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A Estimation in the presence of false positive re-

ports

In the main text, we follow all previous scale-up studies to date in assuming that there
are never any false positive reports. In this appendix, we generalize our analysis to
the situation where false positive reports are possible.

In Section 2, Equation 5, we discussed false positive reports in terms of in-reports:
we explained that if there are no false positive reports, then vi,F = 0 for all i /∈ H.
In this appendix, we will re-orient the analysis and focus on how false positives affect
out-reports. Each individual i’s out-reports can be divided into two groups: true
positives, which actually connect to the hidden population (y+

i,H); and false positives,

which do not connect to the hidden population (y−i,H). Therefore,

yi,H = y+
i,H + y−i,H . (A.1)

We can also define the aggregate quantities y+
F,H =

∑
i∈F y

+
i,H and y−F,H =

∑
i∈F y

−
i,H ,

so that

yF,H = y+
F,H + y−F,H . (A.2)

Because the total number of true-positive out-reports must equal the total number
of true-positive in-reports, it is the case that

y+
F,H = vH,F (A.3)

where y+
F,H is the total number of true-positive out-reports and vH,F is the total

number of true positive in-reports. Dividing both sides by vH,F , and then multiplying
both sides by NH produces

NH =
y+
F,H

v̄H,F
. (A.4)

In the main text, we introduce a strategy for estimating v̄H,F . If there was also a
strategy for estimating y+

F,H , then we could use Equation A.4 to estimate NH , even

if some reports are false positives. Unfortunately, we cannot typically estimate y+
F,H

directly from F , since any attempt to do so would learn about yF,H instead. Therefore,
we propose that researchers collect information about yF,H and then estimate an
adjustment factor that relates yF,H to y+

F,H . This approach leads us to introduce a
new quantity called the precision of out-reports, ηF :

ηF =
y+
F,H

yF,H
. (A.5)

The precision is useful because it relates the observed out-reports, yF,H to the true
positive out-reports, y+

F,H . It varies from 0, when none of the out-reports are true
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positives, to 1, when the out-reports are perfect. The precision allows us to derive an
identity that relates out-reports to NH :

NH =
ηF yF,H
v̄H,F

. (A.6)

Equation A.6 then suggests the estimator:

N̂H =
η̂F ŷF,H
̂̄vH,F

. (A.7)

If we could find a consistent and essentially unbiased estimator for ηF , then we could
use Equation A.7 to form a consistent and essentially unbiased estimator for NH ,
even in the presence of false positive reports.

Unfortunately, we are not aware of a practical strategy for estimating the preci-
sion of out-reports. The most direct approach would be to interview each alter that
a respondent reports as being in the hidden population. In other words, if a respon-
dent reports knowing 3 drug injectors, researchers could try to interview these three
people and see if they are actually drug injectors. Killworth et al. (2006) attempted
a version of this procedure, which they called an “alter-chasing” study, but they later
abandoned it because of the numerous logistical challenges that arose; see also Lau-
mann (1969) for a related attempt. A second possible approach would be to conduct
a census of a networked population where respondents are asked about themselves
and specific people to whom they are connected. For example, Goel et al. (2010) col-
lected responses about the political attitudes of thousands of interconnected people
on Facebook, including respondents’ attitudes as well as their beliefs about specific
alters’ attitudes. For a subset of respondents, they could compare i’s belief about
j’s attitude with j’s report of her own attitude in order to measure the precision.
Unfortunately, we think it would be difficult to include a sufficiently large number of
members of a stigmatized hidden population in this type of study.

We expect that the measurement of the precision of out-reports will pose a major
challenge for future scale-up research, and we hope that practical solutions to this
problem can be found. For the time being, we recommend that researchers show
the impact that different values of the precision of out-reports would have on size
estimates (Equation A.7).

B Estimates with a sample from F

In this appendix, we present the full results for all of the estimators that require
a sample from the frame population. First, we describe the general requirements
that our sampling design for F must satisfy (Section B.1). Then we describe how to
estimate the total number of out-reports, yF,H (Section B.2). Next we turn to some
background material on multisets (Section B.3), which is needed for the following
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section on the known population method for estimating network degree (Section B.4).
Finally, we present an estimator for the frame ratio, φF , which makes use of the known
population method results (Section B.5).

B.1 Requirements for sampling designs from F

We follow Sarndal et al. (1992)’s definition of a probability sampling design, which
we repeat here for convenience. Suppose that we have a set of possible samples
{s1, . . . , sj, . . . , smax}, with each sj ⊂ F . Furthermore, suppose p(sj) gives the prob-
ability of selection for each possible sample sj. If we select a sample sF at random
using a process that will produce each possible sample sj with probability p(sj), and
if every element i ∈ F has a nonzero probability of inclusion πi > 0, then we will say
that we have selected a probability sample and we call p(·) the sampling design.

B.2 Estimating the total number of out-reports, yF,H

If we have a probability sample from the frame then estimating the total number of
out-reports is a straightforward application of a standard survey estimator.

Result B.1 Suppose we have a sample sF taken from the frame population using a
probability sampling design with probabilities of inclusion given by πi (Sec. B.1). Then
the estimator given by

ŷF,H =
∑

i∈sF

yi,H/πi (B.1)

is consistent and unbiased for yF,H .

Proof: This follows from the fact that Equation B.1 is a Horvitz-Thompson estimator
(Sarndal et al., 1992, Section 2.8). �

B.3 Reporting about multisets

Appendix B.4 and Appendix C both describe strategies that involve asking respon-
dents to answer questions about their network alters in specific groups. In this section,
we develop the notation and some basic properties of responses generated this way;
these properties will be then be used in the subsequent sections.

Suppose we have several groups A1, . . . , AJ with Aj ⊂ U for all j, and also a
frame population F of potential interviewees. (Note that we do not require Aj ⊂ F .)
Imagine concatenating all of the people in populations A1, . . . , AJ together, repeating
each individual once for each population she is in. The result, which we call the probe
alters, A, is a multiset. The size of A is NA =

∑
j NAj

.
Let yi,Aj

be the number of members of group Aj that respondent i reports having
among the members of her personal network. We also write yi,A =

∑
j yi,Aj

for the sum
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of the responses for individual i across all of A1, . . . , AJ , and yF,A =
∑

i∈F
∑

j yi,Aj
to

denote the total number of reports from F to A. Similarly, we write di,A =
∑

j di,Aj

for the sum of the network connections from individual i to each A1, . . . , AJ , and
dF,A =

∑
i∈F
∑

j di,Aj
for the total of the individual di,A taken over all i. As always,

we will write averages with respect to the first subscript so that, for example, d̄A,F =
dA,F/NA.

We now derive a property of estimation under multisets that will be useful later
on. Roughly, this property says that we can estimate the total number of reports
from the entire frame population to the entire multiset of probe alters using only a
sample from the frame population with known probabilities of inclusion (Section B.1).
While this property might seem intuitive, we state it formally for two reasons. First,
by stating it explicitly, we show that this property is very general: it does not require
any assumptions about the contact pattern between the frame population and probe
alters, nor does it require any assumptions about the probe alters. Second, it will
turn out to be useful in several later proofs, and so we state it for compactness.

Property B.2 Suppose we have a sample sF from F taken using a probability sam-
pling design with probabilities of inclusion πi (Section B.1). Then

ŷF,A =
∑

i∈sF

yi,A/πi (B.2)

is a consistent and unbiased estimator for yF,A.

Proof: If we define ai =
∑

j yi,Aj
, the sum of the responses to each Aj for individual

i, then we can write our estimator as

ŷF,A =
∑

i∈sF

ai/πi. (B.3)

This is a Horvitz-Thompson esimator (see, e.g., Sarndal et al., 1992, chap. 2); it is
unbiased and consistent for the total

∑
i∈F ai = yF,A. �

B.4 Network degree and the known population method for
estimating d̄F,F , d̄F,U , and d̄U,F

In order to conduct a scale-up study, we need a definition of the network that we
will ask respondents to tell us about; that is, we need to define what it will mean for
two members of the population to be connected by an edge. To date, most scale-up
studies have used slight variations of the same definition: the respondent is told that
she should consider someone a member of her network if she “knows” the person,
where to know someone means (i) you know her and she knows you; (ii) you have
been in contact in the past 2 years; and, (iii), if needed, you could get in touch with
her (Bernard et al., 2010). Of course, many other definitions are possible, and an
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investigation of this issue is a matter for future study. The only restriction on the tie
definition we impose here is that it be reciprocal; that is, the definition must imply
that if the respondent is connected to someone, then that person is also connected to
the respondent.

For a particular definition of a network tie an individual i’s degree, di,U may not
be very easy to directly observe, even if the network is conceptually well-defined.
For the basic scale-up estimator, the most commonly used technique for estimating
respondents’ network sizes is called the known population method (Killworth et al.,
1998a; Bernard et al., 2010).8 The known population method is based on the idea
that we can estimate a respondent’s network size by asking how many connections she
has to a number of different groups whose sizes are known. The more connections a
respondent reports to these groups, the larger we estimate her network to be. Current
standard practice is to ask a respondent about her connections to approximately 20
groups of known size in order to estimate her degree (Bernard et al., 2010), although
the exact number of groups used has no impact on the bias of the estimates as we
show in Results B.3 and B.4.

The known population estimator was originally introduced to estimate the per-
sonal network size of each respondent individually (Killworth et al., 1998a), but in
Sections 3 and 4.2 we showed that for the scale-up method the quantity of interest is
actually the average number of connections from a member of the frame population
F to the rest of the frame population F (d̄F,F ), or the average number of connections
from a member of the entire population U to the frame population F (d̄U,F ).9 This
is fortunate, because it is easier to estimate an average degree over all respondents
than it is to estimate the individual degree for each respondent.

B.4.1 Guidance for choosing the probe alters, A
Result B.3, below, shows that the known population estimator will produce consistent
and unbiased estimates of average network degree if (i) yF,A = dF,A (reporting condi-
tion); and (ii) d̄A,F = d̄F,F (probe alter condition). Stating these conditions precisely
enables us to provide guidance about how the groups of known size (A1, A2, . . . AJ)
should be selected such that the probe alters A will enable consistent and unbiased
estimates.

First, the reporting condition (yF,A = dF,A) in Result B.3 shows that researchers
should select probe alters such that reporting will be accurate in aggregate. One
way to make the reporting condition more likely to hold is to select groups that

8There are other techniques for estimating personal network size, including the summation
method (McCarty et al., 2001; Bernard et al., 2010), which could be used in conjunction with
many of our results. We focus on the known population method here because it is relatively easy
to work with from a statistical perspective, and also because there is some evidence that it works
better in practice (Salganik et al., 2011a; Rwanda Biomedical Center, 2012)

9Although we have framed our discussion here in terms of d̄F,F , the same ideas apply to d̄U,F

and d̄F,U .
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are unlikely to suffer from transmission error (Shelley et al., 1995, 2006; Killworth
et al., 2006; Salganik et al., 2011b; Maltiel et al., 2015). Another way to make the
reporting condition more likely to hold is to avoid selecting groups that may lead
to recall error (Killworth et al., 2003; Zheng et al., 2006; McCormick and Zheng,
2007; McCormick et al., 2010; Maltiel et al., 2015). That is, previous work suggests
that respondents seem to under-report the number of connections they have to large
groups, although the precise mechanism behind this pattern is unclear (Killworth
et al., 2003). Researchers who have data that may include recall error can consider
some of the empirically-calibrated adjustments that have been used in earlier stud-
ies (Zheng et al., 2006; McCormick and Zheng, 2007; McCormick et al., 2010; Maltiel
et al., 2015).

Second, the probe alter condition (d̄A,F = d̄F,F ) in Result B.3 shows that re-
searchers should select groups to be typical of F in terms of their connections to F .
In most applied situations, we expect that F will consist of adults, so that researchers
should choose groups of known size that are composed of adults, or that are typical of
adults in terms of their connections to adults. Further, when trying to choose groups
that satisfy the probe alter condition, it is useful to understand how connections from
the individual known populations to the frame (d̄A1,F , . . . , d̄AJ ,F ) aggregate up into
connections from the probe alters to the frame (d̄A,F ). Basic algebraic manipulation
shows that the probe alter condition can be written as:

∑
j d̄Aj ,F NAj∑

j NAj

= d̄F,F . (B.4)

Equation B.4 reveals that the probe alter condition requires that d̄F,F is equal to
a weighted average of the average number of connections between each individual
known population Aj and the frame population F (d̄Aj ,F ). The weights are given by
the size of each known population, NAj

. The simplest way that this could be satisfied
is if d̄Aj ,F = d̄F,F for every known population Aj. If this is not true, then the probe
alter condition can still hold as long as groups for which d̄Aj ,F is too high are offset
by other groups for which d̄Aj′ ,F

is too low.
In practice it may be difficult to determine if the reporting condition and probe

alter condition will be satisfied. Therefore, we recommend that researchers assess
the sensitivity of their size estimates using the procedures described in Online Ap-
pendix D. Further, we note that in many realistic situations, NAj

might not be known
exactly. Fortunately, researchers only need to know

∑
j NAj

, and they can assess the
sensitivity of their estimates to errors in the size of known populations using the
procedures described in Online Appendix D.

B.4.2 The known population estimators

Given that background about selecting the probe alters, we present the formal results
for the known population estimators for d̄F,F , d̄U,F , and d̄F,U .
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Result B.3 Suppose we have a sample sF taken from the frame population using a
probability sampling design with probabilities of inclusion given by πi (see Section B.1).
Suppose also that we have a multiset of known populations, A. Then the known
population estimator given by

̂̄dF,F =

∑
i∈sF

∑
j yi,Aj

/πi

NA
(B.5)

is consistent and unbiased for d̄F,F if

yF,A = dF,A, (reporting condition) (B.6)

and if

d̄A,F = d̄F,F . (probe alter condition) (B.7)

Proof: By Property B.2, we know that our estimator is unbiased and consistent for
yF,A/NA. By the reporting condition in Equation B.6, this means it is unbiased and
consistent for dF,A/NA. Then, by the probe alter condition in Equation B.7, it is also
unbiased and consistent for d̄F,F . �

Result B.4 Suppose we have a sample sF taken from the frame population using a
probability sampling design with probabilities of inclusion given by πi (see Section B.1).
Suppose also that we have a multiset of known populations, A. Then the known
population estimator given by

̂̄dU,F =

∑
i∈sF

∑
j yi,Aj

/πi

NA
(B.8)

is consistent and unbiased for d̄U,F if

yF,A = dF,A, (reporting condition) (B.9)

and if

d̄A,F = d̄U,F . (probe alter condition) (B.10)

Proof: By Property B.2, we know that our estimator is unbiased and consistent
for yF,A/NA. By the reporting condition in Equation B.9, this means it is unbiased
and consistent for dF,A/NA. Then, by the probe alter condition in Equation B.10, it
is also unbiased and consistent for d̄U,F . �

Since d̄F,U = N
NF
d̄U,F , as a direct consequence of Result B.4 we have the following

corollary.

