierarchical clustering ana-

lyses on the glutamatergic and GABAergic

neuron populations to assess their relation-

ship based on transcriptome (Figure S5E).

Interestingly, we found six glutamatergic

clusters (Glu10 toGlu15),which represented

different neurosecretory cells, are clustered

together (Figure S5E). The separation of

these neurons from the other glutamatergic

subtypes indicates that these neurons

possess distinct transcriptional programs

that may reflect their distinct developmental

process and functional properties. On the

other hand, among GABAergic clusters,
the SCH Vipr2+ (GABA8) and Vip+ (GABA9) neurons clustered

together (Figure S5E), consistent with their similar developmental

origin (VanDunk et al., 2011) and function (regulating circadian

rhythm) (Dibner et al., 2010). These observations indicate that

our cell-type-specific transcriptomic dataset has the potential to

reveal lineage relationship and functional relevance among the

various hypothalamic neurons.

Divergent Expression Patterns of Neuropeptides and
Receptors across Neuronal Subtypes
The expression and function of various neuropeptides in the

hypothalamus has been widely studied. However, a compre-

hensive expression profile of neuropeptide and receptors in

the hypothalamic neurons is still unavailable. Thus, we assessed

the expression profile of different neuropeptides and receptors in

different hypothalamic neuron subtypes and found a highly

divergent expression pattern among the various neuronal sub-

types (Figures 6A and 6B and S6).

First, we found that the expression of the majority of neuro-

peptide genes is restricted to one or a few neuron subtypes.

For example, Kiss1, Pomc, Npvf, Vip, and Agrp are each ex-

pressed in only one neuron subtype, while Tac2, Cck, Sst, and



(legend on next page)
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Npy are each expressed in two to four neuron subtypes with

distinct patterns (Figures 6A and 6C). However, some neuropep-

tide genes, such as Adcyap1, Cartpt, and Gal, are expressed

in multiple neuron subtypes (Figure 6A), consistent with their

broad distribution in hypothalamus (Figure 6D). Although previ-

ous studies have used ISH or immunostaining to assess the

co-expression of different neuropeptides, these methods can

only profile a limited number of neuropeptides and neuron

subtypes. Taking the advantage of our scRNA-seq dataset,

we analyzed the gene expression profile of all detectable neu-

ropeptides in the hypothalamic neuron subtypes. We found

that co-expression of multiple neuropeptides is a common

feature of many hypothalamic neurons. For instance, Npy is

also expressed in Agrp+ neurons (GABA15) and Cartpt is also

expressed in Pomc+ neurons (Glu13) (Figure 6A), which are

consistent with previous findings (Schwartz et al., 2000). In addi-

tion, we found that Sst+ neurons (GABA1) express Npy, while

Foxb1+ neurons (Glu5) co-express Cck, Adcyap1, and Cartpt

(Figure 6A). Interestingly, Ghrh co-expresses with Trh in a gluta-

matergic population (Glu10) (Figure 5C), but also co-localizes

with Gal in a GABAergic neuron subtype (GABA11) (Figure 5D).

The extensive co-expression of multiple neuropeptide genes in

a neuron subtype suggests complex crosstalk among different

peptide signaling pathways.

Expression of a specific neuropeptide in certain neuron

subtypes determines a specific signal that can be sent from

these cells. Conversely, expression of a specific neuropeptide

receptor indicates that these cells can receive a specific

signal. Thus, we also analyzed the gene expression profiles

of neuropeptide receptors among the various hypothalamic

neuron subtypes. We found that like the expression profile of

neuropeptides, the expression profile of neuropeptide recep-

tors mRNA is also very diverse (Figures 6B and S6B). Some

receptor genes are expressed in only one or a few neuron sub-

types, such as Vipr2 (GABA8) and Ghr (Glu15 and GABA15)

(Figures 6B and 6E), which are consistent with previous

studies (Harmar et al., 2002; Murray et al., 2015). In contrast,

several peptide receptor genes, such as Irs4, Sstr1, OPrl1,

and Adcyap1r1, are broadly expressed in multiple neuron

subtypes (Figures 6B and 6E), suggesting extensive regulatory

roles of these signaling pathways in the hypothalamus.

Notably, a number of neuropeptide receptors genes are co-

expressed with their ligands in some neuron subtypes, such

as Tacr3 in Tac2+ neurons (Glu11), Sstr1 in Sst+ neurons

(GABA1 and GABA14), and Npy2r in Npy+ neurons (GABA15)

(Figures 6A and 6B), indicating that a feedback mechanism

may be used to regulate the corresponding neuropeptide

secretion in these neuron subtypes.
Figure 6. Divergent Expression Pattern of Neuropeptides and Recepto

(A) Violin plots showing the expression of selected neuropeptides among the ne

scale and adjusted for different genes.

(B) Violin plots showing the expression of selected neuropeptide receptors amon

(C) Coronal sections showing thatNpvf andVip are selectively expressed in differe

in the left panels were enlarged and shown in right panels.

