
Supplemental Data.

 K1, Iter 2 to Iter 3 K1, Iter 3 to Iter 4 k2, Iter 2 to Iter 3 k2, Iter 3 to Iter 4

 Indirect Direct Indirect Direct Indirect Direct Indirect Direct

Amygdala -2.1 -2.2 -1.3 -1.0 -0.4 -1.0 -1.9 -1.2
Caudate -6.4 -6.9 -4.6 -4.7 -1.5 -0.5 -2.7 -1.1

Cerebellum -2.6 -2.0 -1.4 -0.8 -2.1 -1.0 -1.4 -0.3
Frontal Lobe -3.3 -2.8 -1.9 -1.4 -1.9 -1.1 -1.4 -0.4
Hippocampus -3.7 -2.8 -3.1 -2.2 -3.3 -0.3 -3.0 -0.4
Occipital Lobe -2.1 -1.7 -1.1 -0.8 -1.2 -1.0 -0.9 -0.4

Putamen -3.1 -3.2 -1.9 -1.9 -2.0 -1.0 -1.9 -0.7
Thalamus -3.2 -2.8 -1.9 -1.5 -3.7 -1.3 -2.5 -0.8

Table S1. Regional percent change in K1 and k2 from iteration 2 to 3, and iteration 3 to 4, for the 100%-count [11C]AFM
dataset.

 K1, Iter 2 to Iter 3 K1, Iter 3 to Iter 4 k2, Iter 2 to Iter 3 k2, Iter 3 to Iter 4

 Indirect Direct Indirect Direct Indirect Direct Indirect Direct

Amygdala -2.8 -2.6 -1.9 -1.9 -1.6 -0.5 -2.1 -0.6
Caudate -8.4 -8.3 -5.1 -5.0 -0.6 -0.2 -1.1 -0.6

Cerebellum -1.9 -1.8 -1.0 -0.8 -1.5 -0.9 -1.1 -0.5
Frontal Lobe -2.5 -2.4 -1.5 -1.4 -1.0 -0.7 -0.8 -0.3
Hippocampus -2.7 -2.0 -2.0 -1.5 -2.4 0.1 -2.6 -0.3
Occipital Lobe -2.1 -2.0 -1.1 -1.0 -1.2 -1.0 -0.7 -0.6

Putamen -3.7 -3.8 -2.3 -2.4 -1.0 -1.2 -0.9 -0.6
Thalamus -3.7 -3.6 -2.1 -2.0 -1.5 -1.1 -1.0 -0.5

Table S2. Regional percent change in K1 and k2 from iteration 2 to 3, and iteration 3 to 4, for the 100%-count [11C]UCB-J
dataset.

 100% 20% 10% 5%

 Indirect Direct Indirect Direct Indirect Direct Indirect Direct

Amygdala -2 -1 1 0 14 4 25 0
Caudate -5 -3 -1 -2 3 -2 12 -3

Cerebellum 2 0 4 1 6 2 7 3
Frontal Lobe 0 -1 3 0 5 0 7 1
Hippocampus 2 0 6 1 10 2 15 2
Occipital Lobe 2 1 4 1 6 1 9 2

Putamen 0 1 3 1 13 4 20 1
Thalamus 0 0 3 1 7 1 18 2

Table S3. Regional mean percent bias in K1 for the simulated dataset at each count level, by the indirect and direct
methods (results given for iteration 2). Regional mean was computed from the average K1 image across replicates.

 100% 20% 10% 5%

 Indirect Direct Indirect Direct Indirect Direct Indirect Direct

Amygdala 314 -8 1166 27 1259 112 1427 875
Caudate 45 -6 574 9 1225 51 1483 693

Cerebellum 4 2 314 3 770 5 1448 95
Frontal Lobe 1 0 116 0 420 1 996 35
Hippocampus 5 4 341 2 791 8 1771 284
Occipital Lobe 1 1 123 1 420 1 921 32

Putamen 69 -3 830 48 1022 71 1752 900
Thalamus 46 1 717 25 1294 60 1441 668

Table S4. Regional mean percent bias in VT for the simulated dataset at each count level, by the indirect and direct
methods (results given for iteration 2). Regional mean was computed from the average VT image across replicates.

