
 1 

 

 

Supplementary Figure 1. Two examples of mRNP trajectories obtained in the experiment (upper 

panels) and the classification of run and rest phases from the corresponding trajectories (lower panels). 

In the lower panels, the velocity at each time point of trajectory is plotted and red lines represent the 

threshold value for distinguishing the motion of mRNP (i.e., run or rest). Details of methods for 

distinguishing the motion is in “Image analysis” in the methods section. The regions in the run phase 

are expressed with tr in the lower panels and the other regions represent rest. Both run and rest phases 

are noisy because of the positional fluctuations with similar amplitudes. The noise is likely to be caused 

by the thermal motion or localization uncertainty for particle detection.     
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Supplementary Figure 2. Analysis of the mean squared displacement (MSD) for run and rest phases. 

From the procedure explained in Supplementary Fig. 1, the kymograph trajectories were segmented 

into two parts of run and rest, respectively. For each segment (of either run or rest phase), its MSD 

was evaluated by the method of self-averaging called time-averaged (TA) MSD by the definition 

𝑥2(𝜏)̅̅ ̅̅ ̅̅ ̅ =
1

𝑇−𝜏
∫ [𝑥(𝑡 + 𝜏) − 𝑥(𝑡)]2𝑑𝑡
𝑇−𝜏

0
.  a. TA MSD curves from 312 individual runs (gray) and its 

average curve (blue). The results show that run is a phase of ballistic motion with the MSD exponent 

𝛽 ≈ 2. b. TA MSD curves from 562 rest segments (gray) and its average curve (blue). Rest phase 

exhibits a subdiffusive dynamics with the MSD exponent 𝛽 ≈ 0.1. 
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Supplementary Figure 3. Analysis of the dynamic properties of run phase. a. The distribution of run 

velocities. The velocity was evaluated as 𝑣 = 𝛥𝑥/𝛥𝑡 where 𝛥𝑥, 𝛥𝑡 are respectively the displacement 

and the duration of each run. The distribution is almost symmetric with respect to the direction and has 

peaks around at 1 μm/s. b. The average run length (𝛥𝑥) as a function of the run time (𝛥𝑡). The linear 

relation is found, indicating that run can be regarded as a ballistic motion of a constant speed (~ 1.25 

μm/s). c. The distribution of run lengths. The dashed line represents the best fit to the data with  𝜓𝑙(𝑥) ∝

exp(−x/xr)

(x+𝑥0)
1+η . Its exponent 𝜂 is ~0.81 and the characteristic length is ~86 μm. 
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Supplementary Figure 4. Intact microtubules are needed for directed motion of mRNPs. a. A 

representative kymograph of mRNPs before nocodazole treatment. Some of mRNPs are showing 

directed motion. b. A representative kymograph of mRNPs 4 hours after nocodazole (5 μg/ml) treatment. 

Most of the directed motions are gone. Scale bars, 10 s (horizontal) and 10 μm (vertical), respectively. 

c. Bar graph comparing the percentage of mRNPs with directed motion during 1-minute observation 

before and 4 hours after nocodazole treatment. Experiment was performed on hippocampal neurons at 

8 days in vitro (DIV) and more than 147 mRNPs were analyzed from 7 dendrites. Error bars represent 

standard error of mean (SEM). 
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Supplementary Figure 5. Fitting curves for the run time distribution. a. Single-exponential fit. b. 

Power-law fit. c. Truncated power-law fit. d. Double-exponential fit. Experimental data of the run 

time distribution (red circles; same data shown in Fig. 2b) are displayed with the best fit curves (blue 

dashed line). 
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Supplementary Figure 6. MSD curves of our generalized Lévy walk model for various forms of run 

time pdf 𝜓𝑟(𝑡) discussed in Supplementary Note 2. a. EA MSD curves. b. TA MSD curves. In each 

panel, the colored solid lines represent the results for the pdf of power-law (black), power-law with an 

exponential cutoff (blue), single exponential (red), and double exponential (green) with the best fit 

parameters found in Supplementary Table 2. In the above plot, the rest time pdf was fixed to be the 

same power law form 𝜓𝑠(𝑡) and the aging time was 𝑡𝑎 = 0. 
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Supplementary Figure 7. Fitting curves for the rest time distribution. a. Single-exponential fit. b. 

