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This Supplemental Appendix provides detailed tables of results from the proximal population 
study across all buffer distances, as well as a detailed discussion of the caveats and advantages of 
various population allocation methods. 
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PART I: RESULTS TABLES 

Buffer 

Distance 
100 m 400 m 800 m 1000 m 1600 m 2000 m 

 Count % Count % Count % Count % Count % Count % 

Total  320,000 – 3,710,000 – 8,890,000 – 11,300,000 – 17,600,000 – 21,300,000 – 

Age 5 and 

under 
23,400 7.3 280,000 7.6 686,000 7.7 875,000 7.8 1,370,000 7.8 1,660,000 7.8 

Age under 

18 
75,600 23.6 891,000 24.0 2,150,000 24.2 2,730,000 24.2 4,270,000 24.2 5,160,000 24.2 

Age 75 and 

older 
20,600 6.4 239,000 6.4 558,000 6.3 700,000 6.2 1,080,000 6.2 1,300,000 6.1 

Hispanic 34,000 10.6 432,000 11.6 1,240,000 13.9 1,660,000 14.8 2,900,000 16.5 3,680,000 17.3 

Non-

Hispanic 

Minority 

36,400 11.4 422,000 11.4 1,150,000 12.9 1,520,000 13.5 2,560,000 14.5 3,200,000 15.0 

Minority 51,700 16.2 610,000 16.4 1,680,000 18.9 2,240,000 19.9 3,820,000 21.7 4,810,000 22.6 



Supplemental Material, Table S1. National population living in proximity to a confirmed-active oil and/or gas well, all buffer 

distances, by demographic. 

 

Well Data 

Category 
100 m 400 m 800 m 1000 m 1600 m 2000 m 

 Count % Count % Count % Count % Count % Count % 

Producing 318,000 99.5 3,690,000 99.3 8,790,000 98.9 11,100,000 98.7 17,300,000 98.2 20,900,000 98.0 

Recently 

drilled 
5,690 1.8 108,000 2.9 462,000 5.2 726,000 6.4 1,830,000 10.4 2,740,000 12.9 

Oil 110,000 34.3 1,130,000 30.3 3,140,000 35.3 4,290,000 38.1 8,000,000 45.4 10,600,000 49.7 

Wet gas 56,400 17.6 864,000 23.3 2,420,000 27.2 3,180,000 28.2 5,400,000 30.7 6,880,000 32.3 

Dry gas 158,000 49.4 2,020,000 54.5 4,940,000 55.6 6,280,000 55.7 9,710,000 55.1 11,600,000 54.6 

Supplemental Material, Table S2. National population living in proximity to a confirmed-active oil and/or gas well, all buffer 

distances, by well type and primary production category. 

Note: Percentages sum to greater than 100 due to proximal overlap in well type buffers. 



State 400 m 800 m 1600 m State 400 m 800 m 1600 m 

Ohio 762,000 2,090,000 2,800,000 Virginia 26,800 44,700 67,200 

Texas 729,000 1,690,000 4,520,000 Mississippi 13,000 34,300 90,500 

Pennsylvania 504,000 964,000 1,650,000 Tennessee 7,840 19,500 41,800 

West Virginia 316,000 601,000 919,000 Wyoming 4,730 13,500 34,300 

Oklahoma 312,000 868,000 1,750,000 Utah 4,020 13,000 31,900 

California 273,000 762,000 2,090,000 Montana 3,620 9,980 27,700 

Kentucky 133,000 261,000 407,000 N. Dakota 3,080 12,400 40,900 

Colorado 131,000 255,000 429,000 Florida 680 2,350 7,620 

New York 119,000 333,000 790,000 Nebraska 600 2,190 6,830 

Louisiana 94,1000 255,000 639,000 Missouri 110 750 4,350 

New Mexico 86,900 150,000 195,000 Maryland 38 140 610 

Arkansas 64,000 175,000 302,000 Oregon 18 56 190 

Kansas 50,800 154,000 373,000 S. Dakota 12 36 77 

Michigan 45,400 117,000 297,000 Arizona 9 14 73 

Alabama 28,800 54,000 97,100 Nevada 0 1 2 

Supplemental Material, Table S3. Populations living in proximity to a confirmed-active oil 

and/or gas well, 400 m, 800 m, and 1600m buffers by state. 

 

PART II. WELL TYPE UNCERTAINTY 

The range of well type counts reflects uncertainty in the count of unconventional wells as 

classified according to producing formation. This method classifies 772 coalbed methane wells 

(CBM; as reported by state agencies) as unconventional and 38,990 CBM wells as conventional. 