 100% 20% 10% 5%

 Indirect Direct Indirect Direct Indirect Direct Indirect Direct

Amygdala -2 -11 1188 0 1044 -2 1260 226
Caudate -2 -10 17 -6 86 1 258 46

Cerebellum 1 1 8 2 15 3 26 7
Frontal Lobe 0 0 3 0 7 1 15 4
Hippocampus 1 3 5 1 15 3 47 14
Occipital Lobe 0 1 3 1 7 0 15 4

Putamen -2 -7 45 0 36 -2 1497 151
Thalamus 3 -2 26 0 109 5 101 44

Table S5. Regional median percent bias in VT for the simulated dataset at each count level, by the indirect and direct
methods (results given for iteration 2). Regional median was computed from the average VT image across replicates.

Figure S1. Parametric images generated by direct reconstruction for a full-count simulated dataset, with and without event-
by-event motion correction. This simulation includes more severe motion than that presented in the main manuscript.
Results are shown at iteration 2 (20 subsets/iteration).

 K1 k2 VT

 Without
MC

With
MC

%
Difference

Without
MC

With
MC

%
Difference

Without
MC

With
MC

%
Difference

Amygdala 0.34 0.32 -5 0.012 0.011 -15 27.9 32.5 17
Caudate 0.39 0.41 4 0.014 0.014 0 29.3 30.3 4

Cerebellum 0.32 0.33 2 0.034 0.033 -1 9.7 10.1 4
Frontal Lobe 0.42 0.44 7 0.029 0.028 -3 14.6 15.9 9
Hippocampus 0.29 0.29 1 0.018 0.018 -2 16.6 16.8 1
Occipital Lobe 0.43 0.44 2 0.029 0.029 2 15.1 15.2 0

Putamen 0.46 0.50 7 0.014 0.014 1 35.5 38.2 8
Thalamus 0.41 0.44 7 0.014 0.013 -2 32.1 34.8 8

Table S6. Regional mean parameter estimates from direct reconstruction with and without motion correction (MC) for the
[11C]AFM dataset. Results are given for one replicate at the 20% count level, at iteration 2 (20 subsets/iteration).

 K1 k2 VT

 Without
MC

With
MC

%
Difference

Without
MC

With
MC

%
Difference

Without
MC

With
MC

%
Difference

Amygdala 0.29 0.24 -17 0.028 0.013 -54 10.3 19.0 85
Caudate 0.39 0.37 -3 0.020 0.017 -15 20.1 22.6 12

Cerebellum 0.37 0.34 -7 0.033 0.020 -40 11.5 18.2 58
Frontal Lobe 0.40 0.43 6 0.029 0.018 -38 15.2 25.5 68
Hippocampus 0.31 0.24 -21 0.031 0.016 -50 10.5 16.8 60
Occipital Lobe 0.43 0.41 -4 0.022 0.017 -25 20.0 25.6 28

Putamen 0.44 0.44 -1 0.025 0.016 -34 18.0 27.8 54
Thalamus 0.39 0.39 0 0.028 0.020 -29 13.7 19.8 44

Table S7. Regional mean parameter estimates from direct reconstruction with and without motion correction (MC) for the
[11C]UCB-J dataset. Results are given for one replicate at the 20% count level, at iteration 2 (20 subsets/iteration).

Figure S2. K1 parametric maps of replicate of human [11C]AFM dataset per count level (rows), across 4 iterations
(columns). (a) Generated by the indirect method. (b) Generated by the direct method.

Figure S3. k2 parametric maps of replicate of human [11C]AFM dataset per count level (rows), across 4 iterations
(columns). (a) Generated by the indirect method. (b) Generated by the direct method.

Figure S4. K1 parametric maps of replicate of human [11C]UCB-J dataset per count level (rows), across 4 iterations
(columns). (a) Generated by the indirect method. (b) Generated by the direct method.

Figure S5. k2 parametric maps of replicate of human [11C]UCB-J dataset per count level (rows), across 4 iterations
(columns). (a) Generated by the indirect method. (b) Generated by the direct method.