(D) Sagittal sections showing the broad distribution of Adcyap1, Cartpt, and Gal

(E) ISH showing that Vipr2 is selectively expressed in superchiasmatic nucleus w

Scale bars, 500 mm. See also Figure S6.
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Earlier studies on peptidergic neuron function in hypothalamus

have paid less attention to the role of fast synaptic transmis-

sion mediated by conventional neurotransmitters. However, the

potential interactions between slow-acting peptidergic signals

and fast ionotropic signals are supportedby some recent studies,

which suggest an essential role of GABA/glutamate-mediated

synaptic transmission in controlling animal behaviors in certain

peptidergic neurons (Krashes et al., 2014; Tong et al., 2008).

Consistently, our dataset shows that all hypothalamic pepti-

dergic neurons can be categorized into either glutamatergic

(Slc17a6+) or GABAergic (Slc32a1+) (Figure 6A), indicating that

most, if not all, peptidergic neurons could communicate with

downstream targets through fast synaptic transmission. Notably,

the neurotransmitter and neuropeptide present in the same

neuron do not necessarily function simultaneously because

they are packed into different types of vesicles and respond to

distinct neuronal activity (Ludwig and Leng, 2006).

Collectively, our data provide a comprehensive neuropeptide

and receptor expression profile of hypothalamic neuron sub-

types, which suggests complex crosstalk among the different

neuropeptide signaling pathways, between neuropeptides and

neurotransmitters, and between different peptidergic neuron

populations.

Neuronal Subtypes Revealed by Single Cell RNA-Seq
Unbiased scRNA-seq is capable of de novo discovery of cell

types with distinct transcriptional features. Indeed, we identified

several neuronal subtypes with specific molecular markers

from our dataset. For instance, we found that Crabp1, which en-

codes a retinoic acid binding protein, is highly expressed in the

GABA12 cluster (Figure 7A). ISH and immunostaining showed

that this gene is restricted to the ARH across the hypothalamus

(Figure 7B), suggesting that it marks a distinct neuronal subtype

in this region. To exclude the possibility thatCrabp1 is expressed

from other known cell populations located in ARH, we queried

the expression of Kiss1, Pomc, Ghrh, Th, and Agrp in Crabp1+

neurons. All of them are highly expressed in specific cell types

in ARH (Figure 7A). Our data showed that none of these genes

are expressed in Crabp1+ neurons (Figure 7A), supporting the

notion that the Crabp1+ neurons represent a cell type in ARH.

Another neuron subtype identified in our study is the Pax6+

GABAergic neuron (GABA6). Pax6 has an established function

in neural development (Ypsilanti and Rubenstein, 2016), but

its expression profile and function in the adult brain is largely

unknown. A recent study has identified a Pax6+ interneuron pop-

ulation in layer I of cerebral cortex (Zeisel et al., 2015). Here,

we found that Pax6 is specifically expressed in the GABA6

cluster (Figure 5D). Both ISH and antibody staining support the
rs among the Hypothalamic Neuron Subtypes

uron subtypes in hypothalamus. Gene expression level is presented on linear

g the neuron subtypes in hypothalamus.

nt hypothalamic regions. ISH data are fromAllen Brain Atlas. The boxed regions

in hypothalamus.

hile Irs4 is widely distributed in hypothalamus.



Figure 7. Neuron Types and Assessment of Food Deprivation-Induced Transcriptional Changes in Hypothalamus

(A) Violin plot showing the expression of selected genes in neuron subtypes located in ARH. Gene expression level is shown on linear scale and adjusted for

different genes.

(B) ISH and immunostaining on coronal hypothalamus sections showing that theCrabp1+ neurons are restricted in ARH. ISH data are fromAllen Brain Atlas. Scale

bars, 100 mm.

(C) ISH and immunostaining showing presence of Pax6+ neurons in ZI. Scale bars, 100 mm.

(D) Bar graphs showing the number of genes affected by food deprivation across hypothalamic neuron subtypes. Red and green bars represent up- and

downregulated genes. See also Table S6.

(legend continued on next page)
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localization of Pax6+ neurons in the zona incerta (ZI) (Figure 7C),

a hypothalamic region whose cell composition and function are

poorly understood. IdentifyingCrabp1+ and Pax6+ neuronal sub-

types in the hypothalamus has set the stage for dissecting their

specific functions in the hypothalamus.