Corollary B.5 If the conditions described in Result B.4 hold,

̂̄dF,U = ̂̄dU,F
N

NF

(B.11)

is consistent and unbiased for d̄F,U .
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B.5 Estimating the frame ratio, φF

Given our estimator of d̄F,F (Result B.3) and our estimator of d̄U,F (Result B.4), we
can estimate the frame ratio, φF .

Result B.6 The estimator

φ̂F =
̂̄dF,F
̂̄dU,F

(B.12)

is consistent and essentially unbiased for φF if ̂̄dF,F is consistent and essentially un-

biased for d̄F,F and ̂̄dU,F is consistent and essentially unbiased for d̄U,F .

Proof: This follows from the properties of a ratio estimator (Sarndal et al., 1992,
chap. 5). �

More concretely, combining the estimator for d̄F,F (Result B.3) and the estimator
for d̄U,F (Result B.4), and assuming that we have known populations AF1 for d̄F,F ,
and AF2 for d̄U,F , we obtain

φ̂F =
NAF2

NAF1

∑
i∈sF

∑
Aj∈AF1

yi,Aj
/πi∑

i∈sF

∑
Ak∈AF2

yi,Ak
/πi

. (B.13)

In our discussion of ̂̄dF,F (Result B.3) and ̂̄dU,F (Result B.4), we concluded that we

want the known populations AF1 used for ̂̄dF,F to be typical of members of F in their
connections to F . An analogous argument shows that we want the known populations

AF2 used for ̂̄dU,F to be typical of members of U in their connections to F . In general,
we expect that it will not be appealing to assume that F and U are similar to each
other in terms of their connections to F meaning that, unfortunately, it will not make

sense to use the same set of known populations for ̂̄dF,F and ̂̄dU,F . If researchers wish
to estimate φF directly, one approach would be to choose AF2 to be typical of U in
such a way that some of the individual known populations are more typical of F ,
while others more typical of U −F . The multiset formed from only the ones that are
more typical of F could then be our choice for AF1 . In this case, researchers would

also want
NAF1

NAF2

≈ NF

N
. This complication is one of the reasons we recommend in

Section 4 that future scale-up studies estimate d̄F,F directly, thus avoiding the need
to estimate φF entirely.

C Estimates with samples from F and H

In this appendix, we present the full results for all of the estimators that require a
sample from the hidden population. First, we define the general requirements that
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our sampling design for H must satisfy (Section C.1). Then we describe a flexi-
ble data collection procedure called the game of contacts (Section C.2). Next, we
introduce some background material on estimation using questions about multisets
(Section C.3) and present an estimator for v̄H,F , the average number of in-reports
among the members of the hidden population (Section C.4). Then, we present esti-
mators for the two adjustment factors introduced in Section 3: the degree ratio, δF ,
and the true positive rate, τF (Section C.6). Finally, we present formal results for
four different estimators for NH (Section C.7).

C.1 Requirements for sampling designs from H

For the results that involve a sample from the hidden population sH , we do not need
a probability sample (Appendix B); instead, we need a weaker type of design. We
require that every element i ∈ H have a nonzero probability of selection πi > 0, and
that we can determine the probability of selection up to a constant factor c; that is,
we only need to know cπi. We are not aware of any existing name for this situation,
so we will call it a relative probability sample. Because of the challenges involved in
sampling hard-to-reach populations, the two most likely sampling designs for sH will
probably be time-location sampling (Karon and Wejnert, 2012) and respondent-driven
sampling (Heckathorn, 1997). A relative probability sample allows us to use weighted
sample means to estimate averages, but not totals. See Sarndal et al. (1992, Section
5.7) for more details on weighted sample means, also sometimes called Hájek estima-
tors, which is what we use to estimate averages from a sample of hidden population
members.

C.2 Data collection

In order to make estimates about the hidden population’s visibility to the frame
population, researchers will need to collect what we call enriched aggregate relational
data from each respondent, and a procedure called the game of contacts has produced
promising results from a study of heavy drug users in Brazil (Salganik et al., 2011b).
In the main text, we assumed that the groups in the probe alters A1, . . . , AJ were all
contained in the frame population (Aj ⊂ F for all j). However, the estimators in this
Online Appendix are more general because they allow for the possibility that some of
the groups A1, . . . AJ may not be contained entirely in F . For example, if the frame
population is adults, then this flexibility enables researchers to use groups based on
names, such as Michael, even though not all people named Michael are adults.

In order to allow for this flexibility, we need to introduce some new notation: let
A1∩F,A2∩F, . . . , AJ∩F be the intersection of these groups and the frame population,
and let A ∩ F be the concatenation of these intersected groups. For example, if the
frame population is adults, A1 is people named Michael, and A2 is doctors, then
A1 ∩F is adults named Michael, A2 ∩F is adult doctors, and A∩F is the collection
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Adult &
Knows that I inject drugs

Adult &
Does not know that I inject drugs

Child &
Knows that I inject drugs

Child &
Does not know that I inject drugs

Figure C.1: Example of a game board that could be used in the game of contacts
interviewing procedure if the hidden population was people who inject drugs and the
frame was made up of adults. This board is a variation of the board used in Salganik
et al. (2011b).

of all adult Michaels and all adult doctors, with adult doctors named Michael included
twice. (In the special case discussed in the main text, A1∩F, . . . AJ∩F = A1, . . . , AJ .)

The data collection begins with a relative probability sample (Section C.1) from
the hidden population. For a set of groups, A1, A2, . . . AJ , each respondent in the
hidden population is asked, “How many people do you know in group Aj?” We
call the response yi,Aj

. Next for each of the yi,Aj
alters, the respondent picks up a

token and places it on a game board like the one in Figure C.1. From the location
of the tokens on the board, the researcher can record whether each alter is in the
frame population (or not) and whether the alter is aware that the respondent is in
the hidden population (or not) (Table C.2). This process is then repeated until the
respondent has been asked about all groups.

If all of the probe alters are in the frame population, then the process is much
easier for respondents and the game board can be modified to collect alternative
information. If all of the probe alters are not in the frame population, then it is
important for the researcher to define the frame population as clearly as possible.
If the respondents are not able to correctly indicate whether the alters are in the
frame population or not, it could lead to biased estimates of v̄H,F . For more on the
operational implementation of this procedure, see Salganik et al. (2011b).

C.3 Estimation using aggregated relational data from the
hidden population

In this section, we follow Section B.3 and present another useful property about
estimates made using aggregate relational data from the hidden population. Roughly,
this property says that we can estimate the average number of reports from the entire
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aware not aware total

frame population ṽi,Aj∩F h̃i,Aj∩F yi,Aj∩F

not frame population ṽi,Aj∩(U−F ) h̃i,Aj∩(U−F ) yi,Aj∩(U−F )

total ṽi,Aj
h̃i,Aj

yi,Aj

Table C.1: Responses collected during the game of contacts for each respondent i
and each group Aj. We use ˜ to indicate reported values. For example, ṽi,Aj

is
the respondent’s reported visibility to people in Aj and vi,Aj

is respondent’s actual
visiblility to people in Aj. Also, using this notational convention, it is the case that

yi,Aj
= d̃i,Aj

, but we have written yi,Aj
in order to be consistent with the rest of the

paper.

hidden population to the probe alters using only a relative probability sample from
the hidden population (Section C.1). Similar to Property B.2, the result we present
below does not require any assumptions about the contact pattern between the hidden
population and the probe alters, nor about the probe alters themselves.

Property C.1 Suppose we have a sample sH from H taken using a relative proba-
bility design, allowing us to compute the relative probabilities of inclusion cπi for all
sampled elements (Sec. C.1). Then

̂̄yH,A =

∑
i∈sH yi,A/(cπi)∑
i∈sH 1/(cπi)

(C.1)

is a consistent and essentially unbiased estimator for ȳH,A = yH,A/NH .

Proof: Note that the c in the relative probabilities of inclusion cπi cancel, so that

̂̄yH,A =

∑
i∈sH yi,A/(πi)∑
i∈sH 1/(πi)

. (C.2)

If we define ai =
∑

j yi,Aj
, the sum of the responses to each Aj for individual i, then

we can write our estimator as

̂̄yH,A =

∑
i∈sH ai/πi∑
i∈sH 1/πi

. (C.3)

Now we have a standard weighted mean estimator (e.g. Sarndal et al., 1992, chap. 5);
it is consistent and essentially unbiased for the average 1

NH

∑
i∈H ai = yH,A/NH . �

C.4 Estimating the average visibility, v̄H,F

Given the data collection procedure described in Sec. C.2, we can estimate the average
visibility (v̄H,F ) as long as three conditions are satisfied: one about reporting, one
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about the visibility of the hidden population to the probe alters, and one about
sampling.

Result C.2 Assume that we have a sample sH taken from the hidden population
using a relative probability design with relative probabilities of inclusion cπi for all
sampled elements (Sec. C.1). Then

̂̄vH,F =
NF

NA∩F

∑
i∈sH

∑
j ṽi,Aj∩F/(cπi)∑

i∈sH 1/(cπi)
(C.4)

is consistent and essentially unbiased for v̄H,F if

ṽH,A∩F = vH,A∩F , (reporting condition) (C.5)

and

vH,A∩F
NA∩F

=
vH,F
NF

. (probe alter condition) (C.6)

Proof: Property C.1 holds for estimating ṽF,A∩F from ṽi,A∩F , just as it holds
for estimating ȳH,A∩F from yi,A∩F . Applying Property C.1 here, we conclude that the
estimator is consistent and essentially unbiased for

NF

NA∩F
ṽH,A∩F =

NF

NA∩F

ṽH,A∩F
NH

. (C.7)

Next, by applying the reporting condition in Equation C.5 we can conclude that

NF

NA∩F

ṽH,A∩F
NH

=
NF

NA∩F

vH,A∩F
NH

. (C.8)

Finally, by applying the probe alter condition in Equation C.6 and rearranging terms,
we conclude that

NF

NA∩F

vH,A∩F
NH

=
NF

NH

vH,F
NF

(C.9)

= v̄H,F (C.10)

�
Note that Result C.2 requires us to know the size of the probe alters in the frame

population, NA∩F . In some cases, this may not be readily available, but it may be
reasonable to assume that

NA∩F =
NF

N
NA. (C.11)

Furthermore, if A is chosen so that all of its members are in F , then NA∩F = NA
and vi,Aj∩F = vi,Aj

. In this situation, we do not need to specifically ask respondents
about connections to A ∩ F ; we can just ask about connections to A.
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The reporting condition required for Result C.5 states that the hidden population’s
total reported visibility from the probe alters on the frame must be correct. This
might not be the case, if for example, respondents systematically over-estimate how
much others know about them (see e.g., Gilovich et al. (1998)).

The required condition for the probe alters is slightly more complex. It needs
to be the case that the rate at which the hidden population is visible to the probe
alters is the same as the rate at which the hidden population is visible to the frame
population. There are several equivalent ways of stating this condition, as we show
in a moment. First, we need to define two new quantities: the individual-level true
positive rate and the average of the individual-level true positive rates.

Definition 1 We define the individual-level true positive rate for respondent i ∈ F
to be

τi =
vH,i
di,H

, (C.12)

where vH,i =
∑

j∈H vj,i.

Definition 2 We define the average of the individual true positive rates over a set
F of respondents as

τF =
1

NF

∑

i∈F

τi. (C.13)

In general, τF 6= τF . To see this, note that while τF is the average of the individual-
level true positive rates with each individual weighted equally, τF can be written as
the weighted average of the individual true positive rates, with the weights given
by each individual’s degree. We can see the exact relationship between the two by
expressing τF in terms of the τi:

τF =

∑
i∈F τi di,H∑
i∈F di,H

, (C.14)

since multiplying each τi by di,H and summing is the same as summing the vH,i.

Result C.3 The following conditions are all equivalent.

(i)
vH,A∩F

NA∩F
=

vH,F

NF

(ii) τA∩F d̄A∩F,H = τF d̄F,H

(iii) τA∩F d̄A∩F,H + covA∩F (τi, di,H) = τF d̄F,H + covF (τi, di,H)

(iv) ȳ+
F,H =

∑
j ȳ

+
Aj∩F,H NAj∩F∑

j NAj∩F
,
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where covF is the finite-population covariance taken over the set F .10

Proof: First, we show that

τA∩F d̄A∩F,H = τF d̄F,H ⇐⇒
vH,A∩F
NA∩F

=
vH,F
NF

. (C.15)

By definition, τF d̄F,H = (vH,F/dF,H) × (dF,H/NF ) = vH,F/NF . The same argument
demonstrates that τA∩F d̄A∩F,H = vH,A∩F/NA. We conclude that (i)⇐⇒ (ii).

Next, we show that (ii) is equivalent to (iii). We can use the relationship between
τF and the τi, Equation C.14, to deduce that

τF dF,H =
∑

i∈F

τi di,H = NF [τF d̄F,H + covF (τi, di,H)]. (C.16)

Dividing the left-most and right-most sides by NF , we conclude that

τF d̄F,H = τF d̄F,H + covF (τi, di,H). (C.17)

The same argument shows that

d̄A∩F,H τA∩F = τA∩F d̄A∩F,H + covA∩F (τi, di,H). (C.18)

So we conclude that (ii)⇐⇒ (iii).
Finally, we show that (iv) is equivalent to (i). In Appendix A, showed that

y+
F,H = vH,F (Equation A.3). Dividing both sides by NF , we have ȳ+

F,H = vH,F/NH ,
which is the right-hand side of the identity in (i). Similarly, starting with the left-hand
side of the identity in (i), we have

vH,A∩F
NA∩F

=

∑
j vH,Aj∩F∑
j NAj∩F

=

∑
j y

+
Aj∩F,H∑

j NAj∩F
=

∑
j ȳ

+
Aj∩F,H NAj∩F∑
j NAj∩F

. (C.19)

So we conclude that (i) ⇐⇒ (iv).
Since (i) ⇐⇒ (ii) and (ii) ⇐⇒ (iii), it follows that (i) ⇐⇒ (iii). Furthermore,

since (i)⇐⇒ (iv), it follows that (iv) is equivalent to (ii) and (iii). �
Result C.3 shows that the probe alter condition can be expressed in many equiv-

alent ways. One of these alternate expressions is especially useful because it leads to
an empirical check of the probe alter condition that future scale-up studies can imple-
ment. This empirical check is a direct consequence of Result C.4, below. Intuitively,
Result C.4 and the empirical check are a consequence of the identity in Equation 1,
which says that in-reports from the perspective of H are also out-reports from the
perspective of F .