 100% 20% 10% 5%
 Indirect Direct Indirect Direct Indirect Direct Indirect Direct

Amygdala 0.31 0.32 0.34 0.33 0.36 0.33 0.41 0.34
Caudate 0.41 0.40 0.41 0.40 0.43 0.40 0.44 0.40

Cerebellum 0.35 0.33 0.36 0.33 0.36 0.33 0.37 0.34
Frontal Lobe 0.45 0.44 0.46 0.44 0.47 0.45 0.48 0.45
Hippocampus 0.31 0.29 0.32 0.29 0.34 0.29 0.36 0.30
Occipital Lobe 0.45 0.43 0.45 0.43 0.47 0.44 0.48 0.44

Putamen 0.51 0.49 0.50 0.49 0.52 0.50 0.55 0.50
Thalamus 0.46 0.44 0.46 0.44 0.47 0.44 0.49 0.44

Table S8. Regional mean K1 for the [11C]AFM dataset at each count level, by the indirect and direct methods (results given
for iteration 2). Regional mean and standard deviation were computed from the average K1 image across replicates.

 100% 20% 10% 5%
 Indirect Direct Indirect Direct Indirect Direct Indirect Direct

Amygdala 141 33.8 449

36.6 399 33.3 618

52.9
Caudate 31.6 30.6 164 31.1 271 30.3 438 32.1

Cerebellum 9.27 10.1 27.6 10.1 59.4 10.2 113 10.4
Frontal Lobe 14.8 15.9 26.1 15.9 62.5 16.0 125 16.1
Hippocampus 15.5 16.9 62.0 16.7 112 16.7 202 16.9
Occipital Lobe 14.1 15.2 25.4 15.1 58.2 15.1 132 15.2

Putamen 38.1 38.8 228 39.5 376 41.1 483 40.9
Thalamus 35.9 35.1 166.6 35.1 281.7 36.3 448 39.8

Table S9. Regional mean VT for the [11C]AFM dataset at each count level, by the indirect and direct methods (results given
for iteration 2). Regional mean and standard deviation were computed from the average VT image across replicates.

 100% 20% 10% 5%
 Indirect Direct Indirect Direct Indirect Direct Indirect Direct

Amygdala 0.23 0.23 0.24 0.24 0.24 0.24 0.25 0.24
Caudate 0.38 0.38 0.38 0.37 0.38 0.38 0.39 0.38

Cerebellum 0.34 0.34 0.35 0.34 0.35 0.34 0.36 0.34
Frontal Lobe 0.43 0.43 0.43 0.43 0.44 0.43 0.45 0.43
Hippocampus 0.24 0.24 0.24 0.24 0.25 0.24 0.26 0.24
Occipital Lobe 0.41 0.41 0.42 0.41 0.42 0.41 0.43 0.41

Putamen 0.43 0.43 0.43 0.43 0.44 0.43 0.46 0.44
Thalamus 0.40 0.39 0.40 0.38 0.40 0.39 0.41 0.39

Table S10. Regional mean K1 for the [11C]UCB-J dataset at each count level, by the indirect and direct methods (results
given for iteration 2). Regional mean and standard deviation were computed from the average K1 image across replicates.

 100% 20% 10% 5%
 Indirect Direct Indirect Direct Indirect Direct Indirect Direct

Amygdala 18.5 18.6 20.2 18.7 49.2 20.0 176 41.3
Caudate 23.3 22.4 26.1 22.6 40.1 22.9 104 25.7

Cerebellum 21.0 18.6 26.0 19.1 48.1 19.7 103 23.5
Frontal Lobe 25.4 25.0 30.5 25.9 54.3 26. 7 120 30.6
Hippocampus 17.2 16.6 30.4 17.5 71.0 20.1 172 42.1
Occipital Lobe 25.2 25.2 28.4 25.5 53.4 26.2 120 29.7

Putamen 27.8 27.8 33.3 28.2 55.3 28.9 138 31.8
Thalamus 19.2 19.5 22.30 19.8 29.6 19.9 76.6 20.8

Table S11. Regional mean VT for the [11C]UCB-J dataset at each count level, by the indirect and direct methods (results
given for iteration 2). Regional mean and standard deviation were computed from the average VT image across replicates.

Figure S6. (a,b) Regional K1 %CoV (in the frontal cortex) by iteration and count level for the indirect and direct methods,

for (a) [11C]AFM and (b) [11C]UCB-J. (c,d) Percent reduction in regional K1 CoV of the direct method relative to the

indirect method, by iteration and count level, for (c) [11C]AFM and (d) [11C]UCB-J.

Figure S7. VT %CoV maps of replicates of human [11C]AFM data per count level (rows), across 4 iterations (columns). (a)
Generated by the indirect method. (b) Generated by the direct method.