Cell-Type-Specific Transcriptional Response to Food
Deprivation Revealed by scRNA-Seq
Hypothalamus is an important brain region controlling feeding

and metabolism (Schwartz et al., 2000). Classification of the

various neuronal subtypes allows us to identify the neuron

subtypes involved in regulating feeding behavior. To this end,

we examined the transcriptional response to food deprivation

across the hypothalamic neuronal subtypes by comparing sin-

gle-cell gene expression profiles between ad libitum fed and

food-deprived mice. The results revealed that food deprivation

has differential effects on gene expression of the various hypo-

thalamic neuron subtypes. The differentially expressed genes

(DEGs) are mainly enriched in Glu5, Glu8, Glu12, GABA1,

GABA11, GABA15, and GABA18 clusters (Figures 7D and S7A;

Table S6), indicating that these neuronal subtypes are the

main cells responding to food deprivation. Identification of the

Agrp+ (GABA15), Ghrh+ (GABA11), and Npvf+ (Glu12) neurons

as food deprivation-responding cell types are consistent with

previous studies (Henry et al., 2015; Murray et al., 2015; Wahab

et al., 2015) and thus validate our approach. Importantly, scRNA-

seq uncovered cell types, such as MM neurons (Glu5), that

were not previously linked to energy homeostasis, exempli-

fying the ability of our unbiased approach in revealing neuron

subtype-specific functions. GO analyses showed that DEGs

identified in different neuronal clusters are enriched for genes

of distinct functions (Figure S7B; Table S7) indicating that

different neuronal subtypes are functionally different. To confirm

the gene expression changes revealed by scRNA-seq, we

first focused on Agrp+ neurons (GABA15), which are known for

controlling feeding and energy expedition. Immunostaining

showed that the Agrp level was significantly increased upon

food deprivation (Figure 7E), consistent with our scRNA-seq

result and previous knowledge (Henry et al., 2015). Additionally,

immunostaining confirmed upregulation of Trim28 in Ghrh+ neu-

rons (GABA11) in the ARH and increased expression of Cirbp in

MM neurons (Glu5) upon food deprivation (Figures 7F and 7G).

DISCUSSION

Comprehensive Cell-Type Classification in
Hypothalamus Can Facilitate Its Functional Study
Understanding the cell composition and cell-type-specific tran-

scription features of the hypothalamus is essential for under-

standing the function of this important brain region. Several pre-
(E) Violin plots and immunostaining showing that Agrp is upregulated by food dep

feeding; FD, food deprivation. Scale bars, 100 mm.

(F) Violin plots and immunostaining showing that Trim28 is upregulated in ARH by f

bar, 100 mm.

(G) Violin plot and immunostaining showing that Cirbp in MM neurons is upreg

p = 0.00099. Scale bars, 200 mm.

See also Figure S7.
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vious studies have attempted to characterize the cell types in the

hypothalamus based on cell location, morphology, connection,

function, and marker gene expression (Brown et al., 2013; Lee

et al., 2015; Mathew, 2008; Wu et al., 2014). However, a sys-

tematic hypothalamic cell map of transcriptomic features is still

lacking. Using the Drop-seq technique (Macosko et al., 2015),

we profiled transcriptomes of more than 14,000 single cells

and identified 45 transcriptionally distinct cell subtypes in the

adult mouse hypothalamus. Most of the non-neuronal cell types

identified in this study are similar to those found in the cerebral

cortex (Zeisel et al., 2015), suggesting that most non-neuronal

cells are widely distributed across various brain regions. In

contrast, the neuronal cell types are largely hypothalamus-

specific, indicating that different neuron composition underlies

distinct functions of different brain regions. Our work, therefore,

provides a comprehensive overview of hypothalamic cell types

based on their transcriptional features, which will greatly facili-

tate functional studies of hypothalamus.

First, the cell-type-specific markers identified here provide an

unambiguous cell-type definition, which can help to unify studies

from different laboratories to resolve confusion generated due to

the use of different criteria in defining cell types. Second, the in-

formation of unique and combinatorial markers for different cell

types enable the development of genetic or viral tools to achieve

cell-type-specific labeling and manipulation, which is essential

for dissecting cell-type-specific function in such a complex brain

region. Third, by assessing the relationship of different hypotha-

lamic cell types based on transcriptional profiles, hypotheses

regarding the development and function of different cell sub-

types can be generated and tested, which in turn can advance

our understanding of hypothalamus. Fourth, identifying Crabp1+

neurons in ARH and Pax6+ neurons in ZI indicates that unchar-

acterized neuron subtypes in hypothalamus still remain, even

within a relatively well-studied region such as the ARH.

Divergent Expression Pattern of Neuropeptides and
Receptors in the Hypothalamus
Understanding the expression and function of various neuropep-

tides has long been an interest of the hypothalamus scientific

community. Our scRNA-seq datasets provide a comprehensive

expression profile of neuropeptides and their receptors across

hypothalamic neuron subtypes. Analysis of this expression pro-

file has revealed several important features. First, neuropeptides

feature a very divergent expression pattern and that cellular

heterogeneity can be largely resolved based on the expression

of a specific neuropeptide or a combination of neuropep-

tides. Second, co-expression of multiple neuropeptides can be

analyzed in our dataset, thus facilitating the study of crosstalk

among different neuropeptide signals. Third, by examining the

distribution of neuropeptides and corresponding receptors, the
rivation. Fed, n = 62; FD, n = 50. Fold change = 1.52, p = 0.00016. Fed, normal

ood deprivation. Fed, n = 16; FD, n = 19. Fold change = 2.76, p = 0.00081. Scale

ulated by food deprivation. Fed, n = 103; FD, n = 97. Fold change = 1.97,



potential regulatory relationship within individual neuron sub-

types or among different neuron populations can be analyzed,

revealing complex intra- or inter-population regulation. Fourth,

our analysis has uncovered extensive overlap between neuro-

peptide and conventional neurotransmitters across hypotha-

lamic neuron subtypes, indicating a functional interaction be-

tween the two neuronal signaling systems, which begs for

further studies on the crosstalk between the slow peptidergic

signaling and the fast ionotropic signaling.