Power-law fit. c. Truncated power-law fit. d. Double-exponential fit. Experimental data of the rest time 

distribution (red circles; same data shown in Fig. 2c) are displayed with the best fit curves (blue dashed 

line). 
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Supplementary Figure 8. Additional analysis on MSD obtained from the experiment. a. The averaged 

TA MSDs for all kymographs (blue circles; same MSD curve shown in Fig. 2e) and for a subset of 

kymographs showing at least one run phase (black circles). b. EA MSDs for all kymographs (red circles; 

same MSD curve shown in Fig. 2e) and for a subset of kymographs with any run phase (black circles). 

In both cases of total and subset analyses, consistent scaling behaviors are found. The increase of MSD 

amplitudes in subset analysis is simply due to the fact that only mobile mRNPs were considered. This 

analysis confirms that the sub-ballistic superdiffusion (𝛽 ≈ 1.6) and the Fickian dynamics (𝛽 ≈ 1) in 

Fig. 2e is the genuine dynamic feature of the mRNPs.  
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Supplementary Figure 9. The effect of truncation in the run time distribution. a. Simulated trajectories 

for the generalized Lévy walk model with truncation (upper panel) and without truncation (lower panel) 

in the run time pdf 𝜓𝑟(𝑡). In each panel, 23 trajectories are displayed. In the simulation, all required 

parameters were fixed with the values estimated from our experiment. The truncated Lévy walk shows 

a similar pattern of motion found in the experiment. b. EA MSD (red circles) and TA MSD (blue circles) 

of the simulated trajectories using the generalized Lévy walk model without truncation in the run time 

distribution.   
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Supplementary Figure 10. The aged EA MSD for the truncated Lévy walk simulation. This plot is a 

long-time version of Fig. 3c. In this long-time simulation, three expected scalings are observed: (1) 

Ballistic regime for 𝛥𝑡 ≪ 𝑡𝑎. (2) Apparent Fickian regime (⟨𝑥2(𝛥𝑡)⟩ ∼ 𝑡𝑎
𝛼−1𝛥𝑡) in the intermediate 

time scale 0 < 𝛥𝑡 < 𝑡𝑎 . (3) Subdiffusive regime (⟨𝑥2(𝛥𝑡)⟩ ∼ (𝛥𝑡)𝛼 ) for 𝛥𝑡 ≫ 𝑡𝑎 . The above MSD 

curve was obtained from 10000 simulated trajectories. The parameters used in the simulation are: 

α=0.32, γ=0.52, τr=12.5 s and ta=105 s.  
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Supplementary Figure 11. The effect of noise in the trajectories. a. 10 sample trajectories from the 

simulation with aging time ta = 100 s (upper panel) and the same trajectories added with the noise 

extracted from the experimental data (lower panel). b. EA MSD for the simulated trajectories without 

the noise (black circles) and EA MSD superposed with the noise extracted from the experimental data 

(blue circles). 
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Supplementary Figure 12. Normalized amplitude scatter distribution 𝜙(𝜉) of TA MSDs as a 

function of rescaled variable of ξ =
𝑥2̅̅̅̅

〈𝑥2̅̅̅̅ 〉
. a. 𝜙(𝜉) of TA MSDs for the lag time 𝜏 =5 s. b. 𝜙(𝜉) of TA 

MSDs for the lag time 𝜏 = 60 s. In both cases, the fluctuation of TA MSDs in the experimental data is 

consistent with the simulation results for 𝑡𝑎 = 100 s. The sharp peaks at ξ=0 indicate that there exist 

significant portion of trajectories having no run phase over the lag time. 

 

  



 13 

 

 

Supplementary Figure 13. TA MSD curves of the aging Lévy walk process with three different aging 

times. TA MSD curves with (a) ta = 0 s, (b) ta = 100 s, and (c) ta =1800 s. Thick blue lines denote the 

average of 104 individual TA MSDs (gray). (However, in each plot only 102 trajectories are displayed 

for clarity). In c, the number of TA MSD curves is much less than that of a because the TA MSDs for 

the silent trajectories (without any run phase) are not visible in the log-log plot. These results clearly 

show that the number of silent trajectories increases with increasing ta, which is consistent with the 

results in Fig. 3a. 
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Supplementary Figure 14. Additional analysis on the aging status in the mRNP transport. Ensemble- 

and time-averaged MSDs for the mRNP particles were reconstructed with a subset of kymograph 

trajectories corresponding the cases that have at least one run event during the overall observation time. 

In each kymograph, the time axis was reset so that the observation (t = 0) starts from the first run event. 