Figure S8. VT %CoV maps of replicate human [11C]UCB-J data per count level (rows), across 4 iterations (columns). (a)
Generated by the indirect method. (b) Generated by the direct method.

Figure S9. Percent reduction in regional K1 CoV of the direct method relative to the indirect method by count level and
region at iteration 2, for (a) [11C]AFM and (b) [11C]UCB-J.

Figure S10. Percent reduction in regional VT CoV of the direct method relative to the indirect method by count level and

region at iteration 2, for (a) [11C]AFM and (b) [11C]UCB-J.

 Simulation [11C]AFM [11C]UCB-J
 K1 VT K1 VT K1 VT

Indirect 1.7 2.1 1.9 2.2 2.1 2.5
Direct 2.1 2.2 2.0 1.9 1.9 2.0

Table S12. Ratio of parameter CoV at 5% count level to CoV at 20% count level at iteration 2, averaged across regions.

Figure S11. Impact of increased sampling of LORs in estimation of the sensitivity image on VT CoV. For the 5% count

level, LOR sampling was quadrupled; for the 10% count level, LOR sampling was doubled. Results are shown at iteration

2.

Figure S12. Regional VT %CoV estimates for the simulated data, at the 5% count level, estimated from either 5 or 15

replicates for the indirect and direct methods.

Figure S13. Example plots of H(k2,j) (used in k2 update) and Q’ (used in K1 update), for a single voxel from one acquisition.

Each symbol denotes a k2 value at which Q’ and Q’’ images were computed. These curves are representative; the general
monotonic shape of these curves is similar for all voxels.

Appendix A: Invertibility of 𝑯 𝒌𝟐

In the derivation in the main text, an important requirement is that the function 𝐻 𝑘! is invertible.
Since this function is intrinsically positive, this requirement can be met by demonstrating that the
function is monotonically decreasing over the prescribed range of 𝑘!.

We denote the numerator and denominator of 𝐻 𝑘!,! as 𝑁 𝑘!,! and 𝐷 𝑘!,! , respectively:

𝐻 𝑘!,! =
𝑡 − 𝜏 𝑐!"#𝐿!𝑃!𝑒!!!,! !!!!"#

𝑐!"#𝐿!𝑃!𝑒!!!,! !!!!"#
=
𝑁 𝑘!,!
𝐷 𝑘!,!

since 𝑁 𝑘!! = − !" !!!
!!!!

, then 𝐻 𝑘!! = −
!!" ! !!!

!!!!
 and

!" !!!
!!!!

= −
!!!" ! !!!

!!!!
!

So demonstrating that 𝐻 𝑘!,! is decreasing, is equivalent to showing that ln 𝐷 𝑘!,! is convex.

Applying the quotient rule to differentiate 𝐻 𝑘!,! leads to:

𝑑𝐻 𝑘!,!
𝑑𝑘!,!

𝐷 𝑘!,!
! =

𝑑𝑁 𝑘!,!
𝑑𝑘!,!

𝐷 𝑘!,! −
𝑑𝐷 𝑘!,!
𝑑𝑘!,!

𝑁 𝑘!,!

Since 𝑁 𝑘!,! = − !" !!,!
!!!,!

, we have:

𝑑𝐻 𝑘!,!
𝑑𝑘!,!

𝐷 𝑘!,!
! =

𝑑𝑁 𝑘!,!
𝑑𝑘!,!

𝐷 𝑘!,! + 𝑁 𝑘!,!
!

Written out, this is:

𝑑𝐻 𝑘!,!
𝑑𝑘!,!

𝐷 𝑘!,!
!
= − 𝑡 − 𝜏 !𝑐!"#𝐿!𝑃!𝑒!!!,! !!!

!"#

𝑐!"#𝐿!𝑃!𝑒!!!,! !!!

!"#

+ 𝑡 − 𝜏 𝑐!"#𝐿!𝑃!𝑒!!!,! !!!

!"#

!

Collapsing the sums over the lines of response i:

𝑑𝐻 𝑘!,!
𝑑𝑘!,!

𝐷 𝑘!,!
!
= − 𝑡 − 𝜏 !𝑄!"𝐿!𝑃!𝑒!!!,! !!!

!"

𝑄!"𝐿!𝑃!𝑒!!!,! !!!