Gene Expression Features of Tanycyte and Tanycyte
Subtypes
Tanycyte is a hypothalamus-specific, non-neuronal cell type.

Accumulating evidence suggests its diverse physiological

functions in neuroendocrine, metabolism, and neurogenesis

(Goodman and Hajihosseini, 2015). However, the molecular fea-

tures underlying tanycyte heterogeneity and diverse function

have been elusive. Our scRNA-seq dataset not only confirm

tanycyte as a distinct cell type, but also reveal tanycyte-specific

markers that can be used to distinguish them from ependymal

cells. More importantly, by analyzing single-cell transcriptomes

of tanycytes, we identified tanycyte subtypes with distinct

transcription profiles. The tanycyte- and tanycyte-subtype-spe-

cific marker genes identified will allow the development of ge-

netic tools for achieving cell-(sub)type-specific manipulation

for dissection the function of tanycyte and tanycyte subtypes.

Revealing Cell-Type-Specific Transcriptional Response
to Food Deprivation
In addition to cell-type classification, scRNA-seq can be applied

to dissect cell-type-specific transcriptional dynamics in complex

tissues under different physiological andpathological conditions.

This is particularly important for the nervous system that has

great cell heterogeneity and cell-subtype-specific functions

(Knight et al., 2012), but conventional RNA-seq cannot resolve

such level of cell-type heterogeneity. As a proof-of-principle

study, we compared the transcriptional program between

normal-fed and food-deprived animals across hypothalamic

neuronal subtypes, which revealed 7 out of the 34 subtypes

exhibit significant transcriptome changes. The analysis not only

revealed the specific neuronal clusters that respond to food

deprivation, but also uncovered cell types that have not been

previously linked to feeding and energy homeostasis, thus

highlighting the capability of unbiased single-cell profiling in

revealing biological insight into brain functions.

EXPERIMENTAL PROCEDURES

Animals

All animal experiments followed the guidelines of the Institutional Animal Care

and Use Committee at Harvard Medical School. Young adult female (8- to

10-week-old) B6D2F1 mice (C57B6 female 3 DBA2 male) were used. One

day before the experiments, each animal was separated into individual fresh

cages. For 24 hr food deprivation treatment, only water was provided.

Tissue Dissection, Single-Cell Dissociation, and Library

Construction

The hypothalamus tissue was dissected from acute brain slices of adult (8- to

10-week-old) mice. The tissue was dissociated into single-cell suspension us-
ing a papain-based dissociation protocol (Brewer and Torricelli, 2007) with

some modifications (see the Supplemental Experimental Procedures). The

single cells and barcoded-beads were captured into nanoliter-sized drop-

lets with microfluidic device, followed by library construction as previously

described (Macosko et al., 2015).

Cell Clustering

The 3,319 cells with at least 2,000 genes detected in each single cell were used

for clustering analysis. To classify the cells, the R package Seurat was used

(Macosko et al., 2015). The highly variable genes were identified from these

cells using Seurat with the default setting. Then these highly variable genes

were used for principle component analysis (PCA). The statistically significant

PCs were used for two-dimension t-distributed stochastic neighbor embed-

ding (tSNE). Based on the tSNE map, density-based clustering (DBSCAN)

was used to cluster cells based on their proximity, resulting in 40 clusters.

The largest neuronal cluster containing 1,574 cells was extracted for further

clustering using the same strategy described above. The same analysis was

repeated for another two rounds. In total, 73 cell clusters were identified.

Following this unsupervised clustering analysis, we further filtered out clusters

representing double droplets, clusters from non-hypothalamic tissues, as well

as clusters with less than ten cells (see the Supplemental Experimental Pro-

cedures). After filtering, a total of 45 cell clusters were identified.
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Supplemental Figures 
Figure S1 

 



Figure S1 – Related to Figure 1. Workflow of single-cell RNA-seq of mouse 

hypothalamus  

(A) Schematic diagram showing the hypothalamic regions used for sample preparation. 

Adult mouse brain was first cut into 1mm-thick coronal sections and then 

hypothalamic tissues (shown in red contours) were dissected from 4 successive slices 

along the rostral-caudal axis.   

(B) Box plots showing the distribution of gene/transcript number detected in each single 

cell. 

(C) Workflow of cell type classification. The entire dataset was analyzed to identify 

3,319 cells with > 2000 different transcripts in each cell, which were then subjected 

to R package Seurat for classification. After each round of clustering, the cells in the 

largest cluster were subject to next round cluster analysis for a total of four rounds. 