This operation is expected to reverse the aging effect and, accordingly, to lead to the weak ergodicity 

breaking (WEB) as predicted in our Lévy walk model with ta = 0 (Fig. 3b). The above plot indeed 

confirms this idea. Distinct from the MSD plot in Fig. 2e, in this reconstructed plot EA MSD is not the 

same as TA MSD. At times larger than the truncation time (r = 12.5 s), TA MSD shows the expected 

Fickian scaling due to WEB. Large scatter at the end of the curve is due to the insufficient statistics 

with the subset data.    
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Supplementary Figure 15. Aged probability density function of mRNP particles with the theoretical 

curves by two distinct aging Lévy walk models. For further understanding of the aging properties of 

our generalized Lévy walk model, we compared the aging effect of our model with that of the jump-

first model recently introduced by Magdziarz and Zorawik1. The latter model essentially describes the 

Lévy walk by a sequence of jump and rest pairs governed by the same power-law pdf. In Ref. 1, the 

analytic form of the aged probability density function was explicitly derived. With the same parameter 

conditions determined in the experiment, in this figure, the aged P(x,Δt) of the jump-first model is 

plotted together with those of our model and the experiment. It is found that while the ratio of rest 

particles (i.e., the peak value) is explained well by both Lévy walk models, the jump-first model does 

not properly explain the experimental behavior for displacements larger than a fewm. This 

discrepancy is due to the fact that the jump-first model describes the rest and run events with the same 

power-law pdf whereas the experimental run and rest statistics need their own respective pdfs. The 

jump-first model has a significant probability having large jumps compared to our generalized Lévy 

walk having a truncated power-law of run times. The above result demonstrates that the aging and the 

profile of P(x,Δt) sensitively depend on the statistics of run and rest events. Our Lévy walk model, 

which allows to deal with the run and rest events separately, is quantitatively an adequate model for the 

description of mRNP transport.   
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Supplementary Table 1. Conditional probabilities of the four possible directional combinations for all 

consecutive runs separated by a rest. Almost same conditional probabilities from 312 runs indicate that 

the direction of each run is independent from previous direction of run. 

 

 

 

 

 

 

Model 
Single-

exponential 
Power-law Truncated power-law Double-exponential 

Parameters for 

the best fit 

A 1 A  A  1 A 1 B 2 

0.12

0.03 

4.4 

0.4 

1.34 

0.1 

1.26 

0.19 

0.88 

0.07 

0.52 

0.58 

12.5 

9.4 

0.12 

0.02 

4.9 

0.7 

9.4 

0.8 

0.5 

1.4 

R2 0.9054 0.9358 0.9466 0.9380 

RMSE 0.2548 0.2099 0.2031 0.2339 

 

Supplementary Table 2. Fitting parameters for the run time distribution with various models. R2 is the 

coefficient of determination, which indicates the proportion of the total sum of squares explained by 

the model. An R2 of 1 indicates that the regression line perfectly fits the data. Root mean square error 

(RMSE) is a measure of the differences between the data and values predicted by a model. An RMSE 

value closer to 0 indicates a better fit. The least squares error methods indicate that truncated power-

law is the best model to explain the run time distribution with the highest R2 and the lowest RMSE. 
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Model 
Single-

exponential 
Power-law Truncated power-law Double-exponential 

Parameters 

for the best 

fit 

A 1 A  A  1 A 1 B 2 

0.10 

0.02 

12.5 

1.2 

0.8 

0.2 

0.32 

0.08 

0.5 

0.2 

0.07 

0.23 

59 

49 

0.6 

0.3 

2.0 

0.6 

0.05 

0.01 

17.1 

2.3 

R2 0.8438 0.9206 0.9258 0.9366 

RMSE 0.2022 0.1442 0.1434 0.1367 

 

Supplementary Table 3. Fitting parameters for the rest time distribution with various models. The least 

squares error methods indicate that double-exponential distribution is the best model to explain the rest 

time distribution with the highest R2 and the lowest RMSE. 

 

  



 18 

Supplementary Note 1: Fitting the run time distribution  

The run time distribution shown in Fig. 2b was fit with the following distribution functions. The three 

variations of the exponentially decaying function (single-exponential, truncated power-law, and double-

exponential) were chosen based on a simple physical argument that the run has a finite characteristic 

length in that there should be a finite number of ATPs involved in a single run event. This idea is also 

corroborated by a theoretical study by Müller et al.2, which showed that the transport dynamics of a 

cargo via a tug-of-war competition by multiple motors leads to an exponentially truncated distribution 

of run length/time at large length/long time. On the other hand, run and rest occurring times can be 

viewed as bursting times in a complex system, where commonly observed bursting time probability 

density function (pdf) is of a power-law3. Accordingly, below we consider the four distinct distribution 

functions.  