!"

+ 𝑡 − 𝜏 𝑄!"𝐿!𝑃!𝑒!!!,! !!!

!"

!

where 𝑄!" = 𝑐!"#! is the value of the sensitivity image for voxel j at time t.

Now, change variables by defining ∆𝑡 = 𝑡 − 𝜏. Since 𝜏 ∈ 0, 𝑡 , then ∆𝑡 ∈ 0, 𝑡 , and:

𝑑𝐻 𝑘!,!
𝑑𝑘!,!

𝐷 𝑘!,!
!
= − ∆𝑡!𝑄!"𝐿!𝑃!!∆!𝑒!!!,!∆!

!,∆!

𝑄!"𝐿!𝑃!!∆!𝑒!!!,!∆!

!,∆!

+ ∆𝑡𝑄!"𝐿!𝑃!!∆!𝑒!!!,!∆!

!,∆!

!

Define:

𝑊!,∆! = 𝑒−𝑘2,𝑗∆𝑡 𝑄!"𝐿!𝑃!!∆!
!

𝑊!,∆! is a positive quantity. Then:

𝑑𝐻 𝑘!,!
𝑑𝑘!,!

𝐷 𝑘!,!
! = − ∆𝑡!𝑊𝑗,∆𝑡

∆!

𝑊𝑗,∆𝑡
∆!

+ ∆𝑡𝑊𝑗,∆𝑡
∆!

!

This expression is of the form

𝑑𝐻 𝑘!,!
𝑑𝑘!,!

𝐷 𝑘!,!
! = − 𝑢∆!!

∆!

𝑣∆!!
∆!

+ 𝑢∆!𝑣∆!
∆!

!

with
𝑣∆! = 𝑊!,∆!

and
𝑢∆! = ∆𝑡 𝑊!,∆!

Thus,
!" !!,!
!!!,!

𝐷 𝑘!,!
! ≤ 0, due to the Cauchy-Schwarz inequality 𝑢!𝑣!!

!
≤ 𝑢!!! 𝑣!!! .

So
!" !!,!
!!!,!

≤ 0 and 𝐻 𝑘!,! is monotonically decreasing.

Moreover, the Cauchy-Schwarz inequality becomes an equality if and only if:

1) 𝑣∆! = 𝜆𝑢∆!, which is not possible here, or
2) 𝑢∆! or 𝑣∆! is all zeros, which here means 𝑊!,∆! = 0 for all ∆𝑡, i.e., 𝑄!" = 0 for all 𝑡, which

means the voxel 𝑗 is outside the field of view.
Therefore in practice, 𝐻 𝑘!,! is strictly monotonically decreasing for all voxels of interest.

Finally, at the beginning of this appendix we noted that demonstrating that 𝐻 𝑘!,! is decreasing is
equivalent to showing that ln 𝐷 𝑘!,! is convex. With the notation introduced above, ln 𝐷 𝑘!,! =
ln 𝑊!,∆!∆𝑡 , which is the logarithm of a sum of (positively) weighted (decreasing) exponentials. It is
a classical result that the logarithm of a sum of exponentials is convex, and this demonstration of the
monotonicity of 𝐻 𝑘!,! was inspired by the demonstration of that classical result.

Appendix B: Simulation Methodology

I. Overview
The ability to simulate PET list mode data is essential for validating list mode reconstruction
algorithms. Most existing tools for PET list mode simulation use Monte Carlo methods to generate
random positron emissions one-by-one, subjecting each to a sequence of explicitly modeled physical
effects to determine which will ultimately be detected. Some examples of open source software
packages for Monte Carlo simulations include GATE [1] and PeneloPET [2]. While such packages
provide realistic modeling of physical effects, the potential mismatch between the physics model used
in the simulation and that used in the reconstruction can be confounding when trying to validate new
reconstruction algorithms, independent of the modeling of physical effects. The motivation for
providing a new simulation tool in the MOLAR framework was to enforce perfectly consistent physics
modeling between the simulation and reconstruction, to disentangle the validation of the physics model
(not the focus of this manuscript) from that of the other details of the reconstruction algorithm such as
motion correction, direct parametric implementations, regularization, etc.