All cell clusters were then pooled together and clusters with less than 10 cells, or 

representing double-droplets or without a marker identified or out of hypothalamus 

were filtered out. At the end, 45 cell clusters with distinct transcriptional features 

were identified. 

(D) tSNE plots showing the results of different rounds of clustering. Distinct clusters are 

shown with different colors in each round. 

(E) SC3 and Seurat generated similar clustering results. Heap map showing the pair-wise 

comparison of the clusters generated using Seurat and SC3. The x-axis represents 

clusters generated with SC3 and the y-axis represents clusters generated with Seurat. 

The number in each intersection represents the overlap between the two clustering 

results, which is color-coded. 

(F) Distribution of cells from different treatments and different batches. tSNE plot 

showing the distributions of cells from different treatments (left panel) and different 

experimental batches (right panel). Different treatments or batches are represented 

with different colors. The two clusters indicated with arrows only contain cells from 

one control animal, which are excluded in our final clustering result because they 

were derived from brain regions out of hypothalamus.  

 

 



Figure S2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2 – Related to Figure 2. Non-neuronal cell clusters feature distinct gene 

expression patterns  

Heatmap showing the cell type-specific genes are differentially expressed across the 11 

non-neuronal subtypes. Differentially expressed genes with power > 0.4, fold change > 2 

among the 11 non-neuronal cell clusters were used to generate the heatmap. Columns 

represent individual cells and rows represent individual genes. The gene expression level 

is color-coded. POPC: proliferating oligodendrocyte progenitor cell; OPC: 

oligodendrocyte progenitor cell; NFO: newly formed oligodendrocytes; MO: myelinating 

oligodendrocyte; Astro: astrocyte; Ependy: ependymocyte; Tany: tanycyte; Endo: 

endothelial cell; Micro: microglia; Macro: macrophage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S3 

 
 

 

 

 

 



Figure S3 - Related to Figure 3.  Expression patterns of stage-specific genes during 

oligodendrocyte maturation  

tSNE plots showing the expression patterns of stage-specific genes during 

oligodendrocyte maturation. The expression level is color-coded. For each gene, if the 

expression level in a cell is less than 5% of the max value of that gene in the whole cell 

population, the gene is considered as not expressed in that cell and is represented as a 

blue dot. The results are very similar to that obtained in a recent study (Marques et al., 

2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S4 

 
 

 

 

 

 

 

 



Figure S4 - Related to Figure 4. Transcriptional features and gene expression 

heterogeneity of tanycytes 

(A) tSNE plot presentation of the 3319 hypothalamic cells based on their transcriptomes 

indicates that tanycyte form a cell cluster that can be easily distinguished from the 

ependymocyte cluster. 

(B) tSNE plots showing that Nes (nestin) and Vim (vimentin) are highly expressed in both 

ependymocyte (Ependy) and tanycyte (Tany). Gene expression level is color-coded. 

(C) Enriched terms of the tanycyte cluster revealed by GO analysis. The hypergeometric-

test was used. 

(D) Expression patterns of selected tanycyte- and ependymocyte-specific genes. tSNE 

plots (upper and middle panels) and ISH data (lower panels, from Allen Brain Atlas) 

showing the differential expression patterns of  genes in tanycytes (Lhx2 and Ptn) and 

ependymocytes (S100b and Pltp). Gene expression level is color-coded. Scale bars, 

200 µm. 

(E) tSNE plots showing the expression of selected genes enriched in different subsets of 

tanycytes. The genes are ordered according to their expression level along the vertical 

axis of the tSNE map. For each gene, corresponding tanycyte subtype(s) are listed. 

Gene expression level is color-coded. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S5 

 



Figure S5 - Related to Figure 5. Distinct expression patterns of hypothalamic 

neuronal cluster-specific genes 

(A) Heatmaps showing the expression pattern of cell-type specific genes in the 15 

glutamatergic and 18 GABAergic neurons clusters. Differentially expressed genes 

with power > 0.4, fold change > 2 among the glutamatergic or GABAergic clusters 

were used to generate the heatmap. Columns correspond to individual cells and the 

numbers above the heatmaps indicate cluster identity. Rows represent individual 

genes and expression level is color-coded. 

(B) ISH data (from Allen Brain Atlas) showing the expression of Foxb1, Cartpt and Cck 

in MM. The contour region in the left panel is enlarged and shown in the right three 

panels. MM, mammillary body. Scale bars, 300 µm. 

(C) ISH data (from Allen Brain Atlas) showing the expression of Hdc, Prph and Wif1 in 

TU. The contour region in the left panel is enlarged and shown in the right three 

panels. TU, tuberal nucleus. Scale bars, 300 µm. 

(D) Immunostaining showing co-localization of Sst and Prdm8 in PVpo but not in cortex. 

The lower panels represent corresponding boxed regions in the upper panel. Scale 

bars, 40 µm. 

(E) Clustering relationship of the 15 glutamatergic and 18 GABAergic neuron subtypes. 