10 We define the finite-population covariance to have a denominator of NF ; this differs from some
other authors, who define the finite-population covariance to have NF − 1 in the denominator.
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Result C.4 Suppose that the precision of out-reports from the frame population is
the same as the precision of the out-reports from A ∩ F :

y+
F,H

yF,H
=
y+
A∩F,H

yA∩F,H
(C.20)

Then the probe alter condition (C.6) is satisfied if and only if

ȳF,H = ȳA∩F,H . (C.21)

Proof: First, note that, by Result C.3, the probe alter condition is equivalent to

ȳ+
F,H =

∑
j ȳ

+
Aj∩F,H NAj∩F∑
j NAj∩F

. (C.22)

Since ȳ+
Aj∩F,H = y+

Aj∩F,H/NAj∩F for all j, the right-hand side of Equation C.22 is equal

to ȳ+
A∩F,H , meaning that the probe alter condition is also equivalent to

ȳ+
F,H = ȳ+

A∩F,H . (C.23)

Second, note that the assumption in Equation C.20 can be re-written as

ȳ+
F,H

ȳF,H
=
ȳ+
A∩F,H

ȳA∩F,H
, (C.24)

by multiplying the left-hand side by NF

NF
and the right-hand side by NA∩F

NA∩F
. So we are left

with the task of showing that if Equation C.24 is true, then Equation C.23 is satisfied
if and only if Equation C.21 is satisfied. But this is the case, since Equation C.23
equates the numerators of the two fractions in Equation C.24 and Equation C.21
equates the denominators of the two fractions in Equation C.24. Two fractions that
are equal will have equal numerators if and only if they have equal denominators.
(Formally, if a/b = c/d then a = c if and only if b = d.) �

The implication of Result C.4 is that if (i) researchers design the probe alters
so that the frame population sample sF can be used to estimate ȳA∩F,H ; and (ii)
researchers assume that the precision of out-reports from the frame population is the
same as the precision of out-reports from A∩F , then they can evaluate how well the
probe alter condition is satisfied empirically by comparing ̂̄yF,H and ̂̄yA∩F,H .

Finally, we can foresee four practical problems that might arise when researchers
try to estimate v̄H,F . First, researchers might not be able to choose the probe alters
to satisfy the probe alter condition (Equation C.6) because of limited information
about the true visibility of the hidden population with respect to different social
groups. A second problem might arise if researchers are not able to choose the probe
alters to satisfy the reporting condition (Equation C.5) because of limited information
about the hidden population’s awareness about visibility. A third problem might
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arise due to errors in administrative records which would cause researchers to have
incorrect information about the size of the multiset of probe alters on the frame
(NA∩F ). Finally, a fourth problem might arise due to errors in the sampling method
researchers use. Fortunately, as we show in Online Appendix D (Result D.6), it is
possible to quantify the effect of these problems on the resulting estimates. In some
cases they can cancel out, but in other cases they magnify each other.

C.5 Guidance for choosing the probe alters for the game of
contacts, A

Turning the results in Online Appendix C into easy to follow steps for selecting the
probe alters for the game of contacts is an open and important research problem.
Here, we briefly offer three recommendations for selecting the probe alters for the
game of contacts. We realize that these recommendations may be difficult to follow
exactly in practice. Therefore, we also discuss the sensitivity of the estimators to
errors in the construction of the probe alters. Finally, we discuss one type of data
that should be collected from the frame population in order to help the researchers
evaluate their choice of probe alters for the game of contacts.

First, we recommend that probe alters for the game of contacts be in the frame
population. For example, if the frame population is adults, we recommend that all
members of the probe alters be adults. This choice will simplify the data collection
task in the game of contacts, and for all the advice listed below, we assume that it
has been followed. If it is not possible, researchers can still use the more general
procedures developed in this Online Appendix.

Second, we recommend that the probe alters be selected such that the probe alter
condition in Result C.2 is satisfied. That is, the probe alters as a whole should be
typical of the frame population in the following way: it should be the case that the
rate at which the hidden population is visible to the probe alters is the same as the
rate at which the hidden population is visible to the frame population (

vH,A
NA

=
vH,F

NF
).

For example, in a study to estimate the number of drug injectors in a city, drug
treatment counselors would be a poor choice for membership in the probe alters
because drug injectors are probably more visible to drug treatment counselors than
to typical members of the frame population. On the other hand, postal workers
would probably be a reasonable choice for membership in the probe alters because
drug injectors are probably about as visible to postal workers as they are to typical
members of the frame population.

Third, we recommend that the probe alters be selected so that the reporting
condition in Result C.2 is satisfied (ṽH,A = vH,A). One way to help ensure that this
condition holds is to avoid selecting large groups that may cause recall error (Killworth
et al., 2003; Zheng et al., 2006; McCormick and Zheng, 2007; McCormick et al., 2010;
Maltiel et al., 2015). In practice it might be difficult to meet each of these three
conditions exactly, therefore we recommend a sensitivity analysis using the results in
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Sample of 
frame population (sF ) �̂F

Sample of 
hidden population (sH)

⌧̂F

Figure C.2: We estimate the true positive rate τ̂F using data from the survey of
the hidden population, and we estimate the degree ratio δ̂F using the sample of the
hidden population and the sample of the frame population.

Online Appendix D.
Finally, the choice of probe alters for the game of contacts also has two implications

for the design of the survey of the frame population. First, if researchers wish to
estimate the degree ratio, δF , then they should design the probe alters A so that they
can be asked of both members of the hidden population sample and members of the
frame population sample (see Result C.6). Second, if researchers wish to test the probe
alter condition using the approach in Result C.4, then additional information needs to
be collected from each member of the frame population sample. For example, if one
group in the probe alters for the game of contacts is postal workers, then members
of the frame population sample should be asked if they are postal workers.

C.6 Term-by-term: δF and τF

In this section we describe how to estimate two adjustment factors: the degree ratio,

δF =
d̄H,F
d̄F,F

(C.25)

and the true positive rate,

τF =
v̄H,F
d̄H,F

. (C.26)

Estimating the degree ratio requires information from the survey of the hidden pop-
ulation and the survey of the frame population, while estimating the true positive
rate only requires information from the survey of the hidden population (Fig. C.2).
As Equations C.25 and C.26 make clear, both adjustment factors involve d̄H,F so we
first present an estimator for that quantity.
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Result C.5 Suppose we have a sample sH taken from the hidden population using a
relative probability sampling design with relative probabilities of inclusion denoted cπi
(Sec C.1). Then the estimator given by

̂̄dH,F =
NF

NA∩F

∑
i∈sH

∑
j yi,(Aj∩F )/(cπi)∑

i∈sH 1/(cπi)
(C.27)

is consistent and essentially unbiased for d̄H,F if:

yH,A∩F = dH,A∩F , (reporting condition) (C.28)

and

d̄A∩F,H = d̄F,H . (probe alter condition) (C.29)

Proof: From Property C.1, we can see that our estimator is consistent and
essentially unbiased for

NF

NA∩F

yH,A∩F
NH

=
NF

NH

yH,A∩F
NA∩F

. (C.30)

Under the reporting condition (Equation C.28) this becomes

NF

NH

yH,A∩F
NA∩F

=
NF

NH

dH,A∩F
NA∩F

(C.31)

Finally, applying the probe alter condition in Equation C.29, we have

NF

NH

dH,A∩F
NA∩F

=
NF

NH

dF,H
NF

(C.32)

= d̄H,F . (C.33)

�
Result C.5 requires that reports are, in total, correct (Equation C.28). Like Re-

sult C.2, Result C.5 also requires us to know the size of the probe alters on the frame,
NA∩F . In some cases, this may not be readily available, but it may be reasonable to
assume that

NA∩F =
NF

N
NA. (C.34)

Furthermore, if A is chosen so that all of its members are in F , then NA∩F = NA and
yi,Aj∩F = yi,Aj

. In this situation, we do not need to specifically ask respondents about
connections to A∩F ; we can just ask about connections to A. Result C.5 also requires
a specific rate of connectivity between the probe alters and the hidden population
(Equation C.29). We discussed some of the consequences of these assumption in the
main text, where we made recommendations for practice (Section 4).

A18



C.6.1 Estimating the degree ratio, δF

We can combine our estimator for d̄H,F (Result C.5) and our estimator for d̄F,F (Re-
sult B.3), to estimate the degree ratio, δF .

Result C.6 The estimator

δ̂F =
̂̄dH,F
̂̄dF,F

(C.35)

is consistent and essentially unbiased for δF if ̂̄dH,F is consistent and essentially un-

biased for d̄H,F and ̂̄dF,F is consistent and essentially unbiased for d̄F,F .

Proof: This follows from the properties of a compound ratio estimator (Online
Appendix E). �

More concretely, combing the estimators in Result C.5 and Result B.3, results in
an estimator for δ̂F with the following form:

δ̂F =

NF

NAH∩F

∑
i∈sH

∑
Aj∈AH

yi,(Aj∩F )/(cπ
H
i )∑

i∈sH
1/(cπH

i )

1
NAF

∑
i∈sF

∑
Ak∈AF

yi,Ak
/πFi

. (C.36)

If the probe alters for the frame population and the hidden population are the
same, so that AH = AF = A, and if the probe alters are randomly distributed in the
frame population in the sense that

NA∩F = NA
NF

N
, (C.37)

then we can reduce the constants in front of Equation C.36 to

NF

NA∩F

1
NA

=
N
NA
1
NA

= N. (C.38)

In other words, when the probe alters for the frame and hidden population are the
same, and when the probe alters are randomly distributed in the frame population,
all of the factors involving the size of A drop out. This fact allows researchers to
use groups defined by first names (e.g., people named Michael) in the probe alters A,
even if the size of these groups is not known, as long as it is reasonable to assume
that A satisfies Equation C.37 (c.f., Salganik et al. (2011a)).

C.6.2 Estimating the true positive rate, τF

We can combine our estimator for v̄H,F (Result C.2) and our estimator for d̄H,F
(Result C.5) to estimate the true positive rate τF .
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Result C.7 The estimator

τ̂F =
̂̄vH,F
̂̄dH,F

(C.39)

is consistent and essentially unbiased for τF if ̂̄vH,F is a consistent and essentially un-

biased estimator of v̄H,F and if ̂̄dH,F is a consistent and essentially unbiased estimator
of d̄H,F .

Proof: This follows directly from the properties of a compound ratio estimator
(Online Appendix E). �

More concretely, combing the estimator in Result C.2 and Result C.5 yields an
estimator for τ̂F with the following form:

τ̂F =

∑
i∈sH ṽi,AH

/(cπi)∑
i∈sH yi,AH

/(cπi)
. (C.40)

All of the factors involving the size of A drop out of Equation C.40. This fact allows
researchers to use groups defined by first names (e.g., people named Michael) in the
probe alters A, even if the size of these groups is not known (c.f., Salganik et al.
(2011b)).

C.7 Estimating the size of the hidden population, NH

We now make use of all of the results for the individual terms we derived above to
present four different estimators for the size of the hidden population, NH .

Result C.8 The generalized scale-up estimator given by

N̂H =
ŷF,H
̂̄vH,F

(C.41)

is consistent and essentially unbiased for NH if there are no false positive reports,
if ŷF,H is consistent and unbiased for yF,H , and if ̂̄vH,F is consistent and essentially
unbiased for v̄H,F .

Proof: From the properties of a compound ratio estimator, we know that our
estimator is consistent and essentially unbiased for yF,H/v̄H,F (Appendix E). By the
argument in the main text given in Section 2, leading to Equation 5, this quantity is
equal to NH . �

Result C.9 The adjusted basic scale-up estimator given by

N̂H =
ŷF,H
̂̄dU,F

1

φ̂F

1

δ̂F

1

τ̂F
(C.42)

is consistent and essentially unbiased for NH if there are no false positive reports, and
if each of the individual estimators is consistent and essentially unbiased.
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Proof: From the results in Online Appendix E, we know that this compound ratio
estimator will be consistent and essentially unbiased for yF,H/(d̄U,F φF δF τF ). The
denominator is v̄H,F by construction, leaving us with yF,H/v̄H,F . By the argument in
the main text given in Section 2, leading to Equation 5, this quantity is equal to NH .
�

Result C.10 The adjusted scale-up estimator

N̂H =
ŷF,H
̂̄dF,F

1

δ̂F

1

τ̂F
(C.43)

is consistent and essentially unbiased for NH if there are no false positives, and if
each of the individual estimators is consistent and essentially unbiased.

Proof: From the results in Online Appendix E, we know that this compound
ratio estimator will be consistent and essentially unbiased for yF,H/(d̄F,F δF τF ). The
denominator is v̄H,F by construction, leaving us with yF,H/v̄H,F . By the argument in
the main text given in Section 2, leading to Equation 5, this quantity is equal to NH .
�

Result C.11 The adjusted scale-up estimator

N̂H =
ŷF,H
̂̄dF,F

1

δ̂F

1

τ̂F
η̂F (C.44)

is consistent and essentially unbiased for NH if each of the individual estimators is
consistent and essentially unbiased.

Proof: From the results in Online Appendix E, we know that this compound ratio
estimator will be consistent and essentially unbiased for (yF,H ηF )/(d̄F,F δF τF ). The
numerator is y+

F,H by construction and the product of the denominators is v̄H,F by

construction, leaving us with y+
F,H/v̄H,F . By the argument in Online Appendix A this

quantity is equal to NH . �

D Sensitivity analysis

All of the estimators that we propose require that specific conditions hold in order
to produce consistent and essentially unbiased estimates. These conditions can be
divided into four groups: survey construction, reporting behavior, network structure,
and sampling. In many practical settings, we expect that researchers may not be
confident that these conditions hold perfectly. Therefore, in this appendix, we derive
results that enable researchers to assess the sensitivity of their estimates to violations
of all four types of conditions. First, in Section D.1, we develop a results that help
researchers assess sensitivity to survey construction, reporting, and network structure;
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then, in Section D.2, we turn to results that help researchers assess sensitivity to
sampling problems. Finally, in Section D.3, we combine all of the sensitivity results
to derive expressions that enable researchers to conduct sensitivity analyses that
simultaneously account for all of the conditions.