The primary input to any simulation is a representation of the desired ground truth activity distribution,
which may be time-varying. For static PET, such input might simply be a single emission image. For
dynamic PET, the input can be provided as a sequence of emission images; or a set of parametric
images, along with the corresponding input function and model definition; or an image of integer
labels denoting regions, along with a set of time activity curves corresponding to each region.

Given such input, the expected value of the emissions at a particular time along any line-of-response
(LOR) defined by a pair of detectors (and possibly a time-of-flight bin) can be computed via a forward
projection model, which could include attenuation, normalization, decay, dead time, resolution, scatter,
randoms, etc. In theory, one could compute the expected value for every possible LOR at every time
step of the simulation, and simulate activity along each with a random variate drawn from a Poisson
distribution with parameter set to the corresponding expected value. However, such an approach is not
computationally feasible for simulating modern systems with large numbers of detectors, especially in
the presence of rapid changes in activity, either due to tracer kinetics or motion. Therefore, we
developed an approach that randomly samples a small fraction of the total possible LORs at each time
step, computes the expected number of events for these LORs, adjusts the computed expected values
with an undersampling correction factor, and then generates an event list by randomly including some
of the selected LORs, so that the simulated list mode data follow a Poisson distribution.

II. Theory and Implementation
Distribution of LOR Selection Frequency. Let I be the total number of possible LORs in the system,
and S be the number of simulated LORs. Then the undersampling factor U is I/S (i.e. the fraction of
LORs sampled is 1/U).

Because we would like to sample with replacement (both for ease of implementation and for realism),
it is possible that LOR i can be picked more than once, i.e., ni times. Let Ni be a random variable
representing the number of times LOR i is selected; Ni will be binomially distributed, with the
probability of picking any particular LOR once, 1/I (assuming uniform LOR sampling). If I is large
enough, then the distribution of Ni is well-approximated as Poisson with parameter 1/U:

Pr 𝑁! = 𝑛! =
(1/𝑈)!!𝑒!!/!

𝑛!!

(S1)

.

Distribution of Events. Once a LOR is selected, a random variable must be used to decide if this
randomly selected LOR should be included in the simulated list mode dataset. Given that the LOR
selection distribution is Poisson, the next step is to determine a suitable probability distribution to draw
from for each LOR such that the simulated data will have Poisson statistics. In other words, once an
LOR has been selected and the expected value ŷ has been computed by forward projection, we need to
model the yes/no decision of whether to write an event packet corresponding to that LOR to the list
mode file. Clearly, if the computed expected value ŷ =0, no event should be written, and the greater ŷ
is, the higher the probability of “keeping” that event should be.

The process of drawing from a Poisson distribution for LOR selection (corresponding to random
variable N), and, for each time the LOR is chosen, subsequently drawing from a second distribution
that will somehow be parameterized by ŷ (let the corresponding random variable for this be X), can be
modeled with a Compound Poisson distribution. This is the distribution of Z, the counts on a particular
LOR.

While we haven't yet established the distribution of X, we can write the distribution of Z conditioned
on N:

 𝑍|𝑁 = 𝑋!

!

!!!

, (S2)

where X1, X2, X3 ... are i.i.d. random variables, each with sample space of 1 (include the LOR), or 0
(discard the LOR). This says, to get the distribution of counts Zi on LOR i given that LOR i was picked
a certain number of times, add up the probability of writing an event packet for LOR i, once for each
time it was picked.

Note that the joint distribution of Z and N isPr(Z,N) = Pr(Z|N)Pr(N) (from the chain rule of probability);
then the Compound Poisson Distribution is the distribution of Z, which can be found by marginalizing
the joint distribution Pr(Z,N) over N:

Pr 𝑍 = Pr (𝑍|𝑁 = 𝑛)Pr (𝑁 = 𝑛)
!

!

(S3)

As stated above, the count data, which will be denoted by random variable Z, should be Poisson. So,
given N ~ Poisson and Z ~ Poisson, we would like to identify the distribution of X.

Conveniently, it can be shown that X is Bernoulli-distributed with parameter Uŷ:

Pr 𝑍 = 𝑧 = Pr 𝑍 = 𝑧 𝑁 = 𝑛 Pr 𝑁 = 𝑛

!

!!!

= 𝑈𝑦 !(1− 𝑈𝑦)!!!

!

!!!

(1/𝑈)!𝑒!!/!

𝑛!

!

!!!