The dendrograms indicate the relatedness among neuron subtypes based on gene 

expression. Differentially expressed genes with SD > 2 are used to generate the 

hierarchical clustering trees and cell-cell similarity heatmaps. The numbers on the top 

of the heatmaps indicate cluster identity. 

 

 

 

 

 

 

 

 

 



Figure S6 

 



Figure S6 - Related to Figure 6. Expression of neuropeptides and receptors across 

neuronal subtypes 

(A) Violin plot showing the expression profile of different neuropeptides (rows) across 

the hypothalamic neuronal subtypes (columns). Gene expression level is shown on a 

linear scale and adjusted for each gene with the maximum TPM value indicated on 

right. 

(B) Violin plot showing the expression profile of different neuropeptide receptors (rows) 

among the hypothalamic neuronal subtypes (columns).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S7 

 



Figure S7 - Related to Figure 7. Food deprivation-induced transcription changes in 

different hypothalamic neuron clusters 

(A) Violin plots showing representative genes in different neuronal subtypes that are 

induced by food deprivation. Each column represents one neuron cluster. Gene 

expression level is shown on a log scale. For the fold change and p-value of each 

gene, see Table S7. Fed, normal feeding; FD, food deprivation. 

(B) GO enrichment analysis of representative neuronal clusters that exhibit high numbers 

of gene transcriptional changes. The hypergeometric-test was used. Also see Table S8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Tables 

Table S1 - Related to Figure 1 - Summary of the clustering results 

 

Table S2 - Related to Figure 3 - Six groups of genes dynamically expressed during 

oligodendrocyte differentiation 

 

Table S3 - Related to Figure 3 - GO results of the six groups of genes with dynamic 

expression during oligodendrocyte differentiation 

 

Table S4 - Related to Figure 4 - Differentially expressed genes in tanycyte and 

ependymoctye 

 

Table S5 - Related to Figure 5 - Maker genes of neuronal clusters 

 

Table S6 - Related to Figure 7 - Summary of scRNA-seq comparing transcriptome 

of hypothalamic neuron clusters from normal and food-deprived mice 

 

Table S7 - Related to Figure 7 - GO analyses of genes in different hypothalamic 

neuron subtypes affected by food deprivation 

 

 

 

 

 

 



 

Supplemental Experimental Procedures 

Animals 

All animal experiments followed the guidelines of the Institutional Animal Care and Use 

Committee at Harvard Medical School. Young adult female (8 - 10 weeks) B6D2F1 mice 

(C57B6 female × DBA2 male) were used. One day before the experiments, each animal 

was separated into individual fresh cages. For 24 h food deprivation treatment, only water 

was provided. In total 4 control animals and 3 food-deprived mice were used for single-

cell RNA sequencing. All single-cell RNA-seq experiments were performed in five 

batches within 3 months. Each animal was processed separately (cell dissociation, library 

preparation) and regarded as a biological replicate.    

 

Tissue dissection and dissociation 

For hypothalamus dissection, the mice were anesthetized and the entire brain was 

removed and transferred into ice-cold Hibernate A/B27 medium (60 ml Hibernate A 

medium with 1 ml B27 and 0.15 ml Glutamax). The coronal sections from Bregma -0.22 

to – 3.16 mm were then cut with brain matrix and further sliced into 1 mm slices. 

Hypothalamic tissue was then dissected from each slice under dissection microscope and 

subjected to tissue dissociation (Figure S1A). The hypothalamic tissues were dissociated 

into single-cell suspension using a papain-based dissociation protocol (Brewer and 

Torricelli, 2007) with some modifications. Briefly, the hypothalamic tissues from each 

mouse were cut into small pieces and incubated in Hibernate A-Ca medium with 2 mg/ml 

papain at 300C for 40 min with constant agitation. After washing with 5 ml Hibernate 

A/B27 medium, the tissues were triturated with fire polished glass Pasteur pipettes into a 

single-cell suspension within 6 ml Hibernate A/B27 medium. To remove debris, the 

single-cell suspension was loaded on a 4-layer OptiPrep gradient and centrifuged at 800 g 

for 15 min at 40C. Fractions 2 – 4 were then collected and washed with 5 ml Hibernate 

A/B27 medium and 5 ml DPBS with 0.01% BSA. In some experiments (batch 4 and 5), 

only fraction 3 is collected to enrich neurons. The cells were spun down at 200 g for 3 



min and re-suspended in 0.4 ml DPBS with 0.01% BSA. A 10 μl cell suspension was 

stained with Trypan Blue and the live cells were counted. During the entire procedure, 

the tissues or cells were kept in ice-cold solutions except for the papain digestion.  

 

Single cell capture, library preparation, and sequencing 

Single cells and barcoded beads were captured into nanoliter-sized droplets as previously 

described (Macosko et al., 2015). The hypothalamic cell suspension was diluted to 100 

cells/μl with DPBS containing 0.01% BSA and 0.6 – 1 ml cell suspension was loaded in 

each experiment. After cell capture, reverse transcription, cDNA amplification and 

sequencing library preparation were perform as described (Macosko et al., 2015). 