D.1 Sensitivity to non-sampling conditions: survey construc-
tion, reporting behavior, and network structure

Most estimators that we consider depend on conditions related to survey construc-
tion (for example, choosing the probe alters for the known population method) and
to reporting (for example, the assumption that respondents make accurate aggregate
reports about the probe alters); furthermore, the basic scale-up estimator is sensitive
to conditions about network structure (for example, the relative size of hidden popu-
lation and frame population members’ personal networks). In this section, we develop
sensitivity results for these nonsampling conditions. First, Result D.1 shows how one
of these estimators (̂̄vH,F ) is impacted by violations of the conditions it depends upon.
Next, using Result D.1 as a template, Table D.1 provides similar expressions for all
of the estimators we discuss in the main text.

Result D.1 Suppose that N̂A∩F , the researcher’s estimate of NA∩F , is incorrect, so
that N̂A∩F = c1 · NA∩F . Suppose also that the reporting condition (Equation C.5)
of Result C.2 is incorrect, so that ṽH,A∩F = c2 · vH,A∩F . Finally, suppose that the
probe alter condition is incorrect, so that

vH,A∩F

NA∩F
= c3 · vH,F

NF
. Call the estimator under

these imperfect conditions ̂̄v?H,F . Then ̂̄v?H,F is consistent and essentially unbiased for
c3 c2
c1
v̄H,F instead of v̄H,F .

Proof: Under the assumptions listed above, we can write the new estimator as

̂̄v?F,H =
1

c1

NF

NA∩F

∑
i∈sH

∑
j ṽi,Aj∩F/(cπi)∑

i∈sH 1/(cπi)
. (D.1)

We follow the same steps as the proof of Result C.2, but each time we use one of
our assumptions, the associated error is carried with it. So our estimator ̂̄v?F,H is
consistent and essentially unbiased for

1

c1

NF

NA∩F

ṽH,A∩F
NH

=
c2

c1

NF

NA∩F

vH,A∩F
NH

=
c3 c2

c1

NF

NA∩F

vH,F
NH

. (D.2)

In words, the estimand is now incorrect by c3 c2
c1

. Since ̂̄vF,H is consistent and essentialy

unbiased for v̄F,H , we conclude that ̂̄v?F,H is consistent and essentially unbiased for
c3 c2
c1
v̄F,H . Note that if the assumptions needed for Result C.2 hold, then c1 = 1,

c2 = 1, and c3 = 1, giving us the original result. �
Table D.1 shows results analogous to Result D.1 for all of the estimators we

propose. We do not prove each one individually, since the derivations all follow the
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pattern of Result D.1 very closely. Researchers who wish to understand the how their
estimates are affected by the assumptions they make can use Table D.1 to conduct a
sensitivity analysis. Note that any problems with the sampling design could result in
problems with the estimates that are not captured by the results in Table D.1. These
sampling problems are the subject of the next section.

D.2 Sensitivity to sampling problems

All of the estimators we discuss throughout this paper rely upon assumptions about
the sampling procedure that researchers use to obtain their data. In this section, we
develop sensitivity results that enable researchers to assess how violations of these
sampling assumptions will impact the resulting estimates. First, we investigate the
sensitivity of the estimator ŷF,H from a probability sample (Online Appendix B.1),

and, next, we investigate the estimator ̂̃̄vH,A∩F from relative probability sample (On-
line Appendix C.1).

For both estimators, we investigate how estimates are affected by differences be-
tween the inclusion probabilities that researchers use to analyze their data and the
true inclusion probabilities that come from the sampling mechanism. These problems
could arise if the sampling design is not perfectly executed, or if there is a problem
with the information underlying the sampling design.

D.2.1 Probability samples

First, we must define imperfect sampling weights.

Imperfect sampling weights. Suppose a researcher obtains a probability sample
sF from the frame population F (Online Appendix B.1). Let Ii be the random
variable that assumes the value 1 when unit i ∈ F is included in the sample sF , and
0 otherwise. Let πi = E[Ii] be the true probability of inclusion for unit i ∈ F , and let
wi = 1

πi
be the corresponding design weight for unit i. We say that researchers have

imperfect sampling weights when researchers use imperfect estimates of the inclusion
probabilities π′i and the corresponding design weights w′i = 1

π′
i
. Note that we assume

that both the true and the imperfect weights satisfy πi > 0 and π′i > 0 for all i.
The first result, Result D.2, concerns researchers who obtain a probability sample,

but who estimate yF,H imperfect sampling weights.
Result D.2 shows the impact that imperfect sampling weights have on estimates

of yF,H from a probability sample.

Result D.2 Suppose researchers have obtained a probability sample sF , but that they
have imperfect sampling weights. Call the imperfect sampling weights w′i = 1

π′
i
, call

the true weights wi = 1
πi

, and define εi =
w′

i

wi
= πi

π′
i
. Call ŷ′F,H =

∑
i∈sF yi,Hw

′
i the
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Estimator Imperfect assump-
tions

Effective estimand

̂̄dF,F (Result B.3)

(i) N̂A = c1 NA

(ii) d̄A,F = c2 d̄F,F

(iii) yF,A = c3 dF,A

c2 c3
c1

d̄F,F

̂̄dU,F (Result B.4)

(i) N̂A = c1 NA

(ii) d̄A,F = c2 d̄U,F

(iii) yF,A = c3 dF,A

c2 c3
c1

d̄U,F

φ̂F (Result B.6)

(i) ̂̄dF,F  c1 d̄F,F

(ii) ̂̄dU,F  c2 d̄U,F

c1
c2
φF

̂̄vH,F (Result C.2)

(i) N̂A∩F =
c1 NA∩F

(ii) ṽH,A∩F =
c2 vH,A∩F

(iii)
vH,A∩F

NA∩F
= c3

vH,F

NF

c3 c2
c1

v̄H,F

δ̂F (Result C.6)

(i) ̂̄dH,F  c1 d̄H,F

(ii) ̂̄dF,F  c2 d̄F,F

c1
c2
δF

τ̂F (Result C.7)

(i) ̂̄vH,F  c1 v̄H,F

(ii) ̂̄dH,F  c2 d̄H,F

c1
c2
τF

N̂H (Result C.8)

(i) ̂̄vH,F  c1 v̄H,F

1
c1
NH

N̂H (Result C.10)

(i) ̂̄dF,F  c1 d̄F,F

(ii) δ̂F  c2 δF

(iii) τ̂F  c3 τF

1
c1 c2 c3

NH

Table D.1: Sensitivity of estimators to nonsampling assumptions. The first column
lists the most important estimators we discuss in the main text and appendixes. The
consistency and approximate unbiasedness of each estimator relies upon nonsampling
conditions being satisfied. These conditions are given in the second column, with
a modification: we add a constant to each condition; if the constant is 1, then the
original condition is satisfied. The estimand is then effectively changed to the quantity
listed in the third column. (NB: we use the symbol as a shorthand for ‘is consistent

and essentially unbiased for’.) For example, the first row shows ̂̄dF,F and the three
conditions that the estimator in Result B.3 relies upon. Suppose that the first and
third hold, so that c1 = 1 and c3 = 1, but that the second does not; instead, the probe
alters A have been chosen so that d̄A,F = 1.1 d̄F,F . Then c2 = 1.1. Looking at the
third column, we can see that our estimator will then be consistent and essentially
unbiased for 1.1× d̄F,F instead of d̄F,F .
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estimator for yF,H using the imperfect weights. Then

bias[ŷ′F,H ] = NF [ȳF,H(ε̄− 1) + covF (yi,H , εi)]. (D.3)

where ε̄ = 1
NF

∑
i∈F εi, and covF (·, ·) is the finite population unit covariance.

Proof: We can write the bias in the estimator ŷ′F,H as

bias[ŷ′F,H ] = E[ŷ′F,H ]− yF,H (D.4)

=
∑

i∈F

w′iE[Ii]yi,H −
∑

i∈F

yi,H (D.5)

=
∑

i∈F

πi
π′i
yi,H −

∑

i∈F

yi,H (D.6)

=
∑

i∈F

yi,H(εi − 1). (D.7)

Now, recall that, for any ai and bi,

∑

i∈F

ai bi = NF

[
āb̄+ covF (ai, bi)

]
, (D.8)

where ā and b̄ are the mean values of a and b, and covF (ai, bi) is the finite population
unit covariance between ai and bi. Applying this fact to Equation D.7, we have

bias[ŷ′F,H ] =
∑

i∈F

yi,H(εi − 1) (D.9)

= NF

[
ȳF,H(ε− 1) + covF (yi,H , εi − 1)

]
, (D.10)

= NF [ȳF,H(ε̄− 1) + covF (yi,H , εi)] . (D.11)

�
In order to further understand Result D.2, it is helpful to use the identity

covF (yi,H , εi) = corF (yi,H , εi) sdF (yi,H) sdF (εi), (D.12)

where sdF (·) is the unit finite-population standard deviation, and corF (yi,H , εi) is the
correlation between the yi,H and the εi. Substituting this identity into Equation D.3
yields

bias[ŷ′F,H ] = NF [ȳF,H(ε̄− 1) + corF (yi,H , εi) sdF (yi,H) sdF (εi)] . (D.13)

Equation D.13 provides a qualitative understanding for when errors in the weights
will be more or less problematic. Several of the terms will typically be beyond the
researcher’s control: NF , ȳF,H , and sdF (yi,H) are all properties of the population
being studied. The remaining terms, however, are related to errors in the weights.
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The ε̄ − 1 term says that the bias will be minimized when πi
π′
i

is close to 1 for all

i. The sdF (εi) term says that the bias will be reduced when the πi
π′
i

values have low

variance—i.e., when deviations from the correct weight value do not vary between
units. And, finally, the corF (yi,H , εi) term says that bias is lower in absolute value
when errors in the weights are not related to the quantity being measured.

As we will see, it will be helpful to re-express Result D.2 in one additional way.
This re-expression highlights the similarities between several of the sensitivity results
we derive in this section. This final version of Result D.2 relies upon a quantity,
KF , which serves as an index for the amount of error in the weights. First, note
that sdF (εi) = ε̄ cvF (εi), where cv(εi) is the coefficient of variation (i.e., the standard
deviation divided by the mean), and, likewise, sdF (yi,H) = ȳF,H cvF (yi,H). Now,
define the index KF = corF (yi,H)cvF (yi,H)cvF (εi). KF can be positive, negative, or
zero. When the weights are exactly correct (i.e., π′i = πi for all i), KF = 0; on the
other hand, when there are large errors in the weights, KF will be far from 0.11

Using KF enables us to re-write Equation D.13 as

bias[ŷ′F,H ] = E[ŷ′F,H ]− yF,H = NF [ȳF,H(ε̄− 1) + ȳF,H ε̄ KF ] (D.14)

⇐⇒ E[ŷ′F,H ] = yF,H + yF,H(ε̄− 1) + yF,H ε̄ KF (D.15)

= yF,H ε̄ (1 +KF ) (D.16)

Therefore, Result D.2 directly implies Corollary D.3.

Corollary D.3 From Result D.2, we also have

ŷ′F,H → yF,H · ε̄ · (1 +KF ), (D.17)

where→ means ‘is consistent and unbiased for,’ and KF = corF (yi,H , εi)cvF (yi,H)cvF (εi).

D.2.2 Relative probability samples

We now turn to the estimator for the average visibility of hidden population members
(v̄H,F ). This estimator turns out to be more complex than the estimator we investi-
gated in the previous section. In order to derive complete sensitivity results for the
estimator ̂̄vH,F , it is useful to first understand the sensitivity of the estimator for the
average reported visibility of hidden population members to the probe alters, ¯̃vH,A∩F

(see Online Appendix C.4). ̂̃̄vH,A∩F turns out to be the only part of estimating v̄H,F
that is sensitive to imperfections in sampling.

Since visibility will typically be estimated from a relative probability sample,
Result D.4 concerns researchers who obtain a relative probability sample but make
estimates of ¯̃vH,A∩F using what we call imperfect relative sampling weights. We define

11KF is similar to the identity in Equation D.12, except that it involves the coefficient of variation
instead of the standard deviation. This is convenient, because the coefficient of variation is unitless,
making KF unitless (i.e., it does not depend on the scale of the particular quantity being estimated).
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imperfect relative sampling weights precisely in the next paragraph, and then we
present Result D.4.

Imperfect relative sampling weights. Suppose a researcher obtains a relative
probability sample sH from a population H (Online Appendix C.1). Let Ii be the
random variable that assumes the value 1 when unit i ∈ H is included in the sample
sH , and 0 otherwise, and let πi = E[Ii]. We say that researchers have imperfect rel-
ative sampling weights when the true πi are not known and, instead, researchers use
imperfect estimates of the relative inclusion probabilities c′π′i, where c′ is some un-
known constant, and the corresponding imperfect relative probability design weights
w′i = 1

c′π′
i
. Note that we assume that both the true and the imperfect weights satisfy

πi > 0 and π′i > 0 for all i.

Result D.4 Suppose researchers have obtained a relative probability sample sH , but
that the researchers have imperfect relative sampling weights. Call the imperfect sam-
pling weights w′i = 1

c′π′
i
, and define εi = πi

π′
i
. Call the estimator for ¯̃vH,A∩F (the reported

visibilities; see Section C.2) using the imperfect relative sampling weights ̂̃̄v
′
H,A∩F :

̂̃̄v
′
H,A∩F =

∑
i∈sH

∑
j ṽi,Aj∩F/(c

′π′i)∑
i∈sH 1/(c′π′i)

. (D.18)

Then

bias(̂̃̄v
′
H,A∩F ) =

covH(ṽi,A∩F , εi)

ε̄︸ ︷︷ ︸
bias from incorrect weights

− cov(̂̃̄v
′
H,A∩F , N̂

′
H)

N ′H︸ ︷︷ ︸
bias from ratio estimator

, (D.19)

where ε̄ = 1
NH

∑
i∈H εi; N̂

′
H =

∑
i∈sH w

′
i; N

′
H = 1

c′

∑
i∈H εi; cov(·) is the covariance

taken with respect to the sampling distribution; and covH(·) is the finite population
unit covariance among hidden population members.