 The sum of n Bernoulli trials with identical probabilities is binomial, so:

=
𝑛!

𝑧! 𝑛 − 𝑧 ! 𝑈𝑦
!(1− 𝑈𝑦)!!!

(1/𝑈)!𝑒!!/!

𝑛!

!

!!!

=
(𝑈𝑦)!𝑒!!/!

𝑧!
(1/𝑈)!

𝑛 − 𝑧 !

!

!!!

(1− 𝑈𝑦)!!!

=
(𝑈𝑦)!𝑒!!/!

𝑧!
(1/𝑈)(!!!)

𝑧 + 𝑛 − 𝑧 !

!

!!!

(1− 𝑈𝑦)!!!!!

=

𝑈𝑦 !𝑒!
!
!(1/𝑈)!

𝑧!
(1/𝑈)!

𝑛!

!

!!!

(1− 𝑈𝑦)!

=

𝑈𝑦 !𝑒!
!
!(1/𝑈)!

𝑧! ∙ 𝑒!/!(!!!!)

=
𝑒!!𝑦!

𝑧! .∎
(S4)

In other words, each time a LOR is selected, the decision to include it in the simulated list mode file
should be based on a random realization from a Bernoulli random variable with parameter Uŷi.

Therefore, to simulate a random variable from a Poisson distribution with expected value ŷi for a given
(randomly selected) LOR i, we can draw from a Bernoulli distribution with parameter Uŷi. This
parameter represents a probability, so Uŷi ≤1. Because ŷi is determined by the ground truth emission
image we are trying to simulate, the sampling rate of LORs must be set high enough (U must be small
enough) that we never encounter a Uŷi > 1. Given maximum expected value ŷmax we must sample at
least (ŷmax × I) LORs.

LOR Sampling Scheme. We began this Appendix with the declaration that it is impractical to compute
expected counts for every possible LOR for every time increment of a simulation based on a modern
PET system. However, if we sample too few LORs, we risk having a Uŷi > 1 for one or more LORs,
which is not valid as a parameter of the Bernoulli distribution.

A particularly disagreeable scenario would be one where the average ŷ across all LORs for a given
simulation is fairly low, giving us hope that we can use a relatively large U (giving us computational
efficiency); but then we happen upon a small handful of LORs with diabolically large ŷ values; in that
case, the maximal appropriate value for U must be small, so that Uŷi < 1 for all LORs. This suggests
that we would prefer non-uniform sampling of LORs, to sequester “rogue” LORs demanding heavy
sampling (low U) from the locales of projection space where a more gentle touch would do (high U).

So, rather than using a global undersampling factor U, we can parcellate projection space into P
“parcels” of LORs. LORs will be grouped such that each parcel contains LORs with similar ŷ values.

Parcel p will have undersampling factor Up, which is the number of LORs in parcel p (Ip), divided by
the number of LORs sampled from parcel p (Sp). Each Sp will be defined by the largest ŷ in parcel p, so
that the Bernoulli parameter is less than 1:
 Sp > ŷmax,p ×Ip . (S5)

In practice, this inequality is enforced by setting Sp such that Up × ŷmax,p equals a value slightly less
than 1 (e.g. 0.9). There must be sufficient LORs per parcel to ensure that the LOR selection
distribution for a given parcel remains Poisson. This should be a fairly easy assumption to uphold,
given the large number of LORs in the system and the relatively small number of parcels we'd use in
practice (on the order of 10-20).

In determining the parcellation, since we would like not to forward project every single possible LOR
in the system (which would be one unprofitable way to determine where the large ŷ values are), the
parcellation is determined using only a very coarse sinogram representation of the system. Each
detector position in the system can be defined by its axial slice and angle around the detector ring.
Detectors are grouped into bins of similar slice and angle. Then our “coarse sinogram” is represented
as a 4-dimensional array, where the first two dimensions are the angle and slice bins of detector 1, and
the last two dimensions are the angle and slice bins of detector 2 (for the LOR subtended by detectors
1 and 2). Note, this array will be diagonally symmetric: [Detector 1, Detector 2] refers to the same
LOR as does [Detector 2, Detector 1].