Single-exponential:  

                                                            𝜓𝑟(𝑡) = 𝐴exp (−
𝑡

𝜏1
)                                               (1)  

Power-law: 

                                                            𝜓𝑟(𝑡) =
𝐴

(𝑡+𝑡0)
1+γ                                                                      (2)   

Truncated power-law:  

                                                            𝜓𝑟(𝑡) =
𝐴exp(−

𝑡

𝜏1
)

(𝑡+𝑡0)
1+γ                                                             (3)  

Double-exponential: 

                                                                           𝜓𝑟(𝑡) = 𝐴exp (−
𝑡

𝜏1
) + 𝐵exp (−

𝑡

𝜏2
)                                                 (4) 

Supplementary Fig. 5 shows the experimental data with each fitting curve. The parameters for the best 

fit to each distribution are shown in Supplementary Table 2. Using the least square error methods, we 

determined that the truncated power-law is the best model to explain the pdf of the run time. 

In addition, maximum-likelihood fitting methods with goodness-of-fit tests4 were used to determine 

whether truncated power-law is truly better than power-law to fit the run time distribution. Because a 

power-law distribution is a subset of truncated power-law distribution with 1  , the truncated power-

law (the larger family of distribution), will always provide a better fit than the power-law (the nested or 

smaller family distribution). Therefore, we used a modified likelihood ratio test for the nested case 4 to 

determine whether the smaller family (power-law) can be ruled out. The logarithm of the likelihood 

ratio, R, between the power-law and truncated power-law is -14.68, indicating that truncated power-law 

is a better fit. The observed value of R is sufficiently far from zero and its negative sign is statistically 
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significant (p < 0.01).   

 

Supplementary Note 2: Effects of the profile of distribution functions on the transport dynamics 

As pointed out in the main text and Supplementary Fig. 9, the transport dynamics of a generalized Lévy 

walk process (modeling the mRNP motion) is evidently distinct depending on whether the exponential 

truncation exists or not in the power-law pdf of the run time. However, it turns out that for the 

observation time window in our experiment, the difference among the above three variations of the 

exponentially decaying functions is negligible in the transport dynamics. This is shown in 

Supplementary Fig. 6 in which the ensemble- and time-averaged MSDs of our generalized Lévy walk 

model for the above four fit functions are plotted with their best fit parameters. The results demonstrate 

that the three fit functions in the class of exponential function display very similar patterns of the 

ensemble- and time-averaged MSDs. This further augments our conclusion above (and in the main text) 

such that the exponential truncation is critical in characterizing the mRNP dynamics in our observation 

time scale while the details of the exponential pdf is irrelevant if it fits sufficiently well the data within 

the observation time window. The observed robust scaling behavior is physically understandable; at 

short times the dynamics is dominated by the run phase leading to the ballistic scaling while the 

exponent of long-time dynamics (> the truncation characteristic time) is determined by the waiting time 

pdf of rest events. The curvature around the cross-over time and the amplitude of the MSD curves may, 

in general, depend on the details of the (exponential) distribution function. Even in this case, the 

exponential pdfs tuned with a proper normalization and fit parameters within given time window can 

produce similar cross-over characteristics. Finally, we note in passing that the amplitude of the MSD 

curve can vary depending on whether the part of pdf whose time is shorter than our fitting range (> 2 s) 

is considered or not for normalization (data not shown). In this study, we used the exponentially 

truncated power-law distribution, which is conceptually easy to handle in the framework of Lévy walk 

theory.  
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Supplementary Note 3: Fitting the rest time distribution  

The rest time distribution shown in Fig. 2c was also fit with the four different models: single-

exponential, power-law, truncated power-law, and double-exponential. The results are shown in 

Supplementary Fig. 7 and Supplementary Table 3. All models except for a single-exponential function 

show reasonable fit to the data with similar coefficients of determination (R2) and root mean square 

error (RMSE) values. Among the three models, we decided to use a power-law function to model the 

rest time distribution since it has the least number of fitting parameters. Moreover, fitting with a 

truncated power-law model estimates a decay constant 1 = 59  49 s, which is close to our overall 

observation time of 60 s. Recently, Yoon et al. reported that the half-life of stationary events of β-actin 

mRNA is ~ 7 min using a single exponential fit to their long-term imaging data5. Although the rest time 

distribution may eventually show an exponential decay over a long period of time, the reported decay 

constant (~10 min) is one order longer than our total observation time (60 s). Therefore, we reasoned 

that a power-law function is a reasonable model to describe the rest time distribution within our 

observation time window.      
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