Proof: The classic result of Hartley and Ross (1954) (see also Sarndal et al.,
1992, Result 5.6.1) shows that the expected value of the estimator in Equation D.18
is

E[̂̃̄v
′
H,A∩F ] =

E[
∑

i∈sH w
′
iṽi,A∩F ]

E[
∑

i∈sH w
′
i]

− cov(̂̃̄v
′
H,A∩F , N̂

′
H)

E[
∑

i∈sH w
′
i]

, (D.20)

where the covariance is taken with respect to the sampling distribution. Now, note
that

E[
∑

i∈sH

w′i] = E[
∑

i∈H

Iiw
′
i] = E[

∑

i∈H

Ii
1

c′π′i
] =

∑

i∈H

πi
c′π′i

=
1

c′

∑

i∈H

εi = N ′H . (D.21)
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Therefore, we substitute N ′H for the denominator of the second term of Equation D.20,
which produces

E[̂̃̄v
′
H,A∩F ] =

E[
∑

i∈sH w
′
iṽi,A∩F ]

E[
∑

i∈sH w
′
i]

− cov(̂̃̄v
′
H,A∩F , N̂

′
H)

N ′H
. (D.22)

We do not substitute N ′H for the denominator of the first term, because we will now
see that we can instead produce a simpler expression.

The remainder of the proof focuses on the first term. Note that

E[
∑

i∈sH

w′iṽi,A∩F ] = E[
∑

i∈H

Iiw
′
iṽi,A∩F ] = E[

∑

i∈H

Ii
1

c′π′i
ṽi,A∩F ] =

∑

i∈H

πi
c′π′i

ṽi,A∩F =
1

c′

∑

i∈H

εiṽi,A∩F ,

(D.23)

and also that

E[
∑

i∈sH

w′i] = E[
∑

i∈H

Iiw
′
i] = E[

∑

i∈H

Ii
1

c′π′i
] =

∑

i∈H

πi
c′π′i

=
1

c′

∑

i∈H

εi. (D.24)

The bias of the estimator in Equation D.18 is therefore

bias(̂̃̄v
′
H,A∩F ) = E[̂̃̄v

′
H,A∩F ]− ¯̃vH,A∩F (D.25)

=

∑
i∈H εiṽi,A∩F∑

i∈H εi
− cov(̂̃̄v

′
H,A∩F , N̂

′
H)

N ′H
−
∑

i∈H ṽi,A∩F

NH

(D.26)

=

(∑
i∈H εiṽi,A∩F∑

i∈H εi
−
∑

i∈H ṽi,A∩F

NH

)
− cov(̂̃̄v

′
H,A∩F , N̂

′
H)

N ′H
(D.27)

=

(∑
i∈H εiṽi,A∩F − 1

NH

∑
i∈H ṽi,A∩F

∑
i∈H εi∑

i∈H εi

)
− cov(̂̃̄v

′
H,A∩F , N̂

′
H)

N ′H
(D.28)

=

(
covH(ṽi,A∩F , εi)

ε̄

)
− cov(̂̃̄v

′
H,A∩F , N̂

′
H)

N ′H
, (D.29)

where covH(·, ·) is the finite-population unit variance among hidden population mem-
bers.

�
Result D.4 shows that the bias in the estimator ̂̃̄v

′
H,A∩F with imperfect relative

probability weights is the sum of two terms: one term that arises due to intrinsic
bias in any ratio estimator, and one term that arises due to differences between
the imperfect weights and the true weights. A large literature shows that, in many
practical situations, the intrinsic bias in a ratio estimator will tend to be very small
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(see, for example, Online Appendix E and also Sarndal et al. (1992, Chap. 5)). When
this intrinsic ratio bias is negligible, Result D.4 shows that the bias in the estimator
for ¯̃vH,A∩F with imperfect weights can be approximated by

bias(̂̃̄v
′
H,A∩F ) ≈ covH(ṽi,A∩F , εi)

ε̄
. (D.30)

Similar to the discussion of Result D.2, we can obtain additional insight into Equa-
tion D.30 by using the fact that covH(ṽi,A∩F , εi) = corH(ṽi,A∩F , εi) sdH(ṽi,A∩F ) sdH(εi),
where sdH(·) is the unit finite-population standard deviation, and corH(ṽi,A∩F , εi) is
the correlation between the yi and εi. Substituting this identity into Equation D.30
yields

bias(̂̃̄v
′
H,A∩F ) ≈ corH(ṽi,A∩F , εi) sdH(ṽi,A∩F )

sdH(εi)

ε̄
. (D.31)

Equation D.31 provides a qualitative understanding of factors contributing to bias
due to imperfect relative sampling weights. One term, sdH(ṽi,A∩F ), is a property of
the population being studied and will typically be beyond the researcher’s control.
The other two terms are related to errors in the weights: first, the factor sdH(εi)

ε̄
is the

coefficient of variation in the εi; it will be minimized when the standard deviation of
the εi is small, relative to the mean; that is, it will be minimized when the errors in
the weights are uniform. Second, the magnitude of corH(ṽi,A∩F , εi) will be minimized
when there is no relationship between the imperfections in the weights, εi, and the
quantity of interest, ṽi,A∩F .

Next, note that sdH(ṽi,A∩F ) = ¯̃vH,A∩F cvH(ṽi,A∩F ), where cvH(ṽi,A∩F ) is the coef-
ficient of variation. Equation D.31 can therefore be re-arranged to yield

bias(̂̃̄v
′
H,A∩F ) ≈ ¯̃vH,A∩F KH , (D.32)

where we have defined KH = corH(ṽi,A∩F , εi)cvH(ṽi,A∩F )cvH(εi) as an index for the
amount of error in the imperfect weights.

Using the index KH helps to clarify the meaning of the εi in Result D.4. It
may seem unintuitive to define εi = πi

π′
i
, since the result assumes that neither πi or

π′i is known. But, we note that the KH in Expression D.32 is not impacted if εi are
multiplied by a constant. Therefore, if researchers find it more natural to work with a
version of εi that involves multiplying all of the π′i or πi by a constant, then Result D.4
still applies. For example, imagine that a researcher has sampled from the hidden
population using respondent-driven sampling, and then makes estimates under the
assumption that respondents’ inclusion probabilities are proportional to their degrees
(π′i ∝ di). This researcher might wonder how her estimate would be impacted if
this sampling assumption was incorrect (π′i 6∝ di). In this case, the researcher could
then make the necessary assumptions and calculate KH assuming that, for example,
(π′i ∝ d0

i ), or (π′i ∝ d2
i ).
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Quantity Relevant results Effective estimand
under imperfect sampling

ŷ′F,A =
∑

i∈sF yi,A/π
′
i

(i) ̂̄dF,F (Result B.3)

(ii) ̂̄dU,F (Result B.4)

(iii) φ̂F (Result B.6)

(iv) δ̂F (Result C.6)

yF,A · ε̄ · [1 +KF1 ]

ŷ′F,H =
∑

i∈sF yi,H/π
′
i

(i) ŷF,H (Result B.1)
yF,H · ε̄ · [1 +KF2 ]

̂̃̄v
′
H,A∩F =

∑
i∈sH

ṽi,A∩F /(c
′π′

i)∑
i∈sH

1/(c′π′
i)

(i) ̂̄vH,F (Result C.2)

¯̃vH,A∩F · [1 +KH ]

Table D.2: Summary of estimators’ sensitivity to imperfect sampling. Here, sF is a
probability sample, sH is a relative probability sample, and the Ks are indices for the
magnitude of errors in the imperfect weights; KF1 = corF (εi, yi,A) cvF (εi) cvF (yi,A);
KF2 = corF (εi, yi,H) cvF (εi) cvF (yi,H); and KH = corH(εi, ṽi,A∩F ) cvH(εi) cvH(ṽi,A∩F ).
When the weights are exactly correct, each K is equal to 0.

Finally, since E[̂̃̄vH,A∩F ] = bias(̂̃̄vH,A∩F ) + ¯̃vH,A∩F , we can conclude that

E[̂̃̄vH,A∩F ] ≈ ¯̃vH,A∩F (1 +KH). (D.33)

Therefore, Result D.2 directly implies Corollary D.3.

Corollary D.5 From Result D.2, we also have

̂̃̄v
′
H,A∩F  ¯̃vH,A∩F (1 +KH), (D.34)

where means ‘is consistent and essentially unbiased for,’ and KH = corH(ṽi,A∩F , εi)cvH(ṽi,A∩F )cvH(εi)
is an index for the amount of error in the imperfect relative sampling weights.

D.2.3 Summary and results for all estimators

Table D.2 uses K, the index for the magnitude of errors introduced by imperfect
weights, to summarize the results of our investigation into the impact that imperfect
sampling weights will have on three quantities that play a central role in the estimators
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we consider throughout this paper: ŷ′F,A, ŷ′F,H , and ̂̃̄v
′
H,A∩F . The results in Table D.2

show how the magnitude of the index K is directly related to the bias that results
from imperfect sampling weights.

D.3 Combined sensitivity results

We now combine our analysis of sensitivity to reporting, network structure, and survey
construction (Section D.2.1) and sensitivity to sampling problems (Section D.2.2) to
derive results that describe the sensitivity of the generalized and the modified basic
scale-up estimator to all of the conditions they rely upon. Roughly, what we show
below is that the results about estimators’ sensitivity to nonsampling conditions (such
as survey construction and reporting) and results about estimators’ sensitivity to
sampling conditions combine naturally.

D.3.1 Generalized scale-up

In this section, we derive an expression for the sensitivity of the generalized scale-up
estimator to all of the conditions it relies upon. First, we derive a combined sensitivity
result for ̂̄vH,F (Result D.6). We then make use of the combined sensitivity result for
̂̄vH,F to derive a combined sensitivity result for the generalized scale-up estimator
(Result D.7 and Corollary D.8).

Result D.6 Suppose researchers have obtained a relative probability sample sH to
estimate v̄H,F , but that the researchers have imperfect relative sampling weights. Call
the imperfect relative sampling weights w′Hi = 1

c′π′H
i

, call the true probabilities of in-

clusion πi, and define εHi =
πH
i

π′H
i

. Call the estimator for ¯̃vH,A∩F using the imperfect

relative sampling weights ̂̃̄v
′
H,A∩F .

Suppose also that the researcher’s estimate of NA∩F is incorrect, so that N̂A∩F =
c1 ·NA∩F . Suppose that the reporting condition (Equation C.5) of Result C.2 is incor-
rect, so that ṽH,A∩F = c2 · vH,A∩F . Finally, suppose that the probe alter condition is
incorrect, so that

vH,A∩F

NA∩F
= c3 · vH,F

NF
. Call the estimator for v̄H,F under these imperfect

conditions ̂̄v′?H,F .
Then

̂̄v′?H,F  v̄H,F
c3 c2

c1

(1 +KH) (D.35)

where means ‘is consistent and essentially unbiased for’, and KH = corH(ṽi,A∩F , ε
H
i )cvH(ṽi,A∩F )cvH(εHi ).

Proof: First, we note that Corollary D.5 shows that

̂̃̄v
′
H,A∩F  ¯̃vH,A∩F (1 +KH) =

ṽH,A∩F
NH

(1 +KH). (D.36)
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The remainder of the proof follows the argument from Results D.1 and C.2 very
closely. Under the assumptions listed above, we can write the imperfect estimator
̂̄v′?H,F as

̂̄v′?H,F =
1

c1

NF

NA∩F
̂̃̄v
′
H,A∩F (D.37)

We follow the same steps as the proof of Results C.2, but each time we use one of
our assumptions, the associated error is carried with it. So our estimator ̂̄v′?H,F is
consistent and essentially unbiased for

̂̄v′?H,F  (1 +KH)
1

c1

NF

NA∩F

ṽH,A∩F
NH

(D.38)

= (1 +KH)
c2

c1

NF

NA∩F

vH,A∩F
NH

(D.39)

= (1 +KH)
c3 c2

c1

NF

NA∩F

vH,F
NH

. (D.40)

In words, the estimand is now incorrect by (1 + KH) c3 c2
c1

. Since ̂̄vH,F is consistent

and essentialy unbiased for v̄H,F , we conclude that ̂̄v′?H,F is consistent and essentially
unbiased for (1 + KH) c3 c2

c1
v̄H,F . Note that if the conditions needed for Result C.2

hold, then c1 = 1, c2 = 1, c3 = 1, and KH = 0, then we are left with our original
result for ̂̄vH,F (Result C.2). �

Result D.7 Suppose researchers have obtained a probability sample sF to estimate
yF,H , but that the researchers have imperfect sampling weights. Call the imperfect

sampling weights w′Fi = 1
π′F
i

, call the true weights wFi = 1
cπF

i
, and define εFi =

πF
i

π′F
i

=

w′F
i

wF
i

. Call the estimator for yF,H under these imperfect conditions y′F,H .

Suppose also researchers have also obtained a relative probability sample sH to es-
timate v̄H,F but that the researchers have imperfect relative sampling weights. Call the
imperfect relative sampling weights w′Hi = 1

c′π′H
i

, call the true probabilities of inclusion

πi, and define εHi =
πH
i

π′H
i

. Suppose also that the researcher’s estimate of NA∩F is incor-

rect, so that N̂A∩F = c1 ·NA∩F . Suppose that the reporting condition (Equation C.5)
of Result C.2 is incorrect, so that ṽH,A∩F = c2 · vH,A∩F . Finally, suppose that the
probe alter condition is incorrect, so that

vH,A∩F

NA∩F
= c3 · vH,F

NF
. Call the estimator for

v̄H,F under these imperfect conditions ̂̄v′?H,F .
Finally, suppose that there are false positive reports, so that y+

F,H = ηFyF,H . Let

the generalized scale-up estimator for NH in this situation be N̂ ′?H =
y′F,Ĥ̄v′?H,F

. Then

N̂ ′?H  
ε̄F (1 +KF1)

1 +KH

c1

c3 c2

1

ηF
NH , (D.41)
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where  means ‘is consistent and essentially unbiased for’; ε̄F = 1
NF

∑
i∈F ε

F
i ; KH =

corH(ṽi,A∩F , ε
H
i )cvH(ṽi,A∩F )cvH(εHi ); and KF1 = corF (yi,H , ε

F
i )cvF (yi,H)cvF (εFi ).

Proof: The generalized scale-up estimator is formed from a ratio of estimators,
one in the numerator (ŷF,H) and one in the denominator (̂̄vH,F ). We have already de-
rived results for each of the numerator and the denominator separately; our approach
will therefore be to combine them. We must account for the fact that, in addition to
the assumptions required for the estimator of the numerator and the denominator,
the generalized scale-up estimator also requires the additional condition that there
are no false positive reports.

We begin with the denominator, ̂̄vH,F . Result D.6 shows that

̂̄v′?H,F  v̄H,F
c3 c2

c1

(1 +KH), (D.42)

where KH = corH(ṽi,A∩F , ε
H
i )cv(ṽi,A∩F )cv(εHi ). Thus, Expression D.42 shows the

sensitivity of the denominator of the generalized scale-up estimator to violations of
all of the conditions it relies upon.