Sequencing was performed using Illumina Hiseq 2500 sequencer. Raw sequencing reads 

were analyzed using the Drop-seq software (Macosko et al., 2015) 

(http://mccarrolllab.com/dropseq/). Transcript count for each gene was converted to 

transcripts per million (TPM) for downstream analysis. 

 

Cell clustering 

The R package Seurat was used for cell clustering analysis (Macosko et al., 2015). To 

determine the optimal cut-off that balances data quality and cell numbers, we tried 

different cut-offs (detect expression of 800, 2000, and 2500 genes in each single cell) and 

found that 2000-gene cut-off gave the best results, thus we used the 3319 cells with 2000 

or more gene expression detectable for clustering analysis. The highly variable genes 

were identified from these cells using Seurat with the default setting followed by 

principle component analysis (PCA). Then the statistically significant PCs (p<0.05) were 

used for 2-dimension tSNE. Based on the tSNE map, density-based clustering (DBSCAN) 

was used to cluster cells based on their proximity (G.use=3), resulting in 40 clusters with 

a large neuronal cluster containing 1574 cells. We reasoned that the PCs used for the first 

round clustering might be mainly comprised of non-neuronal cells and some specific 

neuronal subtypes. The majority of neurons, despite having subtype-specific genes, may 

have more closely related transcriptomes that form the large neuronal cluster. To separate 

the large cluster, we extracted cells within the cluster for further clustering using the 

http://mccarrolllab.com/dropseq/


same strategy described above. The same analysis was repeated for an additional two 

times. After four rounds of clustering, a total of 73 cell clusters were identified.  

 

Filter the initial clustering results 

We applied the follow criteria to filter out initial clustering results: 1) marker genes were 

identified for all of the clusters with the function markers.all in R package Seurat; If a 

positive marker (marker gene enriched in a certain cluster compared with other clusters) 

cannot be found for a cluster, the cluster was excluded; 2) If a cluster co-expresses both 

non-neuronal and neuron markers, or non-neuronal markers of different subtypes, or 

glutamatergic and GABAergic markers (Slc17a6 and Slc32a1), then the cluster is 

excluded as the cluster likely represent double-droplets; 3) Clusters with less than 10 

cells were excluded, which can further remove very small neuron clusters which may 

represent neuron-neuron double-droplets; 4)  By manually checking the expression 

pattern of makers for each cluster in mouse brain (Allen Brain Atlas), clusters from brain 

regions out of hypothalamus (e.g. thalamus) were excluded. This criterion was used to 

exclude non-hypothalamic cell clusters from non-hypothalamic tissue. After filtering, a 

total of 45 cell clusters were identified. 

 

Seurat and SC3 clustering results comparisom 

We applied SC3 to classify the 3319-cell dataset, which calculates consensus for each 

value of k and averages the clustering results of k-means using a consensus approach 

(Kiselev et al., 2016). Briefly, UMI counts of 3319-cell dataset were considered as count 

data to construct a new object with R package scater. QC metrics were computed for the 

created object and data filtering was performed with default parameters. To get clustering 

results with SC3, we started with function sc3_prepare. This method prepares an object 

of SCESet class for SC3 clustering. Function sc3_calc_distscalculates in SC3 package 

calculates the distances, including Euclidean, Pearson and Spearman distances. Function 

sc3_calc_transfs in SC3 package calculates transformation of the distance matrices 

corresponding to PCA and graph Laplacian transformations. K-means was then 

performed on the transformed distance matrices with function sc3_kmeans in SC3 

package. Function Sc3_calc_consens in SC3 package calculates consensus matrices 



based on the clustering solutions. To estimate the best K, function sc3_estimate_k in SC3 

package which utilizes the Tracy-Widom theory on random matrices was used. The 

preliminary analysis with optimal K=27 shows that the majority of the cluster are not 

stable based on Silhouette plot or contain subpopulation structure based on manually 

checking the consensus matrix. Then a wide range of K from 27 to 150 was used to get 

different clustering solutions. For a given cluster from Seurat the maximum recovery rate 

was estimated across the different K values. Then a non-overlapping maximum recovered 

consensus cluster solution was generated as final clustering results. By calculating the 

overlap of cells across different clusters generated by Seurat and SC3, we found these 

two methods generate very similar clustering results (Figure S1E).  

 

Predict cell identities for each of the 14,437 sequenced cells with Svm 

Function markers.all in R package Seurat was used to identify cluster marker genes using 

the 3319 cell-derived dataset (ROC test).  All marker genes with power less than 0.4 were 

discarded.  The 3319 cells were fed to the function svm as the training dataset to build a 

classifier based on 3587 marker genes. Then function prediction was used to assign each 

of the 14437 cells (>= 800 transcripts in each cell) to one cluster based on transcriptional 

similarity.  A total of 14437 cells were then subject to identified marker genes using 

function markers.all in R package Seurat. In total 1430 genes with at least 5-fold 

change were identified.  