To initialize the parcellation at the start of a simulation, we first define the axial and angular sampling
desired for the coarse sinogram (reasonable values for these would be ~100 angles and ~20 axial
slices). To get approximate ŷb for each sinogram bin b, simple ray-tracing can be used to forward
project the ground truth emission image. For simulations without randoms and scatter, sinogram bins
which do not contain LORs that intersect the object will not be assigned to a parcel, i.e., we don't waste
time forward projecting LORs that have ŷ = 0. (The emission image can be blurred to ensure that
sinogram bins on the very edge of the object will still be included in the simulation.) Parcels can then
be defined, for instance, by dividing the range of non-zero ŷb values evenly into P segments. Sp, the
“quota” for LORs to sample from each parcel is computed using Equation S5, with a margin left such
that all Bernoulli parameters are strictly less than 1. The parcellation does not have to be perfect - even
a rough idea of where the counts are helps to sample more efficiently.

For each time step of a simulation, the emission image is determined from user-defined input. An LOR
is selected by randomly generating two numbers corresponding to detector indices. After checking that
the LOR is valid, the parcel p that the LOR belongs to is determined. If the sampling quota Sp for this
parcel has already been met, the LOR is simply ignored and a new one selected. If the quota has not
been met, a forward projection with all desired physical modeling is performed to get the exact ŷ for
that LOR. The quotas are based on approximate ŷ values, so during simulation we might encounter a ŷ
value that is too high (Upŷi > 1); in this case, the quota is dynamically adjusted to account for this. As
long as there exists a quota that has not been met, LORs are randomly generated. As the simulation
runs, we keep track of the maximum ŷ value encountered in each bin of the coarse sinogram. This
information is used to hone the parcellation at regular intervals throughout the simulation, which is
particularly useful for simulating dynamic PET, where count rates change in time and space.

III. Summary of Simulation Algorithm

1. Expected Value Approximation. For a fairly low-resolution sinogram representation, the
maximal expected value of LORs in each sinogram bin is estimated, assuming that LORs
within a sinogram bin will have similar expected values.

2. Parcellation. Sinogram bins are combined into P “parcels” of similar expected values.
Currently, the range of maximal expected values is divided linearly between the minimum and
the maximum.

3. Quota Assignment. The number of LORs that would need to be sampled to produce expected
values that are <1 is estimated per parcel; these are the “quotas” for each parcel, per timestamp.

(Steps 1-3 are repeated periodically for dynamic simulations.)

4. LOR Generation. LORs are randomly selected (with replacement) until all quotas are met, on a
per-timestamp basis. If we pick an LOR that belongs to a parcel for which the quota is already
met, we throw it out; other LORs are kept.

5. Forward Projection. For all LORs that were kept, we perform a forward projection including all
desired modeling (attenuation, motion, etc). This gives us an “exact” expected value for each
LOR. Along the way, we check that the expected value corrected for undersampling (at the
current undersampling rate for this LOR’s parcel) does not exceed 1. If it does, we dynamically
adjust the quota upwards accordingly.

6. Correction for Undersampling. Once all quotas have been met for a timestamp, the expected
value of each randomly sampled LOR is adjusted to correct for the final undersampling rate of
the parcel to which that LOR belongs.

7. Bernoulli Trials. Using the corrected expected value of each LOR as the parameter of a
Bernoulli distribution, we generate a random variate for each. Whenever we obtain a value of 1,
an event packet for this LOR is written to the list mode file.

(Steps 4-7 are repeated for all timestamps in the desired simulation duration.)

IV. Parallelization Strategy

As with MOLAR reconstructions, MOLAR simulations are parallelized to run on a high-performance
computing cluster using MPI. Each process has an associated intermediate list mode file, to which it
writes the events as it simulates them. Each timestamp of the simulation is handled by exactly one MPI
process. At the end of the simulation, the process-specific list mode files are interleaved into one final
list mode file containing all events from all timestamps; this step is performed serially on process 0.
This scheme is more time and memory efficient than requiring periodic communication between slave
and master nodes to coordinate the writing of a single file without intermediate writes. The final step of
list mode interleaving (for typical count levels and numbers of processors) takes on the order of a
couple minutes.

1. Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, et al. GATE: a simulation toolkit for
PET and SPECT. Physics in medicine and biology. 2004;49:4543.
2. España S, Herraiz J, Vicente E, Vaquero JJ, Desco M, Udías JM. PeneloPET, a Monte Carlo
PET simulation tool based on PENELOPE: features and validation. Physics in medicine and biology.
2009;54:1723.

	