Coalbed methane has traditionally been defined as an unconventional resource, but in recent 

years is more commonly viewed as conventional. The unconventional category also includes 

21,045 wells completed prior to commercial economic viability of high-volume hydraulic 

fracturing, horizontal drilling methods, and clustered development on multi-well pads (circa 

2001; Wang and Krupnick 2013). While these wells may target unconventional geologic 

resources, they cannot be considered modern unconventional wells from a technological 

standpoint. The low end of the unconventional range (86,016 wells) is equal to the count of 

horizontal wellbores which report a producing formation matched to the EIA listing of tight 

formations. The high end of the unconventional count (106,428 wells) is equal to the number of 

wells classified, as per producing target, as unconventional which are not reported as a CBM 

well and/or completed prior to 2001. Conventional well counts are reported as the difference 

between total well count and unconventional well count.  

PART III. POPULATION ALLOCATION METHODS 

The method used in allocating population data to well spatial data can also cause large variance 

in reported results. The simplest method for allocating populations is spatial coincidence, 

whereby if an environmental health hazard is located within a population aggregation unit 

(census block, block group, tract), then the entire population of the block is assumed to be at risk. 

This method is limited and inflates the count of population at risk. Vector proximity 

apportionment and dasymetric mapping are more commonly used and result in relatively less 

error.  

Vector proximity analysis overlays population aggregation units and a buffered distance 

surrounding environmental health hazard points to determine the population count within the 

buffer area of the hazard source. The most basic method is complete apportionment, wherein if 



any part of an aggregated population unit intersects the buffer, then the entire population of the 

unit is allocated to the buffer. This method differs slightly from spatial coincidence in that more 

than one population aggregation unit is potentially counted. Like the spatial coincidence method, 

this method also tends to overestimate the affected population, as demonstrated in results from 

Gold and McGinty (2013). Slightly improved versions allocate the entire population aggregation 

units only if a substantial portion of the population unit overlays the source buffer, or if 

residential portions of population aggregation unit, as determined by land-use maps, intersect the 

source buffer, as done in various ways by Ogneva-Himmelberger and Huang (2015). A 

significantly improved method is proportional population apportionment, used by Srebotnjak et 

al (2014), Ridlington et al. (2015), and the current study. This method assumes that populations 

are evenly distributed across aggregated population units, and allocates population based on the 

measured proportion of area intersection. A caveat to this method is that the assumption of an 

evenly distributed population is rarely valid, although the effect of this population heterogeneity 

is most limited at the smallest-level census unit, the block, used in this study.  

Population can also be allocated by dasymetric mapping techniques. Dasymetry is an alternative 

aerial apportionment method that uses additional ancillary information, such as road networks, 

impervious surfaces, or, most commonly, land cover data to infer more granular information on 

where people live (Mennis 2003, 2015; Saporito et al. 2007; Sleeter 2004). This technique was 

incorporated in previous oil and gas proximity analyses by Slonecker and Milheim (2015), and 

Clough and Bell (2016). Their approach to dasymetry involved reclassifying a continuous 

surface of land cover data as residential or non-residential using binary coding. Counts attributed 

to aggregated population units were then transferred to the portion of the unit that was classified 

as residential, and from this point the analysis continued with proportional population 



apportionment. Using this type of dasymetry produces population allocation results that align 

with areas categorized in land cover datasets as developed. Hence, we could have applied 

dasymetric data to census enumeration units, in this case census blocks, to gain insight into 

where populations are distributed within each block, to address the common (but overly 

restrictive) assumption that populations are evenly distributed throughout census units. As census 

block data is already presented at a fine-grained scale, dasymetry is not as beneficial as it would 

have been had we used larger census units, such as block groups or census tracts, that inherently 

have greater heterogeneity, and thus we did not use dasymetry. One downside to dasymetry is 

that the ancillary data in most cases does not distinguish between types of developed urban land, 

and can therefore not differentiate between residential land and commercial or industrial land 

(Mennis 2003), which can result in the mis-allocation of populations to developed non-

residential areas. In addition, raster land cover datasets are classified into land cover types by 

computer algorithms and are known to misclassify land use types in some cases (Hollister et al. 

2004; Wickham et al. 2013). Also, land cover data provide no information on demographic 

distributions, such as age, race, or ethnicity. We could assume that demographics are distributed 

evenly throughout the populated areas of a census unit, but considering the history of racial and 

ethnic segregation geographically in this country (Fischer et al. 2004; Lee et al. 2008), that 

assumption would be unlikely to hold true. 
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