 

Analysis of the oligodendrocyte and tanycyte clusters 

To analyze the timing of differentiation in oligodendrocytes, we extracted cells belonging 

to oligodendrocyte precursor cell, newly formed oligodendrocyte and myelinating 

oligodendrocyte clusters from the 3319-cell dataset (2000-gene cut-off). The three 

subpopulations were pooled for analysis. The 768 most variable genes among all the 

single cells were identified by Seurat (ROC test, power>0.4) (Macosko et al., 2015). A 

pseudo developmental timeline of single cells was then calculated with the package 

Monocle (Trapnell et al., 2014), using the most variable genes as time ordering genes. 

Based on the established differentiation direction of oligodendrocyte (from OPC to NFO 

to MO), the direction of pseudotime axis was determined. In Figure 3C, the six groups of 



genes displaying six temporal patterns during the three developmental stages were 

identified by Seurat (ROC test, power>0.4). GO Term analysis of these six groups of 

genes was performed using Gorilla (Eden et al., 2009). All analyses for tanycyte and 

ependymal cells were based on the 3319-cell dataset. Identification of the differentially 

expressed genes between tanycyte and ependymocyte were carried out using Seurat 

(ROC test, power>0.4) (Macosko et al., 2015). GO term analysis were performed using 

Gorilla (Eden et al., 2009). Identification of the differentially expressed genes within 

tanycyte population and principle component analysis (PCA) were performed with Seurat 

(Macosko et al., 2015). 

 

tSNE plot, dendrogram and heatmap for glutamatergic and GABAergic clusters 

Neurons belonging to clusters Glu1-15 and GABA1-18 were extracted from the 3319-cell 

dataset and new Seurat objects were built using function setup for glutamatergic neurons 

and GABAergic neurons, respectively.  The marker genes were identified by using the 

function find_all_markers of Seurat package (ROC test, requiring power > 0.4, fold 

change > 2), which was used for constructing a gene expression matrix for tSNE plot and 

heatmap. Rtsne with parameters of 'pca = TRUE, max_iter = 2000, perplexity = 30' was 

used to build a 2D map for visualization. Each dot represented a single cell and each 

cluster was colored with scheme consistent with other figures. Heatmaps in Figure S5A 

was generated by function doHeatMap.  To generate the dendrograms presented in Figure 

S5E, variable genes with SD > 2 within glutamatergic or GBABergic neurons were 

selected, and the mean values of those genes in each cluster were then calculated. 

Hierarchical clustering was performed with R function dist and hclust 

(method="ward.D2") based on mean values of variable genes. To generate the cell-cell 

similarity heatmap in Figure S5E, the gene set which were used to generate Figures 5A 

and 5B were used. The expression TPM value of each gene was transformed to log2 

value and scaled. Spearman correlation of each pair of cells was calculated by 

R function RCORR. Then R function heatmap.2 was used to generate the heatmap.  

 

Identification of food deprivation affected genes  



Base on the clustering results of 14,437 cells, within each neuronal cluster, the number of 

cells from "Fed" (ad libitum fed) and "FD" (food-deprived) mice are calculated.  Clusters 

have at least 4 cells from both "Fed" and "FD" group are subjected to further 

analysis.  lrTest function (likelihood ratio test) in R package MAST was used to calculate 

P value with "hurdle" model for comparing gene expression level. Genes with fold 

change > 1.5 and P value < 0.01 are defined as differentially expressed genes. GO 

analysis are performed with Gorilla (Eden et al., 2009) with default parameters.  All gene 

symbols in mouse genome are used as background gene set. Redundant GO terms are 

manually removed.  

 

Immunostaining 

Anesthetized mice (8 -10 week) were perfused with PBS followed by 4% 

paraformaldehyde (PFA) in PBS. The whole brain was removed and fixed in 4% PFA 

overnight followed by 30% sucrose in PBS for 24h at 40C. Coronal sections were cut at 

30 μm with cryostat and stored in PBS before use. A free-floating procedure was used for 

immunostaining. Briefly, brain slices containing the regions of interest were blocked in 

5% BSA and 0.3% Triton-X 100 in PBS for 1 h at room temperature before being 

incubated in primary antibodies in blocking buffer overnight at 40C. After washing 3 

times for 15 min in PBS, sections were incubated in blocking buffer containing secondary 

antibodies and DAPI at room temperature for 2 h, followed by washing 3 times with 

PBS. Brain slices were then attached to slides and coverslips were applied. The Sst 

antibody (rabbit, 1:100) was from Invetrogen, the Pax6 antibody (rabbit, 1:300) was from 

Covance, the Prdm8 antibody (guinea pig, 1:1000) was a gift from Dr. Sarah E. Ross 

(Ross et al., 2012), the Agrp antibody (goat, 1:100) was from Santa Cruz, the Cirbp (goat, 

1:100), Crabp1 (mouse, 1:200) and Trim28 (mouse, 1:100) antibodies were from Abcam.  
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