Turning now to the numerator of the generalized scale-up estimator, Corollary D.3
shows that

ŷ′F,H  yF,H · ε̄ · (1 +KF1), (D.43)

where KF1 = corF (yi,H , ε
F
i )cvF (yi,H)cvF (εFi ). Thus, Expression D.43 shows sensitivity

of the numerator of the generalized scale-up estimator to violations of all of the
conditions it relies upon.

Using the fact that a ratio estimator is consistent and essentially unbiased for the
ratio of the estimand of its numerator and denominator (see Online Appendix E and
Sarndal et al. (1992, chap. 5)), we therefore have

N̂ ′?H  
ε̄F (1 +KF1)

1 +KH

c1

c3 c2

yF,H
v̄H,F

. (D.44)

Finally, by definition we have yF,H = y+
F,H/ηF , which we can substitute into Expres-

sion D.44 to produce

N̂ ′?H  
ε̄F (1 +KF1)

1 +KH

c1

c3 c2 ηF

y+
F,H

v̄H,F
. (D.45)

By the argument in Section 2 and Appendix A, NH = y+
F,H/v̄H,F . Substituting NH

for y+
F,H/v̄H,F in the expression above completes the proof. �

Corollary D.8 From Result D.7, it follows that, for the generalized scale-up estima-
tor,

N̂ ′?H ·
1 +KH

ε̄F (1 +KF1)︸ ︷︷ ︸
sampling
conditions

· c3 c2

c1︸ ︷︷ ︸
visibility
estimator
conditions

· ηF
︸︷︷︸
no false
positives
condition

 NH . (D.46)

A33



Researchers who wish to conduct a sensitivity analysis for estimates made using
the generalized scale-up method can therefore (1) assume values or ranges of values
for KH , ε̄F , KF1 , c1, c2, c3, and ηF and (2) use Corollary D.8 to determine the resulting
values of NH . Thus, researchers can use this approach to explore the sensitivity of
their estimates to all of the assumptions they had to make.

D.3.2 Modified basic scale-up

In this section, we develop an expression for the sensitivity of the modified basic
scale-up estimator to all of the conditions it relies upon. First, we derive a combined

sensitivity result for ̂̄dF,F (Result D.9). We then make use of the combined sensitivity

result for ̂̄dF,F to derive a combined sensitivity result for the modified basic scale-up
estimator (Result D.10 and Corollary D.11).

Result D.9 Suppose researchers have obtained a probability sample sF to estimate
d̄F,F ; however, suppose that the researchers have imperfect sampling weights. Call the
imperfect sampling weights w′Fi = 1

π′F
i

, call the true weights wFi = 1
cπF

i
, and define

εFi =
πF
i

π′F
i

. Let the estimator for yF,A using these imperfect weights be ŷ′F,A.

Suppose also that researchers have chosen a set of probe alters A in order to use
the known population method (Result B.3). However, suppose that the researcher’s

estimate of NA is incorrect, so that N̂A = c1 · NA. Suppose also that the reporting
condition (Equation B.6) of Result B.3 is incorrect, so that yF,A = c2 · dF,A. Finally,
suppose that the probe alter condition (Equation B.7) of Result B.3 is incorrect, so
that d̄A,F = c3 · d̄F,F . Call the estimator for d̄F,F under these imperfect conditions
̂̄d
′?
F,F .

Let the known population estimator for d̄F,F (Result B.3) under these imperfect

conditions be ̂̄d
′?
F,F . Then

̂̄d
′?
F,F → ε̄F (1 +KF2) · c2 c3

c1

· d̄F,F , (D.47)

where→ means ‘is consistent and unbiased for’, and KF2 = corF (yi,A, ε
F
i )cvF (yi,A)cvF (εFi ).

Proof: Under the assumptions above, we can write the imperfect estimator ̂̄d
′?
F,F

as

̂̄d
′?
F,F =

1

c1

· ŷ
′
F,A

NA
(D.48)

Using the exact same argument as Result D.2 and Corollary D.3, we have

ŷ′F,A → ε̄F (1 +KF2) · yF,A. (D.49)

A34



Applying this to the imperfect estimator ̂̄d
′?
F,F , we have

̂̄d
′?
F,F → ε̄F (1 +KF2) · 1

c1

· yF,A
NA

= ε̄F (1 +KF2) · 1

c1

· ȳF,A. (D.50)

We will obtain the rest of the result by following the argument of Result B.3 closely,
but carrying the errors from the conditions that are not met through with each step.
First, by assumption, ȳF,A = c2d̄F,A, yielding

̂̄d
′?
F,F → ε̄F (1 +KF2) · c2

c1

· d̄F,A. (D.51)

Next, again by assumption, d̄F,A = c3d̄F,F , so we have

̂̄d
′?
F,F → ε̄F (1 +KF2) · c2 c3

c1

· d̄F,F , (D.52)

which is our result. �

Result D.10 Suppose researchers have obtained a probability sample sF to estimate
yF,H and d̄F,F in order to produce estimates from the modified basic scale-up method.
However, suppose that the researchers have imperfect sampling weights. Call the
imperfect sampling weights w′Fi = 1

π′F
i

, call the true weights wFi = 1
cπF

i
, and define

εFi =
πF
i

π′F
i

=
w′F

i

wF
i

. Let the estimator for yF,H using these imperfect weights be y′F,H .

Suppose also that researchers have chosen a set of probe alters A in order to use
the known population method (Result B.3). However, suppose that the researcher’s

estimate of NA is incorrect, so that N̂A = c1 · NA. Suppose also that the reporting
condition (Equation B.6) of Result B.3 is incorrect, so that yF,A = c2 · dF,A. Suppose
also that the probe alter condition (Equation B.7) of Result B.3 is incorrect, so that

d̄A,F = c3 · d̄F,F . Call the estimator for d̄F,F under these imperfect conditions ̂̄d
′?
F,F .

Finally, suppose that the basic scale-up conditions do not hold; that is, suppose
that there are false positive reports, so that y+

F,H = ηFyF,H ; suppose that there are false

negative reports, so that v̄H,F = τF d̄H,F ; and suppose that the average personal network
size of hidden population members is not equal to the average personal network size
of frame population members, so that d̄H,F = δF d̄F,F .

Let the modified basic scale-up estimator for NH in this situation be

N̂ ′?H =
ŷ′F,H
̂̄d
′?
F,F

. (D.53)

Then

N̂ ′?H  
(1 +KF1)

(1 +KF2)
· c1

c2 c3

· τF δF
ηF

·NH , (D.54)

where means ‘is consistent and essentially unbiased for’; KF1 = corF (yi,H , ε
F
i )cvF (yi,H)cvF (εFi );

and KF2 = corF (yi,A, ε
F
i )cvF (yi,A)cvF (εFi ).
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Proof:
The modified basic scale-up estimator is formed from a ratio of estimators for the

numerator (yF,H) and denominator (d̄F,F ). We have already derived results for each
of the numerator and the denominator separately; our approach will therefore be to
combine them. We must account for the fact that, in addition to the assumptions
required for the estimator of the numerator and the denominator, the modified ba-
sic scale-up estimator also requires the additional conditions that there are no false
positive reports, that there are no false negative reports, and that the degree ratio is
one.

For the numerator, Result D.9 shows that

̂̄d
′?
F,F → ε̄F (1 +KF2) · c2 c3

c1

· d̄F,F . (D.55)

Thus, Expression D.55 shows sensitivity of the denominator of the modified basic
scale-up estimator to violations of all of the conditions it relies upon.

Turning now to the numerator of the modified basic scale-up estimator, Corol-
lary D.3 shows that

ŷ′F,H → yF,H · ε̄ · (1 +KF1), (D.56)

where KF1 = corF (yi,H , ε
F
i )cvF (yi,H)cvF (εFi ). Thus, Expression D.56 shows sensitivity

of the numerator of the modified basic scale-up estimator to violations of all of the
conditions it relies upon.

Using the fact that a ratio estimator is consistent and essentially unbiased for the
ratio of the estimand of its numerator and denominator (see Online Appendix E and
Sarndal et al. (1992, chap. 5)), we therefore have

N̂ ′?H  
(1 +KF1)

(1 +KF2)
· c1

c2 c3

· yF,H
d̄F,F

. (D.57)

Finally, by assumption, we have yF,H = y+
F,H/ηF , and v̄H,F = d̄F,F/(τF δF ). Sub-

stituting these assumptions into Expression D.58 produces

N̂ ′?H  
(1 +KF1)

(1 +KF2)
· c1

c2 c3

· τF δF
ηF

·
y+
F,H

v̄F,F
(D.58)

By the argument in Section 2 and Appendix A, NH = y+
F,H/v̄H,F . Substituting NH

for y+
F,H/v̄H,F in the expression above completes the proof. �

Corollary D.11 From Result D.10, it follows that, for the modified basic scale-up
estimator,

N̂ ′?H ·
(1 +KF2)

(1 +KF1)︸ ︷︷ ︸
sampling
conditions

· c2 c3

c1︸ ︷︷ ︸
known

population
conditions

· ηF
τF δF︸ ︷︷ ︸
basic

scale-up
conditions

 NH . (D.59)
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Researchers who wish to conduct a sensitivity analysis for estimates made using
the generalized scale-up method can therefore (1) assume values or ranges of values
for KF1 , KF2 , c1, c2, c3, δF , τF , and ηF ; and (2) use Corollary D.11 to determine
the resulting values of NH . Thus, researchers can use this approach to explore the
sensitivity of their estimates to all of the assumptions they had to make, individually
and jointly.

E Approximate unbiasedness of compound ratio

estimators

E.1 Overview

Several of the estimators we propose are nonlinear, which means that they are not
design-unbiased (Sarndal et al., 1992). While ratio estimators are common in survey
sampling and the bias of these estimators is commonly regarded as insignificant (Sarn-
dal et al., 1992), several of the estimators we propose are somewhat more complex
than standard ratio estimators. In fact, all of our nonlinear estimators turn out to
all be special cases of a ratio of ratios (Table E.1), which is also known as a double
ratio estimator (Rao and Pereira, 1968). Any double ratio can be written

Rd =
R1

R0

=

ȳ1

x̄1

ȳ0

x̄0

=
ȳ1x̄0

x̄1ȳ0

. (E.1)

If we have unbiased estimators for each of the four terms, we can estimate Rd by

r̂d =
̂̄y1
̂̄x0

̂̄x1̂̄y0

. (E.2)

In this appendix we investigate when we can expect the biases in our estimators
to be small enough to be negligible; we conclude that, in practice, the bias is typically
negligible when compared to sampling and non-sampling error.

E.2 The general case

We will focus on the relative bias in our estimator, r̂d. The relative bias is given by

Bd =
E[r̂d]−Rd

Rd

. (E.3)

Bd expresses the bias in our estimator r̂d in terms of the true value; a relative bias
of 0.5, for example, means that our estimator is typically 0.5 times bigger than the
true value. This is a natural quantity to consider because estimators that have small
relative bias have small bias in substantive terms.
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Our approach will be to follow Rao and Pereira (1968) in using a Taylor series to
form an approximation to the relative bias. This is accomplished in Result E.1.

Result E.1 (Rao and Pereira, 1968) If ̂̄x0, ̂̄x1, ̂̄y0, and ̂̄y1 are unbiased estimators,
and |(̂̄x1− x̄1)/x̄1| < 1 and |(̂̄y0− ȳ0)/ȳ0| < 1, then the relative bias of the double ratio
estimator, Bd, is approximated by

Bd =
E[r̂d]−R

R
≈ B′d = Ĉ̄x1,̂̄y0

− Ĉ̄x1,̂̄y1
− Ĉ̄y0,̂̄y1

− Ĉ̄x0,̂̄x1
− Ĉ̄x0,̂̄y0

+ Ĉ̄y1,̂̄x0
+ C2

ȳ0
+ C2

x̄1
,

(E.4)

where Ĉ̄x,̂̄y = cov(̂̄x,̂̄y)
x̄ȳ

is the relative covariance between ̂̄x and ̂̄y, and C2̂̄y = var(̂̄y)̂̄y2 .

Proof: Define

δ̂̄x0
=
̂̄x0 − x̄0

x̄0

, (E.5)

with analogous definitions for δ̂̄x1
, δ̂̄y1

, and δ̂̄y0
. We can express rd as

r̂d = R
(1 + δ̂̄y1

)(1 + δ̂̄x0
)

(1 + δ̂̄y0
)(1 + δ̂̄x1

)
. (E.6)

The relative bias then becomes

Bd =
E[r̂d]−R

R
= E

[
(1 + δ̂̄y1

)(1 + δ̂̄x0
)

(1 + δ̂̄y0
)(1 + δ̂̄x1

)

]
− 1. (E.7)

The strategy is now to expand the two factors in the denominator and to then discard
high-order terms. What remains will be an approximation to the true relative bias.

Recall that if |x| < 1 then 1
1−x =

∑∞
i=0 x

i and, in particular, 1
1+x

= 1 − x2 +
x3 − · · · . We’ll make use of this expansion for the two factors in the denominator of
Equation E.7; that is, we assume that |δȳ0 | < 1 and |δx̄1| < 1. Then we have

Bd = E
[
(1 + δ̂̄y1

)(1 + δ̂̄x0
)(1− δ̂̄y0

+ δ2̂̄y0
− · · · )(1− δ̂̄x1

+ δ2̂̄x1
− · · · )

]
− 1 (E.8)

If we multiply this out and retain only terms up to order 2, we obtain the following
approximation:

Bd ≈ E
[
δ̂̄x1
δ̂̄y0

+ δ̂̄x0
δ̂̄y1
− δ̂̄x0

δ̂̄y0
− δ̂̄x0

δ̂̄x1
− δ̂̄x1

δ̂̄y1
− δ̂̄y0

δ̂̄y1
+ δ̂̄x0

+ δ̂̄y1
− δ̂̄x1

− δ̂̄y0
− δ2̂̄y0

− δ2̂̄x1

]
.

(E.9)

Since we assumed that the estimators for the individual components of rd are unbi-
ased, we know that

E[δ̂̄x1
] = 0, (E.10)
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We can also determine that

E[δ̂̄x1
δ̂̄y1

] =
cov(̂̄x1, ̂̄y1)

x̄1ȳ1

, (E.11)

and, that

E[δ2̂̄x1
] =

var(̂̄x1)

x̄2
1

. (E.12)

Applying these relationships to Equation E.9, we find

Bd ≈Ĉ̄x0,̂̄y1
+ Ĉ̄x1,̂̄y0

− Ĉ̄x0,̂̄x1
− Ĉ̄x0,̂̄y0

− Ĉ̄x1,̂̄y1
− Ĉ̄y0,̂̄y1

+ C2
x̄1

+ C2
ȳ0
, (E.13)

which is our result. �
Result E.1 is useful because it reveals the behavior of double ratio estimators

in quite general contexts. To understand what it says a bit more intuitively, note
that Result E.1 is framed in terms of the relative covariances and variances of the
estimators ̂̄x0, ̂̄x1, ̂̄y0, and ̂̄y1. In the special case of simple random sampling with
replacement, we can re-write the approximation in terms of the finite population
variances and covariances and a constant, κ:

B′d = κ
[
Cx1,y0 − Cx1,y1 − Cy0,y1 − Cx0,x1 − Cx0,y0 + Cy1,x0 + C2

y0
+ C2

x1

]
, (E.14)

where κ =
(

1
n
− 1

N

)
, n is our sample size, and N is the size of the population. In the

case of simple random sampling, the relative bias depends upon the finite population
variances of the underlying population values and the size of our sample.

For designs other than simple random sampling, there is no analogous expression
as simple as Equation E.14. However, speaking roughly, if we have an idea that our
sampling plan has a typical design effect (deff) for the quantities inside the square
brackets in Equation E.14, then we can see that we would simply replace the κ in
Equation E.14 by (κ · deff) in order to get a sense of the approximate relative bias.

Notice, also, that Result E.1 is framed largely in terms of relative covariances.
When we apply Result E.1, we will often make use of the fact that the relative
covariances can be expressed in terms of correlations and coefficients of variation as
follows:

Ĉ̄x,̂̄y =
cov(̂̄x, ̂̄y)

x̄ȳ
=
ρ̂̄x,̂̄y√var(̂̄x)

√
var(̂̄y)

x̄ȳ
(E.15)

= ρ̂̄x,̂̄y cv(̂̄x) cv(̂̄y), (E.16)

where ρ̂̄x,̂̄y is the correlation between the estimators ̂̄x and ̂̄y, and cv(̂̄x) =

√
var(̂̄x)

x̄
is

the coefficient of variation of the estimator ̂̄x. We will also make use of the fact that
C2̂̄x = cv(̂̄x)2.
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E.3 Applying Result E.1 to scale-up

We now apply Result E.1 to understand the biases in the nonlinear estimators we
propose for realistic situations. For each particular estimator, we can simplify the
expression in Result E.1. In order to do so, we first remove terms that do not appear
in the estimator itself (for example, in δ̂F , there is no ̂̄y1). Additionally, we assume
that the estimates produced from a sample from the frame population and a sample
from the hidden population will be independent of one another, meaning that their
correlation will be 0. Table E.1 summarizes the nonlinear estimators we propose,
along with the specific version of the approximate relative bias from Result E.1 that
applies.

Finally, in order to give a sense of the magnitude of the coefficients of variation
and correlations found in real studies, we estimated the quantities that go into the
approximate relative bias from the studies available to us. Table E.2 shows the
coefficients of variation for the estimated degree (the values of ̂̄x1 for δ̂F ) in surveys
from Rwanda, the United States, and Curitiba, Brazil. Further, Tables E.3 and E.4
show the relevant coefficients of variation and pairwise correlations for all remaining
quantities using data from Curitiba, Brazil (currently, the only setting where we
have data from a sample of the hidden population). For all values in these tables,
the estimated variance of the estimators is calculated using the bootstrap methods
presented in Section F.1.

Since we have both a sample from the frame population and a sample from the
hidden population in Curitiba, we can compute numerical estimates of the bias of
each nonlinear estimator in the context of that study. We can see that in this study
bias caused by the nonlinearity of the estimator was not a big problem: in each case,
the estimated approximate bias was less than one percent of the estimate (Table E.5).

To conclude, we derived an expression for the approximate relative bias in double
ratio estimators in general. We then simplified the approximation for each specific
nonlinear estimator that we propose. Finally, we used data from a real scale-up study
in Curitiba, Brazil to estimate magnitude of the biases caused by the non-linearity
of the estimators in a specific scale-up study. From these results, we conclude that
theses estimators are essentially unbiased, and that sampling error and non-sampling
error will dominate any bias introduced by the nonlinear form of the estimators.

ĉv(̂̄d) source
0.05 Rwanda
0.10 Curitiba
0.02 US

Table E.2: Estimated coefficients of variation for the average degree from 3 different
scale-up surveys. These play a role in the approximate relative bias for the estimate of
δ̂F . Our approximation tells us that the larger these values are, the worse the relative
bias will be. The estimates were computed using the rescaled bootstrap procedure.
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estimated coef. of variation∑
i∈sH yi,A∩F/cπi 0.08∑
i∈sH ṽi,A∩F/cπi 0.08∑

i∈sH 1/cπi 0.06

Table E.3: Estimated coefficients of variation for quantities derived from a sample
from the hidden population. These quantities play a role in the approximate relative
bias for the estimate of all of the nonlinear estimators we propose. The estimates
were computed using the respondent-driven sampling bootstrap procedure (Salganik,
2006).

estimated correlation
ĉor(

∑
i∈sH yi,A∩F/cπi,

∑
i∈sH ṽi,A∩F/cπi) 0.92

ĉor(
∑

i∈sH yi,A∩F/cπi,
∑

i∈sH 1/cπi) 0.71
ĉor(

∑
i∈sH ṽi,A∩F/cπi,

∑
i∈sH 1/cπi) 0.68

Table E.4: Estimated pairwise correlations for quantities derived from a sample from
the hidden population. These quantities play a role in the approximate relative bias
for the estimate of all of the nonlinear estimators we propose.

approx. rel. bias, Bd estimate estimated absolute bias
τ̂F 0.0005 0.77 0.0004

δ̂F 0.0105 0.69 0.0073

N̂H 0.0026 114498.00 298.0000

Table E.5: Approximate relative bias in the estimates of the nonlinear quantities using
data taken from the Curitiba study, the point estimates produced by the Curitiba
study, and the estimated implied absolute bias. For each quantity, the bias is very
small.

F Variance estimation and confidence intervals

In addition to producing point estimates, researchers must also produce confidence
intervals around their estimates. The procedure currently used by scale-up researchers
begins with the variance estimator proposed in Killworth et al. (1998b):

ŝe(N̂H) =

√√√√ N · N̂H∑
i∈sF d̂i,U

, (F.1)
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and then produces a confidence interval:

N̂H ± z1−α/2ŝe(N̂H), (F.2)

where 1−α is the desired confidence level (typically 0.95), and zα/2 is the α/2 quantile
of the standard Normal distribution.

Unfortunately, the variance estimator (Equation F.1) was derived from the basic
scale-up model (Equation 11), and so it suffers from the limitations of that model. In
particular, it has three main problems, none of which seem to have been appreciated
in the scale-up literature and all of which lead it to underestimate the variance in
most situations. First, the variance estimator in Equation F.1 does not include any
information about the procedure used to sample respondents, which can lead to prob-
lems when complex sampling designs, such as stratified, multi-stage designs, are used.
Second, it implicitly assumes that the researchers have learned about

∑
i∈sF di,U in-

dependent alters, which is not true if there are barrier effects (i.e., non-random social
mixing). Finally, like virtually all variance estimators, it only provides a measure of
uncertainty introduced by sampling but not other possible sources of error.

To address the first two problems but not the third, we propose that researchers
used the rescaled bootstrap variance estimation procedure (Rao and Wu, 1988; Rao
et al., 1992; Rust and Rao, 1996) with the percentile method; a combination that, for
convenience, we will refer to as the rescaled bootstrap. This procedure, described in
more detail below, has strong theoretical foundations; does not depend on the basic
scale-up model; can handle both simple and complex sample designs; and can be used
for both the basic scale-up estimator and the generalized scale-up estimator.

In addition to the theoretical reasons to prefer to rescaled bootstrap, empirically,
we find that the rescaled bootstrap produces intervals with slightly better coverage
properties in three real scale-up studies. In particular, using the internal consistency
check procedure proposed in Killworth et al. (1998a) for all groups of known size
in three real scale-up datasets—one collected via simple random sampling (McCarty
et al., 2001) and two collected via complex sample designs (Salganik et al., 2011a;
Rwanda Biomedical Center, 2012)—we produced a size estimate using the basic scale-
up estimator (Equation 12), and we produced confidence intervals using (i) the current
procedure (Equation F.1); (ii) the simple bootstrap (which does not account for
complex sample designs) with the percentile method; and (iii) the rescaled bootstrap
(which does account for complex sample designs) with the percentile method.

This empirical evaluation (Figure F.1) produced three main results. First, as ex-
pected, we found that the current confidence interval procedure produces intervals
with bad coverage properties: purported 95% confidence intervals had empirical cov-
erage rates of about 5%. This poor performance does not seem to have been widely
appreciated in the scale-up literature. Second, also consistent with expectation, we
found that the rescaled bootstrap produced wider intervals than both the current pro-
cedure and the simple bootstrap, especially in the case of complex sample designs.
Third, and somewhat surprisingly, the rescaled bootstrap did not work well in an
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absolute sense: purported 95% confidence intervals had empirical coverage rates of
about 10%, only slightly better than the current procedure.

We speculate that there are two possible reasons for the surprisingly poor cover-
age rates of the rescaled bootstrap. The first is bias in the basic scale-up estimator.
As described in detail in Sarndal et al. (1992, Sec 5.2), bias in an estimator can de-
grade the coverage rates for confidence intervals. For example, if Native Americans
(one of the groups in the study of McCarty et al. (2001)) have smaller personal net-
works than other Americans, then there will be a downward bias in the estimated
number of Native Americans (Equation 20). This bias will necessarily degrade the
coverage properties of any confidence interval procedure, especially if the bias ratio(
bias(N̂H)/se(N̂H)

)
is large (see Sarndal et al. (1992, Sec 5.2)). The second possible

reason for the surprisingly poor coverage rates could also be some unknown problem
with the rescaled bootstrap or the percentile method. Because (i) the rescaled boot-
strap and percentile method have strong theoretical foundations (Rao and Wu, 1988;
Rao et al., 1992; Rust and Rao, 1996; Efron and Tibshirani, 1993) and (ii) we expect
that the basic scale-up estimates are biased in most situations (see Equation 20),
we believe that the main reason for the poor coverage is the bias. However, we also
believe that future research should explore the properties of the rescaled bootstrap
and percentile method in greater detail.

An additional concern about these empirical results is that they only apply to the
basic scale-up estimator and not the generalized scale-up estimator. Unfortunately,
we cannot assess the performance of the rescaled bootstrap procedure when used with
the generalized scale-up estimator because the generalized scale-up estimator has not
yet been used for populations of known size.

These empirical results, and the theoretical arguments that follow, lead us to three
conclusions. First, confidence intervals from the rescaled bootstrap are preferable to
intervals from the current procedure. Second, researchers should expect that the
confidence intervals from the rescaled bootstrap procedure will be anti-conservative
(i.e., they will be too small). Third, creating confidence intervals around scale-up
estimates is an important area for further research.

Next in Section F.1 we review the standard bootstrap and rescaled bootstrap;
describe how we applied these methods to three real scale-up datasets; and describe
the results in Figure F.1 in greater detail. Finally, in Section F.2 we describe how
researchers can use the rescaled bootstrap with the generalized scale-up estimator.

F.1 Variance estimation with a sample from F

The goal of a bootstrap variance estimation procedure is to put a confidence in-
terval around an estimate N̂H that is derived from a sample sF . The most stan-
dard bootstrap procedure has three steps. First, researchers generate B replicate
samples, s

(1)
F , s

(2)
F , . . . , s

(B)
F by randomly sampling with replacement from sF . Sec-

ond, these replicate samples are then used to produce a set of replicate estimates,
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Figure F.1: Assessing confidence interval procedures using scale-up studies in the
United States (McCarty et al., 2001), Rwanda (Rwanda Biomedical Center, 2012),
and Curitiba, Brazil (Salganik et al., 2011a). The true size of each group is shown with
a black dot. Estimates made use the basic scale-up estimator are shown with circles.
The rescaled bootstrap confidence intervals include the true group size for 3.4%, 9.1%,
and 15.0% of the groups in the US, Rwanda, and Curitiba, respectively. The standard
bootstrap confidence intervals include the true group size for 3.4%, 9.1%, and 10.0%
of the groups. The currently used procedure (Equation F.1), contains the true group
size for 3.4%, 9.1%, and 5.0% of the groups.
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Figure F.2: Schematic of the bootstrap procedure to put a confidence interval around
N̂H when there is a sample from the frame sF .

N̂
(1)
H , N̂

(2)
H , . . . , N̂

(B)
H . Finally, the replicate estimates are combined to produce a con-

fidence interval; for example, by the percentile method which chooses the 2.5th and
97.5th percentiles of the B estimates (Fig. F.2) (Efron and Tibshirani, 1993).

When the original sample can be modeled as a simple random sample, this stan-
dard bootstrap procedure is appropriate. For example, consider the scale-up study
of McCarty et al. (2001) that was based on telephone survey of 1,261 Americans
selected via random digit dialing.12 We can approximate the sampling design as sim-
ple random sampling, and draw B = 10, 000 replicate samples of size 1,261. In this
case the bootstrap confidence intervals are, as expected, larger than the confidence
intervals from Equation F.1, since they account for the clustering of responses with
respondent; on average, they are 2.05 times wider.

This standard bootstrap procedure, however, can perform poorly when the original
data are collected with a complex sample design (Shao, 2003). To deal with this
problem, Rust and Rao (1996) proposed the rescaled bootstrap procedure that works
well when the data are collected with a general multistage sampling design, a class of
designs that includes most designs that would be used for face-to-face scale-up surveys.
For example, it includes stratified two-stage cluster sampling with oversampling (as
was used in a recent scale-up study in Rwanda (Rwanda Biomedical Center, 2012))
and three-stage element sampling (as was used in a recent scale-up study in Curitiba,
Brazil (Salganik et al., 2011a)); a full description of the designs included in this class
is presented in Rust and Rao (1996).

12The original data file includes 1,375 respondents. From these cases, 113 respondents who had
missing data for some of the aggregated relational data questions and 1 respondent who answered
7 for all questions (see Zheng et al. (2006)). Further, consistent with common practice (e.g., Zheng
et al. (2006)), we top coded all responses at 30, affecting 0.26% of responses.
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The rescaled bootstrap includes two conceptual changes from the standard boot-
strap. First, it approximates the actual sampling design by a closely related one that
is much easier to work with. In particular, if we assume that primary sampling units
(PSUs) are selected with replacement and that all subsequent stages of sampling are
conducted independently each time a given PSU is selected, then we can use the
with-replacement sampling framework in which variance estimation is much easier;
see Sarndal et al. (1992) Result 4.5.1 for a more formal version of this claim. It is
important to note that this approximation is generally conservative because with-
replacement sampling usually results in higher variance than without-replacement
sampling. Therefore, we will be estimating the variance for a design that has higher
variance than the actual design. In practice, this difference is usually small because
the sampling fraction in each stratum is usually small (Rao et al., 1992; Rust and Rao,
1996); see Sarndal et al. (1992) Section 4.6 for a more formal treatment. To estimate
the variance in this idealized with-replacement design, resampling should be done
independently in each stratum and the units that are resampled with replacement
should be entire PSUs, not respondents.

This change—resampling PSUs, not respondents—introduces the need for a sec-
ond change in the resampling procedure. It is known that the standard bootstrap
procedure is off by a factor of (n−1)/n where n is the sample size (Rao and Wu, 1988).
Thus, when the sample size is very small, the bootstrap will tend to underestimate
the variance. While this issue is typically ignored, it can become important when we
resample PSUs rather than respondents. In particular, the number of sampled PSUs
in stratum h, nh, can be small in complex sample designs. At the extreme, in a design
with two sampled PSUs per stratum, which is not uncommon, the standard bootstrap
would be expected to produce a 50% underestimate of the variance. Therefore, Rao
et al. (1992) developed the rescaled bootstrap, whereby the bootstrap sample size
is slightly smaller than the original sample size and the sample weights are rescaled
to account for this difference. Rust and Rao (1996) recommend that if the original
sample includes nh PSUs in strata h, then researchers should resample nh − 1 PSUs
and rescale the respondent weights by nh/(nh − 1). That is, the weight for the jth

person in PSU i in the bth replicate sample is

w
(b)
ij = wij ×

nh
(nh − 1)

× r(b)
i (F.3)

where wij is the original weight for the jth unit in the ith PSU, nh is the number of

PSUs in strata h, and r
(b)
i is the number of times the ith PSU was selected in replicate

sample b.
In Figure 1, we compared the three different procedures for putting confidence in-

tervals around the basic scale-up estimator: the current procedure (Killworth et al.,
1998b), the standard bootstrap with the percentile method, and the rescaled boot-
strap with the percentile method. We made this comparison using data from scale-up
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studies in the United States, Rwanda,13 and Curitiba, Brazil.14 As expected, the
rescaled bootstrap produced confidence intervals that are larger than those from the
standard bootstrap, which in turn are larger than those from the current scale-up
variance estimation procedure. In the study from Curitiba, the rescaled bootstrap
procedure produced confidence intervals 1.17 times larger than the standard boot-
strap and 2.84 times larger than the current procedure. In the Rwanda case, the
rescaled bootstrap procedure produced confidence intervals 1.35 times larger than
the standard bootstrap and 2.65 times larger than the current procedure.

Finally, Figure F.1 shows the estimated confidence intervals for the groups of
known size in the three studies described above. The coverage rates for the boot-
strap confidence intervals for the US, Rwanda, and Curitiba, are 3.4%, 9.1%, 15.0%.
While this is far from ideal, we note that it is slightly better than the currently used
procedure (Equation F.2), which produced coverage rates of 3.4%, 9.1%, 5.0%, and
it is also slightly better than the standard bootstrap, which produced coverage rates
of 3.4%, 9.1%, and 10.0%.

F.2 Variance estimation with sample from F and H

Producing confidence intervals around the generalized scale-up estimator is more dif-
ficult than the basic scale-up estimator because the generalized estimator has uncer-
tainty from two different samples: the sample from the hidden population and the
sample from the frame population. To capture all of this uncertainty, we propose
combining replicate samples from the frame population with independent replicate

13The scale-up study in Rwanda used stratified two-stage cluster sampling with unequal probabil-
ity of selection across strata in order to oversample urban areas. Briefly, the sample design divided
Rwanda into five strata: Kigali City, North, East, South, and West. At the first stage, PSUs—in this
case villages—were selected with probability proportional to size and without replacement within
each stratum with oversampling in the Kigali City stratum. This approach resulted in a sample of
130 PSUs: 35 from Kigali City, 24 from East, 19 from North, 26 from South, and 26 from West. At
the second stage, 20 households were selected via simple random sampling without replacement from
each PSU in Kigali City and 15 households from each PSU in other strata. Finally, all members of
the sampled household over the age of 15 were interviewed. The study included a survey experi-
ment which randomized respondents to report about one of two different personal networks; to keep
things simple, we use responses about only one personal network here. For full details see Rwanda
Biomedical Center (2012). The original data file includes 2,406 respondents. From these cases, we
removed 2 respondents who had missing data for some of the aggregated relational data questions.
Further, consistent with common practice (e.g., Zheng et al. (2006)), we top coded all responses at
30, affecting 0.12% of responses.

14The scale-up study in Curitiba, Brazil used two-stage element sampling where 54 primary sam-
pling units (PSUs)—in this case census tracks—were selected with probability proportional to their
estimated number of housing units and without replacement. Then, within each cluster, eight sec-
ondary sampling units (SSUs)—in this case people—were selected with equal probability without
replacement. For full details see Salganik et al. (2011a). The original data file includes 500 re-
spondents. From these cases, we removed no respondents who had missing data for some of the
aggregated relational data questions. Further, consistent with common practice (e.g., Zheng et al.
(2006)), we top coded all responses at 30, affecting 0.58% of responses.
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Figure F.3: Schematic of the bootstrap procedure to put a confidence interval around
N̂H when there is a sample from the frame sF and a sample from the hidden population
sH .

samples from the hidden population in order to produce a set of replicate estimates.
More formally, given sF , a sample from the frame population, and an independent
sample sH from the hidden population, we seek to produce a set of B bootstrap
replicate samples for sF and sH , s

(1)
F , s

(2)
F , . . . , s

(B)
F and s

(1)
H , s

(2)
H , . . . , s

(B)
H , which are

then combined to produce a set of B bootstrap estimates: N̂
(1)
H = f(s

(1)
F , s

(1)
H ),

N̂
(2)
H = f(s

(2)
F , s

(2)
H ), . . . N̂

(B)
H = f(s

(B)
F , s

(B)
H ). Finally, these B replicate estimates are

converted into a confidence interval using the percentile method (Fig. F.3).
Because of the challenges involved in sampling hard-to-reach populations, the two

most likely sampling designs for sH will be time-location sampling and respondent-
driven sampling. If sH was selected with time-location sampling, we recommend
treating the design as a two-stage element sample (see Karon and Wejnert (2012))
and using the procedure of Rust and Rao (1996). If sH was selected with respondent-
driven sampling, as was done in a recent study of heavy drug users in Curitiba,
Brazil (Salganik et al., 2011b), we recommend using the best available bootstrap
method for respondent-driven sampling data, which at the present time is the pro-
cedure introduced in Salganik (2006). One implementation detail of that particular
bootstrap procedure is that it requires researchers to divide the sample of the hidden
population into two mutually exclusive groups. In this case, we recommend dividing
the hidden population into those who are above and below the median of their es-
timated visibility v̂i,F in order to capture some of the extra uncertainty introduced
if there are strong tendencies for more hidden members of the hidden population to
recruit each other.

Because the generalized scale-up estimator has never been used for groups of
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known size, we cannot explore the coverage rate of the proposed procedure. How-
ever, based on experience with respondent-driven sampling, we suspect that variance
estimation procedures for hidden populations will underestimate the actual uncer-
tainty in the estimates (Goel and Salganik, 2009, 2010; Yamanis et al., 2013; Verdery
et al., 2013; Rohe, 2015). If this is the case, then the intervals around the generalized
scale-up estimates will be anti-conservative.

In conclusion, Sec. F.1 presents a bootstrap procedure for simple and complex
sample designs from the sampling frame, and Sec. F.2 extends these results to ac-
count for the sampling variability introduced by having a sample from the hidden
population. We have shown that the performance of these procedures on three real
scale-up datasets is consistent with theoretical expectations. Additional research in
this area, which is beyond the scope of this paper, could adopt a total survey error
approach and attempt to quantify all sources of uncertainty in the estimates, not
just sampling uncertainty. Additional research could also explore the properties and
sensitivity of these confidence interval procedures though simulation.

G Simulation study

In this appendix, we describe a simulation study comparing the performance of the
generalized and basic network scale-up estimators. The results of these simulations
confirm and illustrate several of the analytical results in Section 3 of the paper. Most
importantly, the simulations show that the generalized network scale-up estimator is
unbiased for all of the situations explored by the simulation, while the basic network
scale-up estimator is biased for all but a few special cases. Moreover, our analytical
results correctly predict the bias of the basic network scale-up estimator in each case.

Our simulation study is intentionally simple in order to clearly illustrate our an-
alytical results; it is not designed to be a realistic model of any scale-up study. Con-
cretely, our simulations compare the performance of generalized and basic scale-up
estimators as three important quantities vary: (1) the size of the frame population
F , relative to the size of the entire population, U ; (2) the extent to which people’s
network connections are not formed completely at random, also called the amount
of inhomogenous mixing; and (3) the accuracy of reporting, as captured by the true
positive rate τF (see Equation 18).

We simulate populations consisting of N = 5, 000 people, using a stochastic block-
model (White et al., 1976; Wasserman and Faust, 1994) to randomly generate net-
works with different amounts of inhomogenous mixing. Stochastic block models as-
sume population members can be grouped into different blocks. For any pair of people,
i and j, the probability that there is an edge between i and j is completely determined
by the block memberships of i and j.

In our simulation model, each person can be either in or out of the frame popu-
lation F and each person can also be either in or out of the hidden population H,
producing four possible blocks: FH, F¬H, ¬F¬H, and ¬FH. (Here, we use the
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logical negation symbol, ¬, to denote not being in a group.) The probability of an
edge between any two people i and j is then governed by a Bernoulli distribution
whose mean is a function of the two block memberships:

Pr(i↔ j) ∼ Bernoulli(µg(i),g(j)), (G.1)

where g(i) is the block containing i, g(j) is the block containing j, i ↔ j denotes
an undirected edge between i and j, and µg(i),g(j) is the probability of an edge be-
tween a member of group g(i) and a member of group g(j). In a network with a
no inhomogenous mixing (equivalent to an Erdos-Renyi random graph), µg(i),g(j) will
be the same for all i and j. On the other hand, in a network with a high level of
inhomogenous mixing, µg(i),g(j) will be relatively small when g(i) 6= g(j) and µg(i),g(j)
will be relatively large when g(i) = g(j)15.

Each random network drawn under our simulation model depends on seven pa-
rameters. The first four parameters describe population size and group memberships;
they are:

• N , the size of the population

• pF , the fraction of people in the frame population

• pH , the fraction of people in the hidden population

• pF |H , the fraction of hidden population members also in the frame population

The next three parameters govern the amount of inhomogenous mixing in the
network that connects people to each other; they are:

• ζ, the probability of an edge between two people who are both in the same
block.

• ξ, the relative probability of an edge between two vertices that differ in frame
population membership. For example, a value of 0.6 would mean that the
chances of having a connection between a particular person in F and a particular
person not in F is 60% of the chance of a connection between two members of
F or two members of ¬F .

• ρ, the relative probability of an edge between two vertices that differ in hidden
population membership. For example, a value of 0.8 would mean that the
chances of having a connection between a particular person inH and a particular
person not in H is 80% of the chance of a connection between two members of
H or two members of ¬H.

15Computer code to perform the simulations was written in R (R Core Team, 2014) and used
the following packages: devtools (Wickham and Chang, 2013); functional (Danenberg, 2013); gg-
plot2 (Wickham, 2009); igraph (Csardi and Nepusz, 2006); networkreporting (Feehan and Salganik,
2014); plyr (Wickham, 2011); sampling (Tillé and Matei, 2015); and stringr (Wickham, 2012).
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M =




F H F¬H ¬F H ¬F¬H
F H ζ ρ · ζ ξ · ζ ξ · ρ · ζ
F¬H ρ · ζ ζ ξ · ρ · ζ ξ · ζ
¬F H ξ · ζ ξ · ρ · ζ ζ ρ · ζ
¬F¬H ξ · ρ · ζ ξ · ζ ρ · ζ ζ


 (G.2)

Figure G.1: The mixing matrix used to generate a random network using the stochas-
tic block model. Entry (i, j) in the matrix describes the probability of an edge between
two people, one of whom is in group i and one in group j. The probabilities are gov-
erned by ζ, ξ, and ρ. In our simulations, we generate networks with different amounts
of inhomogenous mixing between hidden population members and non-hidden popu-
lation members by fixing ζ = 0.05 and ξ = 0.4, and then varying ρ from 0.1 (extreme
inhomogenous mixing between hidden and non-hidden population members) to 1
(perfectly random mixing between hidden and non-hidden population members).

Together, the parameters ζ, ξ, and ρ are used to construct the mixing matrix M (Fig-
ure G). Note that varying the parameter ρ will change several structural features of
the network in addition to the amount of inhomogenous mixing; for example, changing
ρ will alter the degree distribution. Our analytical results show that the generalized
network scale-up estimator is robust to changes in these structural features.

The final parameter, τF , is used to control the amount of imperfect reporting.
After randomly drawing a network using the stochastic block model, we generate a
reporting network as follows:

1. convert all undirected edges i ↔ j in the social network into two directed
reporting edges in the reporting network: one i→ j and one j → i

2. select a fraction, 1− τF , of the edges that lead from members of the frame pop-
ulation to members of the hidden population uniformly at random and remove
them from the reporting graph.

Given a simple random sample of 500 members of the frame population and a relative
probability sample of 30 members of the hidden population, the reporting graph is
then used to compute the basic and generalized scale-up estimates for the size of the
hidden population.

Across our simulations, we fix five of the parameters at constant values (N =
5, 000; pF = 0.03; pF |H = 1; ζ = 0.05; ξ = 0.4). We systematically explore varying
the remaining parameters: we investigate ρ for values from 0.1 to 1 in increments of
0.1; we investigate pF for values 0.1, 0.5, and 1; and we investigate τF for 0.1, 0.5, and
1. For each combination of the parameter values, we generate 10 random networks.
Within each random network, we simulate 500 surveys. Each survey consists of
two samples: a probability sample from the frame population, with sample size of
500; and a relative probability from the hidden population of size 30, with inclusion
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proportional to each hidden population member’s personal network size. For each
unique combination of parameters, we averaged the results across the surveys and
across the randomly generated networks.
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